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ABSTRACT 
 

Bayesian statistical decision theory would be questionable when applied directly to non-random 
uncertainty circumstances. In this paper, we investigate the basic elements of decision analysis 
oriented to observational data arising from a general uncertainty environment, so that a framework 
for Bayesian uncertainty decision doctrine is established. Further, we propose a copula-linked 
uncertainty marginals mechanism for constructing the uncertainty multivariate distributions to 
represent both observational data and an uncertainty parameter vector. This mechanism paves the 
way towards the establishment of an uncertainty posterior distribution of the parameter vector given 
the observational data, based on uncertain measure Axiom 5. Finally, we present an illustrative 
example of the development of a posterior uncertainty distribution for a parameter given a single 
observation, step by step. The significance of this paper is to establish for the first time a Bayesian 
uncertainty data inference and decision framework, which constitutes a critical step towards the 
establishment of uncertainty statistics and a Bayesian uncertainty decision theory. 

 
 

1  INTRODUCTION 

 
Any applied mathematical model is proposed to reflect a particular aspect of the real natural 

world. Decision making moving from analysis of the collected data (information) to reach a final 
decision is actually a process to resolve the uncertainty being faced. In the real world, there are 
many forms of uncertainty surrounding us, but thus far we may only deal successfully with 
uncertainty as randomness or fuzziness within information. How should we solve the problems with 
other kind of uncertainty in real business life? For example, recently, a “Made in Japan” crisis was 
triggered by a Toyota Prius brake fault event and quickly spread widely over other industries 
widely. At the first glance, it may seem a trivial event has been exaggerated by journalists. It is a 
well-known fact that Japanese manufacturing arms itself to the teeth with statistical quality control. 
There is no reason to ascribe the fault event to an absence of total quality management. 
Nevertheless, we cannot deny what happened, and infer that the event indicates that some 
unaddressed problem exists there. The only possible answer is the methodology used to manage the 
quality imperative does not match the real quality problem faced. In other words, while the existing 
quality control and decision making doctrine, which is based on probability theoretical foundation, 
addressing random uncertainty problems, is powerful, nevertheless for other forms of uncertainty 
problems, the existing theory and methodologies may be inadequate. The law of the real world tells 
us that each specific form of uncertainty must be addressed by the corresponding specific 
uncertainty doctrine and methodology. There is no universal law for addressing all the forms of 
uncertainties. 

In this paper, we first review the basic elements of Liu’s (2007, 2009, 2010) uncertain 
measure theory in Section 2, and further investigate a copula-linked uncertainty marginals 
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approach, to construct multivariate uncertainty distributions. The purpose is to represent both 
observational data and an uncertainty parameter vector. In Section 3, we note the basic elements of 
an observational-data oriented decision analysis under general uncertainty environments, in contrast 
to probabilistic Bayesian decision theory (Lee (1989), Cheng (1981), Bernardo & Smith (1994)), in 
order to establish a framework for a Bayesian uncertainty decision theoretic foundation. In Section 
4, we propose a method to construct a posterior uncertainty distribution of parameter vector given 
the observational data, in terms of uncertain measure Axiom 5, see Liu (2010). In Section 5 we 
present an illustrative example, namely the development of a posterior uncertainty distribution for a 
parameter given a single observation, step by step. Section 6 concludes this paper. 

  

2 UNCERTAIN MEASURE FOUNDATION 

 
Uncertain measure (Liu (2007, 2009, 2010)) is an axiomatically defined set function mapping 

from a  -algebra of a given space (set) to the unit interval [0,1], which provides a measuring grade 
system of an uncertain event (a reflection of an uncertainty phenomenon) and enables the formal 
definition of an uncertain variable and its uncertainty distribution. 

Let   be a nonempty set (space), and  A  the  -algebra on  . Each element, let us say, 

A   ,  A A  is called an uncertain event. A number denoted as  A ,  0 1A  , is assigned to 

the event  A A , which indicates the uncertain measuring grade with which event  A A  

occurs. The normed set function  A satisfies following axioms given by Liu (2007, 2009, 2010): 

Axiom 1: (Normality)   1  . 

Axiom 2: (Monotonicity)  is non-decreasing, i.e., whenever A B ,    A B  . 

Axiom 3: (Self-Duality)   is self-dual, i.e., for any  A A ,     1cA A   . 

