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ABSTRACT 

 
The real world phenomena are often facing the co-existence reality of different formality of 
uncertainty and thus the probabilistic reliability modeling practices are very doubtful. Under 
complicated uncertainty environments, hybrid variable modeling is important in reliability and risk 
analysis, which includes Bayesian distributional theory, random fuzzy distributional theory, as well 
as fuzzy random distributional theory as special distribution families. In this paper, we define a new 
hybrid lifetime which is specified by a random lifetime distribution with imprecise parameter with 
an uncertainty distribution. We furthermore define the average chance distribution as a quality index 
for quantifying the hybrid lifetime and accordingly the average chance reliability is derived. 

 
 

1  INTRODUCTION 

 
System reliability, as a quality index, is the capability to complete the specified functions 

accurately in mutually harmonious manner under the specified conditions within specified period. 
The quality and reliability engineering facilitates the specification of the system reliability function 
on the ground of probability and statistics theory. The Toyota crisis does not only tear off the brand 
image of quality but also shake the belief of existing quality and reliability engineering practices 
and the underlying probability and statistics theory, which treat the random uncertainty. Uncertainty 
in real world is intrinsic and diversified in formality. For example, the vagueness is another form of 
uncertainty, which is more and more aware of in today’s industrial environments, just as Carvalho 
& Machado (2006) commented, “In a global market, companies must deal with a high rate of 
changes in business environment. … The parameters, variables and restrictions of the production 
system are inherently vagueness.” Therefore quality and reliability engineering is no longer a blind 
exercise of applying the traditional techniques from existing probabilistic reliability engineering 
literature. 

The coexistence of randomness and other forms of uncertainty in reliability concept is 
intrinsic and inherent and therefore modern reliability analysis inevitably engages hybrid lifetime 
modeling. 

Accordingly, the methodology to solve the reliability of hybrid lifetime should be developed 
in terms of the basic concept of general uncertain measure theory. 

The remaining structure of the paper is stated as follows: Section Two serves reviewing Liu's 
axiomatic uncertain measure and defines the concept of impreciseness in terms of uncertainty 
distribution; Section Three is utilized to establish the hybrid variable theory. Particularly, the hybrid 
variable is constituted by a random lifetime with an imprecise parameter governed by an uncertainty 



R.	Guo,	Y.	H.	Cui,	C.	Thiart,	D.	Guo	‐	HYBRID	RELIABILITY	MODELLING	WITH	IMPRECISE	PARAMETER	

	
RT&A	#	01	(20)		

(Vol.2)	2011,	March	
	

 

83 

distribution; Section Four defines the average chance measure for hybrid variable; Section Five is 
used to investigate the construction of hybrid variable; while in Section Six the commonly used 
lifetime models for construction of hybrid lifetime models are discussed; Section Seven uses 
exponential lifetime with imprecise uncertainty parameter for develop the average chance reliability 
as an illustrative examples; and Section Eight concludes the paper. 
 

2 UNCERTAIN MEASURE AND IMPRECISENESS 

 
Uncertain measure (Liu (2010)) is an axiomatically defined set function mapping from a  -

algebra of a given space (set) to the unit interval [0,1], which provides a measuring grade system of 
an uncertain phenomenon and facilitates the formal definition of an uncertain variable. 

Let   be a nonempty set (space), and  A  the  -algebra on  . Each element, let us say, 

A   ,  A A  is called an uncertain event. A number denoted as  A ,  0 1A  , is assigned to 

event  A A , which indicates the uncertain measuring grade with which event  A A  occurs. 

The normal set function  A satisfies following axioms given by Liu (2007, 2009, 2010): 

Axiom 1: (Normality)   1  . 

Axiom 2: (Monotonicity)  is non-decreasing, i.e., whenever A B ,    A B  . 

Axiom 3: (Self-Duality)   is self-dual, i.e., for any  A A ,     1cA A   . 

