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ABSTRACT 
 

In this article discrete time risk model with heavy tailed losses distribution and 
dependence between financial and insurance risks is considered. It is shown that known 
asymptotic formulas work with good accuracy for sufficiently large arguments. Direct 
methods based on calculation of ruin probability by solution of appropriate integral 
equations demand large volumes of calculations and so work for sufficiently small 
arguments. Fast and accuracy algorithms, based on approximation of loss distribution by 
mixture of exponential ones, to calculate ruin probability in this interval are developed. This 
approximation of considered model is based on continuity theorems and analog of Bernstein 
theorem in 1L  metrics.  

 
INTRODUCTION 
 

Discrete time risk model with dependence between financial and insurance risks is 
considered. In modern period of strong economical crisis such dependence may be recognized 
easily in different large anthropogenic catastrophes. So a problem to analyze asymptotically this 
dependence influence on the ruin probability is actual now. 

This problem is discussed in risk theory and in queueing theory (Asmussen & Bladt 1996, 
Asmussen 2000, Feldmann & Whitt 1998, Dufresne 2005, Albrecher, Teugels & Tichy 2001). For 
heavy tailed distributions of losses it is shown that known asymptotic formulas (Embrechts & 
Veraverbeke 1982, Embrechts, Kluppelberg & Mikosch 1997, Tang 2004) work with good 
accuracy for sufficiently large arguments (Asmussen 2000, Kalashnikov 1997, Kalashnikov 1999). 
Direct methods based on calculation of ruin probability by solution of appropriate integral equations 
demand large volumes of calculations (Skvarnik 2004) and so work for sufficiently small 
arguments. As a result an interval of mean arguments appears. This interval is interesting practically 
and in it asymptotic formulas still do not work and direct methods already do not work. So it is 
interesting to process sufficiently fast and accuracy algorithms to calculate ruin probability in this 
interval. 

To solve this problem an analogy with the queueing theory with an approximation of heavy 
tailed distribution by a mixture of exponential ones is used. It is known that waiting times in an one 
server queueing system which creates the Lindley chain coincide by a distribution with maximums 
of sequential sums and are continuous for fluctuations of distributions (Borovkov 1971, Zolotarev 
1976). Analogously in discrete time risk model with dependent financial and insurance risks a finite 
interval ruin probability coincides with tail of distribution of some Markov chain. 

In this paper finite interval ruin probability is represented by sum of exponents with unknown 
coefficients. To find these coefficients some recurrent procedure is suggested. It allows to consider 
risk model with exponential, Pareto, Weibull and some other loss distributions. We consider special 
model of insurance and financial risks dependence based on suggestion that a financial risk has a 
finite number of meanings and for each meaning an insurance risk has its own distribution. 
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Asymptotic formulas for the ruin probability in a case of independent financial and insurance 
risks have been obtained in (Tang & Tsitsiashvili 2003 (Stochastic Processes Applied)). More 
complicated cases with special restrictions on insurance risks dependence are considered for 
example in (Tang & Tsitsiashvili 2003 (Extremes), Tang & Wang 2010). First asymptotic formulas 
for dependent financial and insurance risks are obtained in (Tsitsiashvili 2010). 
 
1 PRELIMINARIES  
 

Consider recurrent discrete time risk model (with annual step) with initial capital , 0,x x ≥  and 
nonnegative losses , 1, 2..., (  ) ( ) :n nZ n P Z t F t= < =   

0 -1,  , 1, 2,...n n n nS x S B S A n= = + =                                                          (1) 
Here income , 1, 2,...,nA n =  to end of n-th year is defined as difference between unit premium sum 
and loss 1 .n nA Z= −  Assume that 1nB >  is inflation factor from 1n −  to n  year, 1, 2,...n =  In 
(Norberg 1999) -n nX A=  is called insurance risk and 1

n nY B −=  is called financial risk. Suppose that 
{( , ), 1}n nA B n ≥  is sequence of independent and identically distributed random vectors (i.i.d.r.v.`s). 
In this model with initial capital x  ruin time is defined by formula 

0( ) inf { 1,2,... :  0 | }nx n S S xτ = = ≤ =  
and finite time ruin probability by formula 

( ) ( ( ) ).n x P x nψ τ= ≤  
So the sum nS  money accumulated by insurance company to n-th year end satisfies recurrent 

formula 

0
11 1

, , 1, 2,...,
n nn

n j i j
ij j i

S x S x B A B n
== = +

= = + =∑∏ ∏                                          (2) 

where 
1

1
n

j
j n

B
= +

=∏  by convention. According to the notation above we can rewrite the discounted 

value of the surplus nS  in (2) as 

0
11 1

, .
n in

n n j i j n
ij j

S x S S Y x X Y x W
== =

= = = − = −∑∏ ∏% %  

Hence we easily understand that for each n=0,1,... 