Axiom 4: ( - Subadditivity)  
11

i i
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Axiom 5: (Product Measure) Let ( ), ,
kk kXX DA be the thk uncertain space, 1,2, ,k n= L . Then 

product uncertain measure Don the product measurable space( ), XX A is defined by 
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Definition 2.1: (Liu (2007, 2009, 2010)) Any set function ( ) [ ]: 0,1A X ®D  which satisfies 

Axioms 1-4 is called an uncertain measure. The triple ( )( ), ,AX X D  is called the uncertain measure 

space. 
Definition 2.2: An uncertain variable   is a measurable mapping, i.e., 

     : , ,    R RA B , where  RB  denotes the Borel  -algebra on  ,  R= . 

Remark 2.3: The fundamental difference between a random variable and an uncertain 
variable is the - additivity: the probability measure obeys - additivity (Kolmogorov (1950), 
Primas (1999)) and the uncertain measure (Liu (2007, 2009, 2010), Liu (2008)) obeys -
subadditivity. The way of specifying measure inevitably has impacts on the behaviour of the 
measurable function over the triple, and hence on the mathematical characterization of the theories. 
For example, in contrast to probability theory, no “uncertainty density function” can be defined and 
then be entered into an integral of density to characterise an uncertainty distribution. Because an 
uncertain measure is permitted to be - subadditive, any set of uncertainty distributions derived 
from integration, being necessarily - additive, will necessarily be incomplete. 

Definition 2.4: (Liu (2007, 2009, 2010)) The uncertain distribution  : 0,1 R  of an 

uncertain variable   on ( )( ), ,AX X D  is 

    x x        (5)

Theorem 2.5: (Peng and Iwamura (2010)) The necessary and sufficient conditions for a 
function  : 0,1 � be an uncertainty distribution function is that is non-decreasing function and 

 0 1,  x x    �  (6)

The function is referred to an uncertainty distribution function. 
Remark 2.6: A probability distribution  XF x  requires right-continuity and 

   0, 1X XF F     in addition to those requirements of the uncertainty distribution function, 

while an uncertainty distribution is not limited by any continuity and    0, 1      
requirements. This relaxation enables an uncertainty distribution to model even the most 
complicated pattern in real world data. The following definition reveals an essential characteristic of 
the uncertainty distribution. 

Definition 2.7: Let  be an uncertainty variable, which takes values from a subset, denoted as 
E , of the real line � , with n discontinuity points collected in an ascending order as set 

 1, , nc c D= . The uncertainty distribution , ,of the variable   is specified as follows: 

1. On the set  0 1, , , nc c c D= ,  

     ,  ,  

1, 2, ,
i i i i i ic c c

i n

          

 
 (7)

where 1,  0,  1i i i n           , 1, 2, ,i n  ; 

2. At the inner points of the sub-intervals  1,i ic c , 1, 2, ,i n  , the uncertainty distribution 

 is continuous 

     
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1
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 (8)
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where the function i is positive, non-decreasing, and bounded by 1i   and i  , i.e., 1i i i      , 
1, 2, ,i n  . Then  is an uncertainty distribution of the essential form and  is called an essential 

uncertain variable. 
Remark 2.8: The aim of this paper is to develop an observational-data oriented decision 

making doctrine. Whenever an observation is obtained, this specific observation should not be 
regarded as an isolated real number (or a real-valued vector), rather, it should be regarded as a 
representative from a population typically specified by a hypothesized uncertainty distribution. This 
approach matches the standard viewpoint in the statistical community. It is also a convention that 
the term “population” (Cheng 1981)) is equivalent to the term distribution, or to the term random 
variable. In the new uncertainty theory, this statistical convention continues. We formally state this 
convention as a definition on observational data. 

Definition 2.9:  An observation is a real number, (or more broadly, a symbol, or an interval, 
or a real-valued vector, a statement, etc), which is a representative of a population or equivalently of 
an uncertainty distribution under a given scheme comprising set and  -algebra. 

Remark 2.10: The uncertainty distribution is unknown but exists objectively. A workable 
solution is to hypothesize a family of uncertainty distributions of a specified functional form with 
unknown parameter q , where the family is denoted by { },q

x qY ОQ . 

Definition 2.11: (Liu (2007, 2009, 2010)) Let multivariate uncertainty variable ( )1 2 d, , ,x x xL

be defined on an uncertain measure space ( )( ), ,X X DA , then the multivariate function 

[ ]
1 2

: 0 1
d, , , D ,x x xY ®L  is called an multivariate uncertainty distribution if  

( ) { }
1 2 1 2 1 1 2 2d, , , d d dx , x , , x x , x , , xx x x x x xY = Ј Ј ЈL L D L  (9)

To present a concrete form of a multivariate uncertainty distribution, Guo et al. (2010) 
propose a copula-linked uncertainty marginals approach.  