Axiom 4: ( - Subadditivity)  
11

i i
ii

A A
 
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 
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   for any countable event sequence  iA . 

Axiom 5: (Product Measure) Let ( ), ,
kk kXX DA be the thk uncertain space, 1,2, ,k n= L . Then 

product uncertain measure Don the product measurable space( ), XX A is defined by 
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That is, for each product uncertain event A XL О  (i.e,
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    (4)

Definition 2.1: (Liu (2007, 2009, 2010)) Any set function ( ) [ ]: 0,1A X ®D  which satisfies 

Axioms 1-4 is called an uncertain measure. The triple ( )( ), ,AX X D  is called the uncertain measure 

space. 
Definition 2.2: (Liu (2007, 2009, 2010)) An uncertain variable   is a measurable mapping, 

i.e.,      : , ,    R RA B , where  RB  denotes the Borel  -algebra on  ,  R= . 
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Remark 2.3: The fundamental difference between a random variable and an uncertain 
variable is the - additivity: the probability measure obeys - additivity (Kolmogorov (1950), 
Primas (1999)) and the uncertain measure (Kaufmann (1975), Liu (2007, 2009, 2010)) obeys -
subadditivity. The way of specifying measure inevitably has impacts on the behaviour of the 
measurable function over the triple, and hence on the mathematical characterization of the theories. 
For example, in contrast to probability theory, no “uncertainty density function” can be defined and 
then be entered into an integral of density to characterise an uncertainty distribution. Because an 
uncertain measure is permitted to be - subadditive, any set of uncertainty distributions derived 
from integration, being necessarily - additive, will necessarily be incomplete. 

Definition 2.4: (Liu (2007, 2009, 2010)) The uncertain distribution  : 0,1 R  of an 

uncertain variable   on ( )( ), ,AX X D  is 

    x x        (5)

Theorem 2.5: (Peng and Iwamura (2010)) The necessary and sufficient conditions for a 
function  : 0,1 � be an uncertainty distribution function is that is non-decreasing function and 

 0 1,  x x    �  (6)

The function is referred to an uncertainty distribution function. 
Remark 2.6: A probability distribution  XF x  requires right-continuity and 

   0, 1X XF F     in addition to those requirements of the uncertainty distribution function, 

while an uncertainty distribution is not limited by any continuity and    0, 1      
requirements. This relaxation enables an uncertainty distribution to model even the most 
complicated pattern in real world data. The following definition reveals an essential characteristic of 
the uncertainty distribution. 

Definition 2.7: Let  be an uncertainty variable, which takes values from a subset, denoted as 
E , of the real line � , with n discontinuity points collected in an ascending order as set 

 1, , nc c D= . The uncertainty distribution , ,of the variable   is specified as follows: 

1. On the set  0 1, , , nc c c D= ,  

     ,  ,  

1, 2, ,
i i i i i ic c c

i n

          

 
 (7)

where 1,  0,  1i i i n           , 1, 2, ,i n  ; 

2. At the inner points of the sub-intervals  1,i ic c , 1, 2, ,i n  , the uncertainty distribution 

 is continuous 
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   
 

 (8)

where the function i is positive, non-decreasing, and bounded by 1i   and i  , i.e., 1i i i      , 
1, 2, ,i n  . Then  is an uncertainty distribution of the essential form and  is called an essential 

uncertain variable. 
Remark 2.8: Whenever an "observation" is obtained, this specific observation should not be 

regarded as an isolated real number (or a real-valued vector), rather, it should be regarded as a 
representative from a "population" typically specified by a hypothesized uncertainty distribution. 
This approach matches the standard viewpoint in the statistical community, see wikipedia (2010). It 
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is also a convention that the term “population” (Bernardo & Smith (1994), Lee (1989)) is equivalent 
to the term distribution, or to the term random variable. In the new uncertainty theory, this statistical 
convention should be retained. We formally state this convention as a definition on observational 
data. 