{ } 01
( ) ( ), max 0, max , 0.n n n kk n
x P U x U W Uψ

≤ ≤
= > = =                                   (3) 

Define another Markov chain as 
0 10, max(0, ), 1, 2,...n n n nV V Y X V n−= = + =                                     (4) 

In (Tang & Tsitsiashvili 2003 (Stochastic Processes Applied), Tsitsiashvili 2010) the following 
statement is proved. 
Theorem 1. The formula ( ) ( ), 1, 2,...n nx P V x nψ = > =  is true. 

Suppose that {1,..., }Q m=  and introduce m-dimensional vectors 11 { ,..., }q q mqδ δ=  where ijδ  is 
Kroneker symbol and  

1 1( ,..., ), ( ,..., ), 0, {0,1,...}, 1,..., ,m m i iR r r K k k r k i m= = > ∈ =  
and denote 

, | | .qkK
q q

q Qq Q

R r K k
∈∈

= = ∑∏   
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Redefine the function te−  so that for 0t <  we have 1te− =  and for 0t ≥  this function is defined as 

usual. Introduce the function 
0, 0,

( )
1, 0.

t
E t

t
>⎧

= ⎨ ≤⎩
 Suppose that i.i.d.r.vectors ( , ), 1,n nY Z n ≥  have 

following distributions 
-1( , ) , ( ) ( ), 1, .q q

n q n n q n qY r Z Z p P Z t F t n q Q= = = > = ≥ ∈  

Consider disturbed Markov chain , 0,nV n ≥%  so that 

0 10, max(0, ), 1, 2,...n n n nV V Y X V n−= = + =% % % %                                  (5) 
have following distributions 

-1( , ) , ( ) ( ), 1, .q q
n q n n q n qY r Z Z p P Z t G t n q Q= = = > = ≥ ∈% % %  

Denote ( ) ( ).n nx P V xϕ = >%  

 
2 RECURRENT ALGORITHMS OF RUIN PROBABILITY CALCULATIONS 
 
Theorem 2. Suppose that there are real numbers , , 1,..., ,  qia q Q i l∈ =  and 0, ,qp q Q> ∈  

1,q
q Q

p
∈

=∑  so that 
1

( ) exp( ), , 1,
l

q qi i
i

G t a t q Q nλ
=

= − ∈ ≥∑  and 

, 1 , , | | 1.K
i jR i j l Kλ λ≠ ≤ ≤ ≥                                                 (6) 

Then there are real numbers , , 1,..., , 1 | | ,K
n iB i l K n= ≤ ≤  which satisfy for 1, 1,...,n i l≥ =  initial 

conditions  
1
1, exp(- ), ,q

i q qi iB p a q Qλ= ∈                                                     (7) 
 
and recurrent formulas 

1 , 0
1,

1 | | 1
exp(- ) exp(- ), ,

-
q

K Kl
n j qi j

n i q i q n qi iK
K n j j i

B a R
B p p B a q Q

R
λ

λ λ
λ λ+

≤ ≤ =

= + ∈∑ ∑                      (8) 

1
1,

1, 1
1

( 0)  exp(- ), 1 | | 1,
-

q

q

q

Kl
Kn i qj jK

n i q q iK
q Q j i j

B a
B I k p R K n

R
λ

λ
λ λ

−
−

+ −
∈ =

= − > < ≤ +∑ ∑                   (9) 

so that 
0

,  
1 | | 1

( ) exp(- ) ( ), 0,
l

K K
s s i i s

K s i

t B R t B E t sϕ λ
≤ ≤ =

= + >∑ ∑                                   (10) 

where 
0

,
1 | | 1

1-  .
l

K
s s i

K s i

B B
≤ ≤ =

= ∑ ∑                                                           (11) 