Definition 2.12: Let ( )1 2 d, , ,x x xL be a multivariate uncertainty variable with joint uncertainty 

distribution ( )
1 2 1 2d, , , dx ,x , ,xx x xY L L , in which all the marginal uncertainty distributions 

() () ()
1 2 d

, , ,x x xY Ч Y Ч Y ЧL exist and are regular (i.e., ()1

ix
-Y Ч  exists, 1 2i , , ,d= L ). Then the uncertainty 

copula is defined by 

( ) ( ) ( )( ) ( )
1 2 1 21 2 1 2d dd , , , dC x , x , , x x ,x , , xx x x x x xY Y Y = Y LL L  (10)

We use a bivariate uncertainty distribution as an illustrative multivariate example. 
Example 2.13: Let bivariate uncertainty variable ( )1 2,x x have marginal uncertainty 

distributions ()
1x

Y Ч  and ()
2xY Ч respectively. The Farlie-Gumbel-Morgenstern (FGM) copula is 

defined by 

( ) ( )( )( ) [ ]1 2 1 2 1 21 1 1  1 1C u ,u u u u u , ,v v= + - - О -  (11)

Further, let the bivariate uncertainty variable ( )1 2,x x  have marginal uncertainty distributions 

()
1x

Y Ч  and ()
2xY Ч respectively, where 

( )
( )

1
1 2

1 exp
3

i i

i i

i

x , i ,

x
x

p
q

s

Y = =
ж цчз ч+ з- - чз ччзи ш

 
(12)

 
Then the bivariate FGM-Normal joint uncertainty distribution is 
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( )
( )

( )

( )
1 2

2 2

1 2 1 1

exp
31
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i i

i
, i i

i i i i

i i

x

x , x

x x
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q q

s s
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ж цж ц чз чз ччз з- - ччз з чччзз чи шз чзY = + ччзж ц ж цчзч ччз ззч чч+ з- - + з- -зч ччз ззч ччч чз з чзи ш и ши ш

Х Х  (13)

Finally, it is necessary to prepare the uncertainty expectation and the variance of an 
uncertainty variable to support the development of an uncertainty decision doctrine. 

Definition 2.14: (Liu (2007, 2009, 2010)) Let   be an uncertainty variable defined on the 

uncertain space   , ,  A , then the expectation of   is 

     
0

0

r d r r dr  




        (14)

provided at least one of the two integrals is finite. 
Definition 2.15: (Liu (2007, 2009, 2010)) Let   be an uncertainty variable with finite 

expectation [ ]xE , then the variance of   is 

    2
V       

 
 (15)

Theorem 2.16: Let   be an uncertainty variable on uncertain measure space ( )( ), ,AX X D and 

h  be a monotonic non-decreasing function  :h +®Ў Ў , then the expectation of ( )h x  is 

         
0

0

h h r r d r h r r dr  




           (16)

 

3 ELEMENTS OF BAYESIAN DECISION THEORY 

 
A decision theory is built upon a mathematical foundation, which provides a framework (or 

guidelines) for decision making according to a specified criterion, based on the observational data 
with a distribution of the assumed uncertainty type, e.g., 

1. The statistical decision is based on probability (measure) theory, which addresses the 
random uncertainty; 

2. The fuzzy decision theory deals with fuzziness; 
3. The uncertainty decision theory deals with a general uncertainty different from randomness 

or fuzziness. 
Recall that the statistical decision theory is established on the axiomatic foundation of 

probability measure. 
The basic elements of statistical decision are: (1) Sample space and distributional family; (2) 

Decision space; (3) Loss function and decision function. 
It is necessary to point out the basic elements, namely state, action, and loss in statistical 

decision theory (Lee (1989), Cheng (1981), Bernardo & Smith (1994)), are still the essential 
elements in the Bayesian uncertainty decision theory. 

Firstly, in statistical decision theory, the state, termed “state of nature” is regarded as 
objectively in existence, at least in some consensus sense. In contrast, in any general uncertainty 
environments, the state may include subjective, judgmental or even phenomenological events or 
factors. Note here the conceptual interpretations that state acquires across the decision 
environments, i.e., “reality” in front of the decision makers, along with possible virtual actions, and 
virtual loss. The differentiation between the state of nature in the statistical decision theory and the 
state in the uncertainty decision theory is critical. The former reflects more or less reflecting the 
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“truth” for the frequentist school, while the uncertainty decision theory is a mixture of subjective 
and objective reflections. 