Definition 2.9:  An observation is a real number, (or more broadly, a symbol, or an interval, 
or a real-valued vector, a statement, etc), which is a representative of a population or equivalently of 
an uncertainty distribution under a given scheme comprising set and  -algebra. 

Remark 2.10: The uncertainty distribution is unknown but exists objectively. A workable 
solution is to hypothesize a family of uncertainty distributions of a specified functional form with 
unknown parameter q , where the family is denoted by { },q

x qY ОQ . 

Definition 2.11: (Liu (2007, 2009, 2010)) Let multivariate uncertainty variable ( )1 2 d, , ,x x xL

be defined on an uncertain measure space ( )( ), ,X X DA , then the multivariate function 

[ ]
1 2

: 0 1
d, , , D ,x x xY ®L  is called an multivariate uncertainty distribution if  

( ) { }
1 2 1 2 1 1 2 2d, , , d d dx , x , , x x , x , , xx x x x x xY = Ј Ј ЈL L D L  (9)

To present a concrete form of a multivariate uncertainty distribution, Guo et al. (2010) 
propose a copula-linked uncertainty marginals approach.  

Definition 2.12: Let ( )1 2 d, , ,x x xL be a multivariate uncertainty variable with joint uncertainty 

distribution ( )
1 2 1 2d, , , dx ,x , ,xx x xY L L , in which all the marginal uncertainty distributions 

() () ()
1 2 d

, , ,x x xY Ч Y Ч Y ЧL exist and are regular (i.e., ()1

ix
-Y Ч  exists, 1 2i , , ,d= L ). Then the uncertainty 

copula is defined by 

( ) ( ) ( )( ) ( )
1 2 1 21 2 1 2d dd , , , dC x , x , , x x ,x , , xx x x x x xY Y Y = Y LL L  (10)

We use a bivariate uncertainty distribution as an illustrative multivariate example. 
Example 2.13: Let bivariate uncertainty variable ( )1 2,x x have marginal uncertainty 

distributions ()
1xY Ч  and ()

2xY Ч respectively. The Farlie-Gumbel-Morgenstern (FGM) copula is 

defined by 

( ) ( )( )( ) [ ]1 2 1 2 1 21 1 1  1 1C u ,u u u u u , ,v v= + - - О -  (11)

Further, let the bivariate uncertainty variable ( )1 2,x x  have marginal uncertainty distributions 

()
1xY Ч  and ()

2xY Ч respectively, where 

( )
( )

1
1 2

1 exp
3

i i

i i

i
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x

p
q

s
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(12)

Then the bivariate FGM-Normal joint uncertainty distribution is 
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Х Х  (13)

Finally, it is critical to define impreciseness with mathematical rigor. To achieve this goal, we 
review the discussions on randomness concept in statistics first for comparison purpose. 
Randomness in classical (i.e., probabilistic) statistics is referred to a term with an intrinsic property 
"governed by or involving equal chances for each of the actual or hypothetical members of a 
population; (also) produced or obtained by such a process, and therefore unpredictable in detail". 
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Randomness is "closely connected, therefore, with the concepts of chance, probability, and 
information entropy, randomness implies a lack of predictability. More formally, in statistics, a 
random process is a repeating process whose outcomes follow no describable deterministic pattern, 
but follow a probability distribution, such that the relative probability of the occurrence of each 
outcome can be approximated or calculated", see wikipedia (2010). In other words, randomness is 
an intrinsic property of a variable or an observation being characterized by a probability measure. 
Just as Kolmogrov (1950) emphasized probability measure specification is the prerequisite to 
randomness. 

Remark 2.14: Parallel to revelation of the connotation of randomness. Impreciseness in 
uncertainty statistics is referred to a term with an intrinsic property governed by an uncertain 
measure or an uncertainty distribution for each of the actual or hypothetical members of an 
uncertainty population; (also) produced or obtained by such a process, and therefore unpredictable 
in detail. An uncertainty process is a repeating process whose outcomes follow no describable 
deterministic pattern, but follow an uncertainty distribution, such that the uncertain measure of the 
occurrence of each outcome can be only approximated or calculated. 

