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ABSTRACT 

 
External hazards can provide safety significant contributions to the risk in case of nuclear power 
plant operation because such hazards have the potential to reduce simultaneously the level of 
redundancy by damaging redundant systems and lines or their supporting systems. Therefore, risk 
assessment of all potential external hazards to the plant under consideration is part of the overall 
safety assessment. In this paper, the procedure for assessing the external hazard aircraft crash is 
described in more detail. The first step is an appropriate screening procedure in order to determine 
scope and content of the assessment, taking into account plant- and site-specific conditions. The 
second step is to determine the methodical approach for those cases where a full scope analysis has 
to be performed and the inclusion into the used overall risk model. The considerations regarding this 
hazard do not cover an intended aircraft crash. 

 
 
 

1  INTRODUCTION 

 
International experience has shown that internal hazards such as fire and flooding as well as 

external hazards such as earthquakes, flooding and air craft crash can be safety significant 
contributors to the risk in case of plants with the potential high hazardous risk such as process 
plants or nuclear power plants. This risk results from the fact that such hazards potentially can 
reduce simultaneously the level of redundancy – implemeted for increasing the overal reliability 
and safety of the plant – by damaging redundant components, systems and lines or their supporting 
systems (energy, water etc.).  

Therefore, arrangements should be implemented by the operator of the plant for assessing the 
vulnerability of plant and structures, determining how the safe operation of a plant is affected, and 
introducing measures to prevent the hazard at all, to prevent that it develops and to mitigate against 
its effects in case it nevertheless develops. These arrangements and their effectiveness and 
efficiency has to be justified to the regulatory body and approved. 

Methods to analyse operating plants with a higher risk potential systematically with respect to 
the adequacy of their existing safety  protection equipment against hazards can be deterministic as 
well as probabilistic.  

In particular in case of probabilistic analyses, the assessment can be very detailed and time 
consuming. Therefore, it is necessary to develop procedures to screen out, e.g., rooms or buildings 
of a plant where no further analysis is required or to have a graded procedure for the respective 
hazard taking into account plant- and site-specific conditions.  

Since October 2005, a revised guideline as well as revised and extended technical documents 
are issued in Germany which describe the methods and data to be used in performing probabilistic 
safety assessment in the frame of comprehensive safety reviews for nuclear power plants (Berg 
2005) which have to be performed every ten years to achieve a current overall snapshot of the 
safety level of the plant.  
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2 FLIGHT SITUATION IN GERMANY 
 

Because of the central position of Germany within Europe, there is a close-meshed net of civil 
air lanes with a high density of flights. Although the military flight activities have changed after 
1990 due to the new political situation in Eastern Europe, German and, in particular, US Air Force 
units are stationed in Germany and, in addition, a lot of air traffic resulting from military units 
stationed outside Germany but crossing the German airspace has to be considered. Thus, there 
might be a non-negligible hazard due to aircraft crashing onto nuclear sites. 

German nuclear power plants can be divided in three generations with respect to air craft 
crash depending on the load assumptions which had been the basis for the structural design of the 
building structures to protect against hints of aircrafts or wracked aircraft parts.  

The consequences of hints in case of buildings which are not protected depend on the plant 
specific layout of buildings and systems, in particular the missing strict spatial separation of 
redundant safety equipment.  

These design differences are reflected and evaluated within the safety assessment performed 
in the frame of comprehensive (periodic) safety reviews. 

3 SCREENING 

 
In the following guidance is given to perform a probabilistic safety analysis of nuclear power 

plants for the initiating event aircraft crash. A conservative approach in form of a rough analysis is 
described which allows the estimation of an upper limit for the frequency of plant hazard states 
caused by an aircraft crash.  

Further methods are described which are appropriate to replace the conservative 
considerations of the rough analysis by more detailed validation procedures. Application of these 
methods with a larger analysis effort lead to a more realistic validation compared to the rough 
analysis.  