Secondly, the connotations of action in the uncertainty decision theory is virtual, in that some 
elements are of a precautionary nature and do not correspond to any specific state element. The 
nature of the mapping is from multiple states to multiple actions.. However, the inclusion of virtual 
action elements is extremely important, because the top decision maker does not need to deal with 
routine decisions of day-to-day operations but with the extreme event(s) or the most important event 
decision(s). 

Thirdly, the loss mechanism in both decision theories is the same. An uncertainty decision is a 
selection, which minimizes the loss function  ,l a  of an action a from action space A for given 

state   in the state space  . However, the social loss and environmental loss extract more and 
more attention from the public, NGO’s and the governmental agencies. In the new uncertainty 
decision theory, the safety factor state, the health factor state, and the environmental factor state 
should be automatically assigned uncertain measure grades because of their intrinsic features. In the 
uncertainty decision theory, an action is made in terms of observational data, denoted by x , which 
is described by an uncertainty distribution  |x  . Based on observational data x (i.e., 

representative of population  |x  ), a decision is actually a mapping from data space D  into action 

space A . In other words,  

:a D A  (17)

which can be expressed by 

 a d x  (18)

The loss   ,l d x is measurable on the joint uncertainty space.  

Definition 3.1: The expected value of the loss with respect to the uncertainty distribution of 
observational data x 

( ) ( )( ), E ,R d l d xqq qй щ= к ъл ы (19)

is called a risk function. 
The uncertainty distribution of observational data x depends on state  , because the 

dependence of  ,R d  on  enters explicitly from  ,l a and also through the state   in the 

distribution function  |x  for x . Therefore the uncertainty distribution of the data determines the 

fundamental characteristics of observational-data oriented uncertainty decision theory, which 
deserves further exposure. 

Let us consider the uncertainty decision problem for a given uncertainty distribution. Assume 
a state space   R , and a continuous action space A= R , and the loss function defined by 

    2
,l a w a     (20)

i.e., a quadratic loss function is assumed 
Definition 3.2: (Uncertainty Bayes loss) Given a continuous state space  , the uncertainty 

variable   is defined on uncertain space   , ,   B , where    is an uncertain measure. The 

uncertain distribution     is defined on   , B ). Then the average of loss with respect to 

state space for a given action aA , is the quantity 

       E , ,B a l a l y a d y


       (21)

 
and is called the uncertainty Bayes loss for a given action a . 
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Definition 3.3: (Uncertainty Bayes risk) The uncertainty Bayes risk is defined by 

         E , ,B d l d x l d x d  


       (22)

Definition 3.4: (Uncertainty Bayes rule) A Bayes decision rule, denoted as Bd , is a rule such 
that the Bayes risk is minimized, i.e., 

    minB

d
B d B d




D
 (23)

Example 3.5: Given a continuous state space   R , the uncertainty variable   is defined on 
an uncertain space   , , BR R , where    is properly defined. The uncertainty distribution is 

assumed to be 

           , ,

2

2( ) 2a b b c

y a y c b
G y y y

b a c b    
 

 
 (24)

Then we derive the average loss with respect to the state space for a given action aA , as 
the uncertainty Bayes loss: 

        2
E ,B a l a w y y a d y



         (25)

Set   0w w  , a constant, then the uncertainty Bayes loss is 

         

           

             

     

   

2 20 0

3 3 3 30 0

2 2 2 20 0

2 2 2 2 2 20 0

2 2 2 2
0

2 2

2 2

2 2

3 3 3 3
2 2

3 1
3 2 2

2 2

w w
B a y a dy y a dy

w w
a a a a

w w
a a a a a a a a

w w
a a a a

w a a

 

    

   
   

       

       

     

   
 

              

                   

         

        
 

 

 (26)

With an appropriate specification of decision function in term of data, the uncertain Bayesian 
decision analysis can be formulated. 
 

4 A POSTERIOR UNCERTAINTY DISTRIBUTION 

 
When ( ), ,B qlQQ is an uncertain (prior) space and ( ), , PXX B q is a probability space, we actually 

use random sample information to make inferences on the uncertain parameter q . The critical step 
in the probabilistic Bayesian inference is to develop the posterior distribution for parameter q . We 
strongly believe that the Bayesian uncertainty inference requires parallel manipulations. 

Let ( ),B QQ be a parameter measurable space, ( ), XX B be a sample measurable space. 