Definition 2.15: Impreciseness is an intrinsic property of a variable or an expert's knowledge 
being specified by an uncertainty measure. 

Remark 2.16: Impreciseness exists in engineering, business and research practices. Just as 
Utikin & Gurov (2000) as well as Walley (1991) argued strongly that “it very often happens that 
probabilities cannot be determined exactly, either due to measurement imperfections, or due to 
more fundamental reasons, such as insufficient available information, ... , or "is of a linguistic 
nature, i.e. the information is conveyed by statements in natural language”, …, a part of “the 
reliability assessments may be supplied by experts” or reliability “assessments may be made by the 
user of the system during the experimental service”. Thus it is an unarguable fact that impreciseness 
exists intrinsically in expert’s knowledge on the real world. 

Definition 2.17: Let ξ be a uncertainty quantity of impreciseness on an uncertainty measure 
space   , ,  A . The uncertainty distribution of ξ is     |x x       .  

Remark 2.18: An imprecise variable ξ is an uncertainty variable and thus is a measurable 
mapping, i.e., : ,    � �D D . An observation of an imprecise variable is a real number, (or more 
broadly, a symbol, or an interval, or a real-valued vector, a statement, etc), which is a representative 
of the population or equivalently of an uncertainty distribution     under a given scheme 

comprising set and  -algebra. The single value of a variable with impreciseness should not be 
understood as an isolated real number rather an interval or a set. 

  

3 HYBRID VARIABLE THEORY 

 
Since Zadeh (1965, 1978) proposed fuzzy set theory, fuzzy random fuzzy set, a special case 

of hybrid variable,  soon proposed by Kaufmann (1975). Liu (2007) defined that a random fuzzy 

variable, another special case of hybrid variable, is a mapping from the credibility space ( ),2 ,CrQQ  

to a set of random variables.  Let us start with a general hybrid variable definition. 
Definition 3.1: (Liu (2007)) A hybrid variable is a real-valued measurable mapping, i.e.,  

   : , ,  A BR  . 

Remark 3.2: It is obvious that the order of the formation of a hybrid variable does matter. For 
example, Random fuzzy variable (Liu (2007)) and fuzzy random variable (Kaufmann (1975)) are 
two types of hybrid variable, even with the same component uncertain variables. Therefore, it is 
necessary to define them separately when specifying the hybrid variable with different uncertain 
variables. 
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Definition 3.3: A random-uncertain hybrid variable is a measurable mapping  from product 

space ( )( ) ( )( ), , , , PrX X ґ W WDA F  into ( )( ), ,nBR R , which is called as hybrid variable of Type I; An 

uncertain-random hybrid variable is a measurable mapping  from product space 

( )( ) ( )( ), , Pr , ,W W ґ X X DF A   into ( )( ), ,nBR R , which is called hybrid variable of Type II. 

In the remaining of the paper, we only deal with hybrid variable of Type I, i.e., random-
uncertain hybrid variable. Therefore, for convenience we simply use the term hybrid variable. For 
reliability engineers and managers armed with introductory probability and statistics, this definition 
will be difficult to understand. For a more intuitive understanding, we would like to present a 
definition similar to that of stochastic process in probability theory and expect readers who are 
familiar with the basic concept of stochastic processes can understand our comparative definition. 

Definition 3.4: A hybrid variable (of Type I), denoted by   ,X    , is a collection of 

random variables X  defined on the common probability space  , Pr F,  and indexed by an 

uncertain variable     defined on the uncertainty space ( )( ), ,AX X D . 