Requirements with respect to aircraft crash are laid down in a document of the German 
Reactor Safety Commission (RSK 1984). A load function for buildings to be protected (reactor 
building etc.) has been defined mainly based on theoretical calculations assuming an impact of the 
military aircraft “Phantom F4” (see Figure 2) which was the mostly used aircraft in the military 
fleet at that time.  

 
 

 
 

Figure 2. Load time diagram 
 
Table 1 provides on overview of the graded screening process with respect to aircraft crashes 

applied in probabilistic safety assessments in the frame of periodic safety reviews for German 
nuclear power plants (Berg 2010a). 
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Table 1. The graded process of evidence regarding aircraft crash impact. 
 

Criterion Extent of analysis 
Structures are designed according to the 

diagram in Fig. 1 and not located in a 
military zone for fly maneuver drills 

Analysis is not necessary 

Contribution is negligible compared to the 
other contributions in the PSA 

A conservative rough-analysis regarding 
the consequences of impact on important 

areas A, B, C where 

A: e.g. primary circuit 

B: e.g. turbine building 

C: separated emergency building 
Not negligible Detailed probabilistic analysis of all plant 

areas, e.g. by using Monte-Carlo-methods 

 

4 DETERMINATION OF THE FREQUENCY OF AN AIRCRAFT CRASH  
 
The plant-specific determination of the frequency for the occurrence of an aircraft crash is 

performed on the basis of flight accident statistics valid for the respective location, taking into 
account the types of aircrafts and the weight classes which can be set.  

The following input information is needed: 

 the air traffic lanes in the near field of the plant, 
 data concerning civil and military small and middle airports (in the range of about 50 

km) and large airports (in the range up to 150 km) such as distance and adjustment of 
the starting and take-off runways. 

The crash frequencies are determined separately in three different traffic categories: 

 The landing and take-off phase, 
 the air lane traffic and waiting loop traffic, 
 the free air traffic. 

The aircrafts can be grouped into different weight classes. One example is shown in Table 2. 
Furthermore, the weight classes can be correlated to accidents. 

 
Table 2. Aircraft crash rates outside the airports onto the ground according  

to (Hoffmann et al. 1997). 
 

Weight class (Mg) Aircraft crashes per km flown 
1 > 20 2.0810-10 

5.7 – 20 3.2110-09 

2 2 – 5.7 5.4410-08 
3 < 2 1.1110-07 
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6 CRASH FREQUENCY IN MILITARY AIR TRAFFIC 
 

The following considerations are not valid for large military aircrafts, which are used to 
transport military equipment, goods or soldiers. They use the air lanes of the commercial air traffic 
and have to be treated for the flying operation outside the landing and take-off phase as described 
earlier.  

The plant-specific crash frequency of military aircrafts has to be calculated according to the 
procedures applied for the free air traffic taking into account the crash frequency per flying hour 
and the number of take-offs and landings on the neighbouring military airports.  

In addition, the statistics of the local crash history which took place in the square of 30 km x 
30 km around the power plant area is to be evaluated. 

Figure 9 shows the statistics of crashes of fast flying military aircrafts from Germany and 
abroad with more than 7.5 Mg in Germany for the time frame of 1984 to 2000 and of 2000 up to 
2008.  

As one can see, changes in the military flying operation resulted in a significant reduction of 
the crash frequency. This is the result of twofold changes: due to the political situation less military  
flights have taken place, but also the aircraft type, mainly used in the eighties, was replaced by a 
modern and more reliable type. 

Therefore, for current calculations it has been recommended to take into account only events 
since 1991. 

For the hazard analysis, the buildings are divided into classes to reflect the degree of 
protection against aircraft crash impact: one which is designed against air plane crash and another 
which is not specifically designed against it. It will be distinguished between a direct hit frequency 
and a penetration frequency. 