Proof. If random variables ,ξ η  are independent and  
( ) \ exp(- ), ( ) \ exp(- ), , 0, ,P t t P t tξ μ η λ λ μ λ μ> = > = > ≠  

then it is easy to obtain that 
exp(- ) exp(- )( ) .t tP t μ λ λ μξ η

μ λ
−

+ > =
−

                                         (12) 

Calculating 
1 1

1 1 1 1( ( -1) )  ( -1 )  ( 1)q qq q
q q

q Q q Q

P Y Z t p P Z R t p P Z R t
∈ ∈

> = > = > + =∑ ∑% % %  
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1 1

1 1

 exp( ( 1))  exp( ) exp( )q q
l l

q qi i q qi i i
q Q i q Q i

p a R t p a R tλ λ λ
∈ = ∈ =

= − + = − −∑ ∑ ∑ ∑  

we obtain that 
1 1 10 0

1 1 1, 1
1 1

( )  exp( ) exp( ) ( ) exp( ) ( ).q q q
l l

q qi i i i i
q Q i q Q i

t p a R t B E t B R t B E tϕ λ λ λ
∈ = ∈ =

= − − + = − +∑ ∑ ∑∑  

So the formula (10) is true for s=1 with the initial conditions (7) and the equality (11). 
Suppose that the formula (10) takes place for s=n and using the formula (12) calculate 
1 1 1( ( -1) ) ( 1).q

n n n q n n q
q Q

P Y V Z t p P V Z r t+ + +
∈

+ > = + > +∑% % % %  As  

, 0
1

1 | | 1 1 1
( )  ( exp(- ) exp(- )) exp(- )

-

Kl l l
n i qjq K K

n n i j j i n qi iK
K n i j ii j

B a
P V Z x R x R x B a x

R
λ λ λ λ λ

λ λ+
≤ ≤ = = =

+ > = − +∑ ∑∑ ∑% %  

so 
1 1,

1
1 | | 1 1

( 1)  [ exp(- ) exp(- ) exp(- )exp(- )]
-

q q

Kl l
Kn i qjq K K

n n q i j j j i iK
K n i j i j

B a
P V Z r t R R t R R t

R
λ λ λ λ λ λ

λ λ
+

+
≤ ≤ = =

+ > + = − +∑ ∑∑% %

10

1

exp(- )exp(- ).q
l

n qi i i
i

B a R tλ λ
=

+ ∑  

Consequently we obtain 
1 1,

1
1 | | 1 1

( )  [ exp(- ) exp(- ) exp(- ) exp(- )]
-

q q

Kl l
Kn i qj K K

n q i j j j i iK
q Q K n i j i j

B a
t p R R t R R t

R
ϕ λ λ λ λ λ λ

λ λ
+

+
∈ ≤ ≤ = =

= − +∑ ∑ ∑∑  

10 0
1

1

exp(- ) exp(- ) ( )q
l

q n qi i i n
q Q i

p B a R t B E tλ λ +
∈ =

+ + =∑ ∑  

1,

1 1 | | 1

exp(- ) exp(- )
-

q

Kl l
n j qi K

q j i iK
q Q i K n j j i

B a
p R R t

R
λ λ λ

λ λ∈ = ≤ ≤ =

= −∑ ∑ ∑ ∑

1,

1 1 | | 1

exp(- )exp(- )]
-

q

Kl l
Kn i qj K

q j i iK
q Q i K n j i j

B a
p R R t

R
λ λ λ

λ λ

′
′+′

′
′∈ = ≤ ≤ =

− +∑ ∑ ∑ ∑  

10 0 0
1 1, 1

1 1 | | 1 1

exp(- ) exp(- ) ( ) exp(- ) + ( )q
l l

K K
q n qi i i n n i i n

q Q i K n i

p B a R t B E t B R t B E tλ λ λ+ + +
∈ = ≤ ≤ + =

+ + = =∑ ∑ ∑ ∑  

1 1 0
1, 1, 1

1 2 | | 1 1

exp(- ) + exp(- ) + ( ).q q
l l

K K
n i i n i i n

q Q i K n i

B R t B R t B E tλ λ+ + +
∈ = ≤ ≤ + =

= ∑∑ ∑ ∑  

So the formula (10) is true for s=n+1. Here for 1,..., , 1 | | 1i l K n= < ≤ +  we have the recurrent 
formulas (9) and for 1,..., , | | 1i l K= =  the recurrent formulas (8) and for 0

1nB +  the equality (11). The 
theorem is proved. 
 