Similar to the interpretation of a stochastic process  ,tX X t  R , a hybrid variable is also 

a bivariate mapping from  , F A  to the space  ,R B . As to the index set, in stochastic 

process theory, index set used is referred to as time typically, which is a positive (scalar variable), 
while in the random fuzzy variable theory, the “index” is an uncertain variable  . Using uncertain 
parameter as index is not starting in hybrid variable definition. In stochastic process theory we 

already know that the stochastic process   ,X X     uses stopping time ( ),  ОWt w w , 

which is an random variable as its index.  
 

4 AVERAGE MEASURE FOR A HYBRID VARIABLE 

 
Hybrid variable can be quantified in terms of chance measure concept, see Liu (2007). 
Definition 4.1:  Let   be a random-uncertain hybrid variable and B a Borel set of real 

numbers. Then the chance measure of random fuzzy event  B  is a function mapping from 

 0,1  to 0,1 ,  

{ }( )
{ }

( ){ }Ch sup inf Pr :
AA

B B
D qa

x a q x q
Оі

О = О  (14)

However, we notice the potential mathematical complexity associated with the chance 
measure formulation, see Liu (2008). Therefore, it is necessary to explore a convenient way to deal 
with the chance measure specification. Recall that in probability theory, the distribution of a random 
variable   on probability space ( ), , PrAW ,  F   links to the probability measure of event 

( ){ }:  xw x w" Ј ОA  

( ) ( ){ }Pr : .  F x xx w x w= Ј  (15)

In random-uncertain hybrid variable theory, we may say that that average chance measure 
plays an equivalent role similar to probability measure, denoted as Pr , in probability theory. 

Definition 4.2: Let x  be a random-uncertain hybrid variable, then the average chance 

measure, denoted as {}ch Ч , of a random-uncertain event ( ){ }: xt ОX x t Ј , is  
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{ } ( ){ }{ }
1

0

ch |Pr dx xx Ј = t ОX x t Ј і a aт D  (16)

Then function ()Y Ч  is called as average chance distribution if and only if 

( ) { }chx xY = x Ј  (17)

Now, we are required to establish a theoretical framework in terms of average chance measure 
concepts. Once the average chance measure for the basic event form  x   is given, then the 

average chance measure for any event A  should be established in terms of the basic event  x  . 

In this way, we may define average chance measure for an arbitrary event A . The triple space 
 , ch F A,  is called the average chance space. 

Proposition 4.3: Let ()ch Ч be an average chance measure on a product measure space 

    ,   F A . Then 

(i) { }ch 0Ж =  and { }ch 1Wґ X = ; 

(ii) (Normality) A" О ґF A ,  { }0 ch 1AЈ Ј ;  

(iii) (Self-Duality) For A" О ґF A , then { } { }ch 1 chcA A= -  

(iv) (Weak monotone increasing) For , ,A B   A B" М О ґF A ,  { } { }ch chA BЈ ;  

(v) (Semi-Continuity) For ,nA" ,AО ґF A  1, 2,n = L ,  if nA A® , then 

{ } { }lim ch ch
n

nA A
A A

®
=  (18)

if and only if  one of the following conditions holds:  
(a) { } 0.5 & n nA A AЈ -D ,  

(b) { }lim 0.5 & n n
n

A A A
® Ґ

< -D ,  

(c) { } 0.5 & n nA A Aі ЇD , and  

(d) { }lim 0.5 & n n
n

A A A
® Ґ

> ЇD . 

(vi) (Sub-Additivity) For , ,A B   A B" М О ґF A ,  

{ } { } { }ch ch chA B A BИ Ј +  (19)

Proposition 4.4: Let ()xY Ч  be average chance distribution of (random-uncertain) hybrid 

variable xon the chance measure space ( ), ,chWґ X ґF A . Then 

(i) ( ) 0xY - Ґ =  and ( ) 1xY + Ґ = ; 

(ii) For ( ),x" О = - Ґ + ҐR , ( )0 1xxЈ F Ј ; 

(iii)Nonnegative real-valued function ()xy Ч  is called average chance density for a (random-

uncertain) hybrid variable x  if for ( ) 0,x  xxy і ОR and 

( ) ( )d
x

x u ux x

- Ґ

Y = yт  (20)
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5 CONSTRUCTION OF HYBRID VARIABLE 