 

Figure 9. Number of military aircraft crashes since 1984 up to 2009 
 
In case the kinetic energy of the projectile is greater than the penetration energy of the outer 

shell a total damage of the building with all equipment in it is postulated.  
In the detailed assessment, a plant-specific probability for the penetration can be determined, 

using, e.g., Monte Carlo procedures which allow calculations with a large number of possible 
impact points and impact angles to determine the position where design loads of the buildings are 
exceeded. 

A transient or an initiating event leading to a core damage situation will be caused only, if 
systems in other buildings, necessary to mitigate that event, fail stochastically. For that case, the 
core melt frequency will be calculated in an event tree analysis.  

For penetrations leading directly to core melt accidents, the initiating frequency is assumed to 
be equal to the core melt frequency. For the buildings, not specifically designed against air plane 
crashes, additional hits by parts of the wracked aircraft are taken into account. 
7 CONCLUDING REMARKS 
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Aircraft crash onto a nuclear power plant or a chemical plant is an external hazard which has 
to be taken into account in a comprehensive safety assessment. 

Methods to analyse plants systematically regarding the adequacy of their existing protection 
equipment against hazards can be deterministic as well as probabilistic.  

In case of probabilistic safety assessments experience has shown that is reasonable to have 
procedures to screen out, e.g., rooms or buildings of the plant under consideration where no further 
analysis is required or to establish a safety graded procedure taking into account plant- and site-
specific conditions such as design of buildings against aircraft crash impact as well as distance to 
smaller and larger airports including the current travel situation for commercial and military 
aircrafts.  

This information has to be site-specific and has to be collected from the respective national 
organizations (e.g., for commercial flights from the National Department of Civil Aviation).  

Some guidance to perform frequency calculations is given in (USDoE 2006), describing the 
determination of the number of operations, aircraft crash rates and crash location probability 
including some (unfortunately older) data.  

More recently, a guide to assess aircraft accidents and incidents with the focus on fires and 
explosions has been published (NFPA 2010). 

For the free air traffic, also international data bases can be taken into account (see for example 
references (ICAO 2007) and (NTSB 2009a and b). However, such databases have to be used very 
carefully because they cover all aircraft crash statistics including those from countries which are 
well known for a high risk of aircraft crashes due to the age of the aircrafts used, the reduced 
maintenance activities and an unsufficient flight control system.  

In the past the flights along fixed air lanes (i.e. airspace monitored by air traffic controller and 
marked by radio navigation equipment) as discussed in section 3 were the regular case; a deviation 
was only allowed in exceptional cases (e. .g. in case of a storm). Today only 20 % of the flights are 
follwing the prescribed air lanes as stated by the German Aeronautical Information Service. The air 
traffic controller try to allocate an optimal short lane the pilots independently from the usually used 
air lanes (Felbermeier 2010). 
 
 
8 OUTLOOK 
 

Looking ahead, the km flown are increasing from year to year, however, up to now there is no 
systemetic increase of the crash rates per year.  

As described aircraft crash rates are determined according to weight classes because of the 
different impact and resulting consequences for the plant under consideration. New and bigger 
aircrafts are on the market and partially already in operation. These aircrafts are constructed with 
new material such as fibre reinforced composite materials which leads to a reduction of the weight 
of the structures.  

On the other hand, during the take-off phase the amount of fuel is bigger compared to older 
aircrafts. 

As explained earlier, external hazards like aircraft crash are analysed in the frame of periodic 
safety reviews in case of operating nuclear power plants. This review on the one hand investigates 
the current plant safety status based on the operational experiences in the last ten years, but also 
should look forward for the next ten years period. 

Because elements of the of periodic safety review might also be used in the frame of assessing 
the safety level with respect to an extended life time, the confidence in the results of the 
probabilistic safety assessment has to be justified to a larger extent, in case of the external hazard 
aircraft crash by taking into account the prognosis of aircraft movements in the next ten to twenty 
years which may enhance the aircraft crash frequency to be assumed. 
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