Definition 4.1: An uncertain measure defined on ( ), QQ B is called an uncertain prior measure, 

denoted as ql . The space( ), ,B qlQQ is called an uncertain prior space, the uncertain distribution 

( ) { }G y yql q= Ј is called an uncertain prior distribution. 

An uncertainty variable, denoted by x , is defined on a measurable space ( ), XX B with 

uncertainty distributional family { },q qY ОQ where Q is a parameter space. Formally, 
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Definition 4.2: The uncertainty observations are representatives of an uncertainty variable x , 
which is called an uncertainty population, or alternatively, called as an uncertainty distribution

  ,x    . The uncertainty variable x is defined on  , , XXX A . The uncertainty distribution is  

   x x       (27)

Remark 4.3: The uncertainty observations are presented by observers or experts, while the 
prior distribution (prior uncertain measure) is offered by knowledgeable experts on the observers’ 
behaviors. In probabilistic Bayesian statistics it is typically assumed that the prior and the likelihood 
are independent of each other. In Bayesian uncertainty doctrine we continue to follow this 
convention without any theoretical justification, although the independence between prior and 
likelihood is debatable. 

Remark 4.4: The joint cumulative distribution of the observational data  1 2, , , nx x x may be 

specified by a hypothesized copula functional according to the features of the data, as 

 
 
      

1 2

1 2

1 2

, , , 1 2

, , , 1 1 2 2

1 2

, , ,

, , , |

, , ,

n

n

n

n

n n

n

x x x

x x x

C x x x

  

  

   



   



   

   







 



 (28)

where      
1 2

, , ,
n         are given marginal uncertainty distributions and v is unknown 

parameter vector. In contrast, within probability theory, the multivariate joint distribution function 
is  

1 2, , , 1 2, , ,
nX X X nF x x x    . Given a population  F x  , the i.i.d. random sampling observations 

have a joint distribution function  

   
1 2, , , 1 2

1

, , ,
n k

n

X X X n X k
k

F x x x F x 


   (29)

Also, the joint density (i.e., the likelihood function) is 

     
1 2 1 2, , , 1 2 , , , 1 2

11 2

, , , , , ,
n n k

n

X X X n X X X n X k
kn

f x x x F x x x f x
x x x

  


  
 
        (30)

Now, let us continue our arguments on the posterior uncertainty distribution of q . For the 
convenience, let us assume that a pair of observations ( )1 2x ,x is obtained from the bivariate 

uncertainty variable, denoted by ( )1 2,x x , which is defined by a hypothesized bivariate FGM-normal 

uncertainty distribution 

( )
( )

( )

( )
1 2

2 2

1 2 1 1

exp
31

1

1 exp 1 exp
3 3

i i

i
, i i

i i i i

i i

x

x , x

x x
x x

p
q

s
v

p p
q q

s s

= =

ж цж ц чз чз ччз з- - ччз з чччзз чи шз чзY = + ччзж ц ж цчзч ччз ззч чч+ з- - + з- -зч ччз ззч ччч чз з чзи ш и ши ш

Х Х
 

(31)

with marginals 

( )
( )

1
1 2

1 exp
3

i i

i i

i

x , i ,

x
x

p
q

s

Y = =
ж цчз ч+ з- - чз ччзи ш

 
(32)

 
Then the bivariate uncertainty distribution has parameter vector ( )1 1 2 2, , , ,q q s q s v= . For 

simplification only, we set 1 2q q q= = , and assume that both 0 1 2s s s= = , and v  are known. Then 

what we aim to derive the posterior distribution of parameter q , i.e., ( )1 2 0 0y | x ,x , ,q s vY . 
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For the parameters, there is again a specification issue of the joint multivariate uncertainty 
prior distribution. For example, the FGM-normal bivariate uncertainty distribution ( )

1 2 1 2, x ,xx xY has 

five parameters, i.e., ( )1 1 2 2, , , ,q q s q s v= . The full specification of prior vector needs a five-

dimensional copula, ( )1 2 3 4 5C v ,v ,v ,v ,vj  with marginals ( ) 1 2 5i ip v ,i , , ,= L , and the prior takes a form 

( ) ( ) ( ) ( )( )
1 2 5 1 2 5 1 1 2 2 5 5v ,v , ,v y , y , , y C p v , p v , , p vjY =L L L  (33)

Definition 4.5: Let  1 2, , , ,nx x x   be the joint uncertainty distribution of the uncertainty 

observations  1 2, , , nx x x  together with the parameter vector q . Note the event  

 ,X x y    (34)