3 CONTINUITY OF RISK MODEL IN L1 METRICS  
 

In the sequel we assume that 
1 1 1 1

1 1

( , ) ( )( , ( )) , ( , ) ( )( , ( )).
m m

n n n q q n n n n q q n
q q

Y Z I i q r F Y Z I i q r Gω ω− − − −

= =

= = = =∑ ∑%               (13) 

Here i.i.d.r.v`s , 1,n nω ≥  are uniformly distributed on interval [0, 1], 1( ), 0 1,F ω ω− ≤ ≤  is inverse to 
d.f. F(t) function. Then using uniform metrics 

0
( , ) sup | ( ) - ( )|

x
F G F x G xρ

≥
=  
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and results on stability of queueing systems (Zolotarev 1976) it is simple to obtain following 
statement. 
Theorem 3. For fixed 0n ≥  inequality 

( , ) ( , )n n n F Gρ ψ ϕ ρ≤                                                         (14) 
is true. 

Say that distribution density ( )f t  concentrated on [0, )∞ , is absolutely monotone if it has 
derivatives of all orders and ( )(-1) ( ) 0 k kf t ≥  for all 0t >  and 1k ≥ . Example of such distribution is 
Pareto distribution satisfying equality -( ) (1 ) , 0.F x bx xα= + >  From Bernstein theorem (Feldmann 
998) it is known that for d.f. F with absolutely monotone density there is sequence of d.f.`s 
represented as sums of exponents  

1
( ) (1- exp(- )) , 0, 0,

sl

s si si
i

F x p x x sλ
=

= ≥ >∑  

where 10 , , ... 1
ssi si s slp p pλ< < ∞ + + =  and ( , ) 0, .sF F sρ → →∞  

Theorem 3 and Bernstein theorem allow to construct approximative algorithm for a 
calculation of ruin probability. But linear by n upper bound in (14) is not convenient for this aim. 
So we begin to reformulate these results in terms of 1L  metrics. Denote 1

nEY a−=  and introduce the 
metrics 1( , )L F G  between d.f.`s F, G as follows 

1( , ) | ( ) - ( ) | .L F G F t G t dt
∞

−∞

= ∫                                                         (15) 

Theorem 4. If 1max ( , )q qq Q
L F Gδ

∈
=  and a >1 then 

1( , ) . 
-1n nL

a
δϕ ψ ≤                                                      (16) 

Proof. From the formulas (4), (5) we have that 0 0| - | 0E V V =% and 
1 1 1

1 1| - | ( ) | max (0, ( ) -1) - max (0, ( ) -1) |n n n q n q n n q n
q Q

E V V E I i q r V F V Gω ω− − −
− −

∈

= = + + ≤∑% %  

1 1 1
1 1( ) (| | | ( ) ( ) | )n q n n q n q n

q Q

E I i q r V V F Gω ω− − −
− −

∈

≤ = − + − =∑ %  

1 1 1 1 1
1 1

| |( | | | ( ) ( ) | ) , 1.n n
q q n n q n q n

q Q

E V Vr p E V V E F G n
a

δω ω− − − − −
− −

∈

− +
= − + − = ≤∑

%
%   

Consequently an induction by n gives the formula 

1
| | . 

-1

n
k

n n
k

E V V a
a
δδ −

=

− ≤ ≤∑%  

As the minimum of the complex probability metrics | |n nE V V− %  by all joint distributions which 
conserve marginal distributions of r.v.`s ,n nV V%  is 1( , )n nL ϕ ψ  (Zolotarev 1976) so from Theorem 1 
we obtain the inequality (16). The theorem is proved. 

It is easy to obtain from (Tsitsiashvili 2004, Kalashnikov & Rachev 1988) that in conditions 

0

1, max ( )qg Q
a F t dt C

∞

∈
> = < ∞∫                                         (17) 

there is nonincreasing function ( )tψ  so that (0) 1, ( ) 0,t tψ ψ= → →∞  and 
lim ( ) ( ), 0.nn

t t tψ ψ
→∞

= ≥  

Indeed from Theorem 1 and the formula (3) the sequence ( ), 0,n t nψ ≥  satisfies the inequalities 

1( ) ( ), 0,n nt t nψ ψ+ ≥ ≥  and so it has the limit ( )tψ . Choosing r.v. V∞  so that ( ) ( ),P V t tψ∞ > =  



G. Tsitsiashvili – ACCURACY FORMULAS OF RUIN PROBABILITY CALCULATIONS FOR DISCRETE TIME RISK MODEL WITH 
DEPENDENCE OF FINANCIAL AND INSURANCE RISKS 

 
RT&A # 03 (18)  

(Vol.1) 2010, September 
 

 

54 

0,t ≥  and applying Theorem 4 proof to the sequence , 0,nEV n >  it is possible to obtain the 
inequality 

1
CEV

a∞ ≤ < ∞
−

 

and consequently ( ) 0, .t tψ → →∞  
Theorem 5. If the conditions (17) are true then 

1 1( , ) , 0. 
( 1)n n

CL n
a a

ψ ψ −≤ >
−

                                                      (18) 

Proof. For n=1 the formula (18) is true. Prove the formula (18) using an induction by n. Suppose 
that (18) takes place for some 0n > . Introduce the following joint distribution of r.v.`s ,nV V∞  

which conserves their marginal distributions 1 1( ), ( ).n nV Vψ ω ψ ω− −
∞= =  Here r.v ω  is independent 

on r.v.`s ,nV V∞  and has uniform distribution on the interval [0, 1] so 1| | ( , ).n nE V V L ψ ψ∞− =  Then 
for r.v.`s 1 1,n nZ Y+ +  independent on r.v.`s ,nV V∞  we have the equalities 

( )

1 1 1 1 1max(0, 1) , max(0, 1) .
d

n n n n n nY V Z V Y V Z V+ + + + ∞ + ∞+ − = + − =  
So from minimal property of metrics 1L  we obtain using mathematical induction by n  that 

1 1 1 1 1 1 1( , ) | | | max(0, 1) max(0, 1) |n n n n n n nL E V V E Y V Z Y V Zψ ψ+ + ∞ + + + ∞ +≤ − = + − − + − ≤  

1
1 1| | | | | | .n

n n n n

EVEY E V V a E V V a E V V
a

− − ∞
+ ∞ ∞ ∞≤ − = − ≤ − ≤  

The formula (18) is true. The theorem is proved. 
Denote 1( ) inf( : ( , ) )nn n Lε ψ ψ ε= <  then from Theorem 5 we have the inequality 

1
1 1( ) inf( : ( , ) )nn n R Lε ψ ψ ε− +≤ <  

and so 
1 1

1
ln ( , ) ln( ) 2 ( ).

ln
Ln n

R
ψ ψ εε ε−

≤ + =                                       (19) 

Remark 1. The formula (19) allows to establish that if 1 ( )( , )nL εψ ψ ε<  then it is enough to find 

1, 1 ( ).n n nψ ε≤ ≤  From Theorem 2 we obtain that to calculate ( )n tϕ  it is necessary 1( )mO n +  

arithmetical operations for n →∞ . So to find ( ) ( )n tεϕ  we need 1(| ln | )mO ε +  arithmetical operations 
for 0.ε →  

Suppose that the condition (6) of Theorem 2 is not true then it is possible to approximate 
( ), ,qG t q Q∈  in metrics 1L  so that the condition becomes true. We formulate this statement in the 

following way. 
 

4 SMALL DENOMINATORS PROBLEM  
 

Suppose that the condition (6) of Theorem 2 is not true and so we deal with zero 
denominators in recurrent formulas (8), (9). Then it is possible to approximate ( ), ,qG t q Q∈  in 
metrics 1L  so that the condition becomes true. We formulate this statement in the following way. 

Theorem 6. Assume that for some 0δ >  positive numbers 1,..., lλ λ  satisfy the condition 
| | 3 , 1 .i j i j lλ λ δ− > ≤ ≠ ≤  

Suppose that /q qr t T=  where ,qt T  are coprimes and T is prime, q Q∈ . Then for any 0ε >  there 

are positive and rational numbers 1,..., lλ λ% %  so that 
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| | , , 1 , | | 0.K
i i jR i j l Kλ λ ε λ λ− < ≠ ≤ ≠ ≤ >% % %  

Proof. Fix , 0 .ε ε δ< <  There are integers 1, ,..., lN s s  so that 
1 , .