Then the joint distribution of X and   defined on ( )X,DXX,A and ( ), , qQQ DA respectively, according 

to Axiom 5, Liu (2010), is the joint uncertainty measure defined by 

   
         
         

1 2 1 2

1 2 1 2

, ,

1 1 1 1

1 1 1 1

, ,

sup min , if if sup min , 0.5

1 sup min , if if sup min , 0.5

0.5                                      otherwise

C C

X X

X X
A A A A

X X
A A A A

x y X x y

A A A A

A A A A

 

 

 

 

   

   
   

   

   

 

  




 
(35)

Definition 4.6: We denote    
1 2, , , 1 2, , ,

nX X X X nx x x x    as the absolute joint uncertainty 

distribution.  

    1 2 1 2, , , 1 2 , , , 1 2, , , sup , , , ,
n nX X X n X X X n

y
x x x x x x y


      (36)

For example, if a pair of bivariate FGM-normal uncertainty observation  1 2,x x  is obtained, 

then 

     
1 2, 1 2 1 2 1 2, 1 1 1X X x x u u u u      (37)

where 

( )
( )

1
1 2

1 exp
3

ii i

i i

i

u x , i ,

x
x

p
q

s

= Y = =
ж цчз ч+ з- - чз ччзи ш

 
(38)

Finally, we define a Bayesian uncertainty posterior for q . 

Definition 4.7: We denote  1 2, , , ny x x x  as the posterior uncertainty distribution under the 

Maximum Uncertainty Principle, The MUP posterior uncertainty distribution is thus 

   
 

1 2

1 2

, , , , 1 2

1 2
, , , 1 2

, , , ,
, , ,

, , ,
n

n

n

n
n

x x x y
y x x x

x x x

   


  


 










 (39)

 

5 A BAYESIAN POSTERIOR UNCERTAINTY EXAMPLE 
 
In this section, we take the uncertainty zigzag distribution as the uncertainty prior, and Liu’s 

(2007, 2009, 2010) normal distribution as uncertainty observation distribution, and in a step by step 
manner, illustrate the construction of an posterior uncertainty distribution. 
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The observational data is assumed to be a representative value of the population observed, 
which can be specified by a hypothesized uncertainty distribution. For our example, the 
hypothesized uncertainty distribution is Liu’s (2007, 2009, 2010) uncertainty normal distribution:  

 
 

0

0

1
,

1 exp
3

x

x

 
 


 
 

   
 

 

(40)

As an illustration, it is assumed that the standard deviation is given, denoted by 0s , the only 
unknown is parameter q , the mean or expectation of the uncertainty distribution. Because in 
Bayesian treatments the parameter in the distribution function is no longer an unknown real 
number, the parameter is treated as an uncertainty variable, Its distribution is supposed to be 
uniquely specified by a given uncertainty measure qD  defined on an uncertain measurable space 

( )( ),Q QA . In practice, the unknown parameter is usually specified by an uncertainty distribution. 

Although the uncertainty distribution can induce an uncertain measure on Borel measurable space
( )( )Y ,B Y , nevertheless, it is unique in the sense of an equivalence class. The uncertainty prior 

distribution is assumed to be 

           , ,

2

2( ) 2a b b c

y a y c b
G y y y

b a c b    
 

 
 (41)

where  

   ,

1 if

0 otherwisea b

a y b
y

 



 (42)

We further assume that a single observation 2.3x   is taken from hypothesized Liu’s 

uncertainty normal distribution      , 2.00 1 1 exp 2 3X x x       and the uncertainty prior 

parameter ( ) ( )0 2 3a,b,c , ,=  , i.e., the uncertainty prior distribution is 

           0,2 ,

1 1
1

4 2 b cG y y y y y      (43)

The Axiom 5 based posterior uncertainty distribution of  given uncertainty observation 
2.3x  is  

   
  

,
0

,

2.3,
2.3, 2

sup 2.3,
y

y
y x

y
 


 






   


 

(44)

where 

 

         
         

1 2 1 2

1 2 1 2

, 0

sup min , 2.3 ,2.0 if sup min , 2.3 ,2.0  0.5

2.3, 1 sup min , 2.3 ,2.0 if sup min , 2.3 , 0.5

0.5 otherwise

C C

A A A A

A A A A

G y y G y y

y G y y G y y

   

      

   

   

   



     




 
(45)

and 

  ,sup 2.3, 0.60392
y

y 


   (46)

The plot of the posterior uncertainty distribution  0| 2.3, 2y x     is shown in Figure 1. 
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