2 2
i

i
s

NT N
ε ελ< − <  

Choose ( 1) /i is T NTλ = +%  then | |i iλ λ ε− <%  and 1,is T T+  are coprimes, 1 i l≤ ≤ , so rational 
number 

| |

1qk i
q K

q Q

s Tt
T∈

+∏  

can not be integer and consequently 

1| |

11 , 1 , | | 0, ( ,..., ).qk i
i q mK

q Q

s Ts T t i j l K K k k
T∈

+
+ ≠ ≤ ≠ ≤ > =∏  

The theorem is proved. 
Remark 2. Fix 0ε > . If 0qr >  and qr  is noninteger then there is prime T and rational noninteger 

number /q qr t T∗ =  so that | | , .q qr r q Qε∗− < ∈   

Introduce Markov chain 0 10, max(0, ),  1, 2,...n n n nV V Y X V n∗ ∗ ∗ ∗
−= = + =% , ( ) ( ).n nx P V xϕ∗ ∗= >  

 
Theorem 7. Suppose that 1| | , ( , ) , .q q q qr r L F G q Qε ε∗− < < ∈  If the condition (17) is true and 
1/ 1, 0 1/a d d aε< < < < −  then  

1
1( , ) , 0, .

1 1n n
D aC adL n D
d a

εϕ ϕ∗ + −
≤ > = < ∞

− −
                              (20) 

Proof. From Theorem 7 condition we have that 1/nEZ C d a≤ + −%  and from Theorem 5 proof we 
obtain ( 1/ ) /( 1).EV C d a a∞ ≤ + − −%  Assume that ( , ) , ,n q n q qP Y r Y r p q Q∗ ∗= = = ∈  then 

1 1 1 1 1 1
| - || - | | - | | | ( ) n n

n n n n n n n n n
E V VE V V EY E V V E Y Y V Z

a

∗
∗ ∗ ∗ ∗

+ + + + + +≤ + − + ≤ +
%

% % %  

( 1/ | |) | | ( 1/ ) | | .n n n n n n nC d a EV E V V E V V d C d a EV E V V d Dε ε ε∗ ∗ ∗
∞+ + − + + − ≤ − + + − + ≤ − +% % % % %  

Using mathematical induction by n and minimal property of metrics 1L  we obtain the formula (20). 
 

5 BERSTEIN THEOREM IN L1 METRICS  
 
Bernstein theorem allows for any q Q∈  to approximate d.f. ( )qF t  by a mixture of 

exponential distributions in uniform metrics. But we need analogous approximation in 1L  metrics. 
Suppose that d.f. ( ), ( ) 1 ( )F t F t F t= −  concentrated on [0, ∞ ) has mean 

0

( )M F t dt
∞

= < ∞∫                                                           (21) 

and continuous positive density ( )f t  so that for any T > 0 

0

1inf ( ) 0.
( )t T

f t
A t≤ ≤

= >                                                        (22) 

Lemma 1. If d.f. F satisfies the conditions (21), (22) then for any 0ε >  it is possible to choose 
discrete d.f. nG  with finite number n of positive atoms so that 1( , ) 2 .nL F G ε<  

Proof. Fix positive ε  and using the condition (21) find Tε  so that 
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( ) .
T

F t dt
ε

ε
∞

<∫                                                                         (23) 

Using the condition (22) define integer n so that 
( )A T
n
ε ε<                                                               (24) 

and put ( ).F Tεν =  Define ,1 ,it i n≤ <  from the equalities 
(1 )( ) ,1 , ( ) ( ) 1 .i n

iF t i n F t F T
n ε
ν ν−

= ≤ < = = −  

Suppose that discrete d.f. nG  satisfies equalities 

1

2 1 2

3 2 3

1

0, 0 ,
( ), ,
( ), ,

( )
...

( ), ,
1, .

n

n n

t t
F t t t t
F t t t t

G t

F t t t T
T t

ε

ε

−

≤ <⎧
⎪ ≤ <⎪
⎪ ≤ <⎪= ⎨
⎪
⎪ ≤ <
⎪

≤ < ∞⎪⎩

                                                (25) 

Using the formulas (15), (23) - (25) it is easy to obtain the inequality 1( , ) 2 .nL F G ε<  The lemma is 
proved. 
Theorem 8. If d.f. F satisfies the conditions (21), (22) then for any 0ε >  it is possible to choose 
d.f. ( )nR t  concentrated on [0, ∞ ) with tail 

1
( ) exp( ), 0, , 0 ,

r

i i i i
i

F t a b t t a b
=

= − > −∞ < < ∞ < < ∞∑                          (26) 

so that 1( , ) 4 .nL F R ε<  
Proof. From Lemma 1 it is easy to obtain that ( )nG t  is probability mixture of point distributions 

1

1
2

1( ) 2 ( - ) ( - ) ( - )[ ]
n

n i
i

G t t t t t t T
n ε
ν ν

−

=

−
= + +∑1 1 1  

where ( - )t u1  is d.f. concentrated in real point u. 
Fix 0ε >  and natural k. Following (Dufresne 2005, Ko & Ng 2007) let ( , )Erl m λ  denote the 

Erlang distribution with density function 
1 exp( ) , 0,

( 1)!

m mt t t
m

λ λ− −
>

−
 

which describes the sum of m independent r.v.`s with exponential distribution with parameter λ . 
Then ( , )Erl m λ  has mean /m λ  and variance 2/m λ . To approximate a degenerate distribution at 

0k >  we consider ( , / )Erl m m k  and let m tend to infinity. So we may choose mε  so that variance 
of d.f. ( , / )kH Erl m m k= is smaller than 2ε and consequently 1( ( - ), ( )) .kL t k H t ε≤1  If Erlang d.f.`s 

1( ),..., ( )nH t H t  satisfy the inequalities 

1 1 1 1( ( - ), ( )) ,..., ( ( - ), ( ))n nL t t H t L t t H tε ε< <1 1  
then 1( , )n nL G Q ε< where 

1

1
2

1( ) 2 ( ) ( ) ( ).[ ]
n

n i n
i

Q t H t H t H t
n
ν ν

−

=

−
= + +∑  
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Following (Ko & Ng 2007) let 1,..., mη η  are i.i.d. r.v.`s with exponential d.f. and with 

parameter λ . Then random sum 
1

m

i
i

η
=
∑  has d.f. ( , )Erl m λ . Suppose that independent r.v.`s 1,..., mξ ξ  

with exponential distributions and with parameters 1,..., mλ λ  so that 

1

1 1 , , 1 ,
m

i j
i i

i j mε λ λ
λ λ=

− < ≠ ≤ ≠ ≤∑  

and there are i.i.d. r.v.`s , 1,n nω ≥  uniformly distributed on interval [0,1] so that 
ln ln, , 1 .i i

i i
i

i mω ωη ξ
λ λ

= − = − ≤ ≤   

Denote 
1

( ) .
m

i
i

S t P tξ
=

⎛ ⎞= <⎜ ⎟
⎝ ⎠
∑  Then we have the inequality 

1 1 1

| | .
m m m

i i i i
i i i

E Eη ξ η ξ ε
= = =

− ≤ − ≤∑ ∑ ∑   

If we replace in last inequality complex probability metric | |E X Y−  by its minimum 

1( ( ), ( ))L P X t P Y t< <  among all joint distributions which conserve marginal distributions of 
( ), ( )P X t P Y t< <  then we obtain 1( ( , ), ) .L Erl m Sλ ε<  Using the formula (12) it is easy to 

represent d.f. ( )S t  in the form (26). 
So it is possible to find d.f. S concentrated on [0, ∞ ) with the tail ( )S t  which has the form 

(26) so that 1( ( , ), ) .L Erl m Sλ ε<  If d.f.`s 1( ),..., ( )nS t S t  which has the form (26) satisfy the 
inequalities 

1 1 1 1( , ) ,..., ( , ) .n nL H S L H Sε ε< <  

Then 1( , )n nL Q R ε<  where 
1

1
2

1( ) 2 ( ) ( ) ( )[ ]
n

n i n
i

R t S t S t S t
n
ν ν

−

=

−
= + +∑  

and d.f. ( )nR t  satisfies the condition (26) also. 
Consequently from Lemma 1 we obtain the inequalities 

1 1 1 1( , ) ( , ) ( , ) ( , ) 4 .n n n n n nL F R L F G L G Q L Q R ε≤ + + <  
The theorem is proved. 

The author thanks A.A. Novikov for a large help in a formulation of a problem. This paper is 
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