 
Liu (2007) mentioned an exponentially distributed random fuzzy variable   has a density 

function 

 
1

exp if 0

0 otherwise

x
x

x  
  

      



 (21)

if the value of   is assumed to be a fuzzy variable, then   is a random fuzzy variable. Similarly, 

let parameter   be an uncertain variable following a distribution function    , and the 

probability density is defined by Equation (11), then the random-uncertain hybrid variable   is said 
to be exponentially distributed. This example hints a constructive definition for specifying hybrid 
variable, i.e., random-uncertain variable or equivalently, the average chance distribution. 

Definition 5.1: Let ( )( ){ }; ,F x b t t ОX  be a family of probability distributions on the 

probability space ( ), , PrAW  with a common uncertain parameter   on the uncertain measure space 

( )( ), ,AX X D , then the average distribution derived from ( )( ), ,F x b D  defines a (random-uncertain) 

hybrid variable x . 

Theorem 5.2: Let   be a random-uncertain hybrid variable. If the expectation  0PE      

exists for any given 0  , then  PE      is an uncertain variable.  

 

6 RANDOM LIFETIME WITH IMPRECISE PARAMETER 

 
Analyzing hybrid lifetimes, or survival times, or failure times, is the focus of lifetime 

modeling and analysis under randomness and general uncertainty co-existence environments. 
Different from the statistical lifetime modeling and analysis, where the random lifetimes are 
concerned, also different from the uncertainty lifetime modeling and analysis, where the uncertainty 
lifetimes are concerned, hybrid lifetime modeling analysis provides a general guideline with a 
rigorous theoretical foundation. 

A (random-uncertain) hybrid lifetime, denoted by x , which is a special case of hybrid (of 
Type I), takes only a positive real values. In other words, hybrid lifetime is a bivariate mapping 

from  , F  to the space   ,R RB  .  

 
6.1 Basic construction of continuous hybrid lifetimes  

 
It is well-known fact the probability distribution contains the full information on system 

lifetime and there are many related concepts, particularly, hazard function reveals an aspect of 
lifetime distribution, which links to the physical structure of a system. 

Theorem 6.1: Let x  be a continuous hybrid lifetime having probability distribution function

( )( );F t b t , where the imprecise parameter b  is defined on the uncertain measure space 

( )( ), ,X X DA . Then function ( ) ( )( ); ;t F tP b = L b  can uniquely define the hybrid lifetime x  if the 

operator or function L  is invertible. 
Table 1 lists four commonly used operators or functions. 
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Table 1.  Examples of operators or functions 
 

Name Form of ( );tP b  ()L Ч  
Survival function ( ) ( ); 1 ;F t F tb = - b ( ) ( ); 1 ;F t F tb = - b  

Density function ( ) ( ); d ; df t F t tb = b  ( ) ( )
0

; ; d
t

F t f u ub = bт  

Hazard function ( ) ( )( )( ; ) 1 ;h t f t F tb = - b  ( ) ( )
0

; 1 exp - ; d
t

F t h u u
ж цчзb = - b чз чзи шт  

Moment generating 
function 

( ) ( )
0

; d ;tm e F t
+ Ґ

qq b = bт  ( ) ( )
0

1
; ; d d

2

t i
su

i
F t m s e s u

i

s + Ґ

s - Ґ

ж цчз чb = bз чз чзи шpт т  

 
6.2 Continuous hybrid lifetime models 

 
In statistical lifetime modeling and analysis, the elementary lifetime models are exponential, 

Weibull, Log-normal, gamma, Cox-Lewis, bathtub, and etc. These are essential for the construction 
of hybrid lifetimes. Table 2 lists these models. 

In Table 2, ( ),I tb l  denotes the incomplete gamma function of the first-type and ()F Ч  

represents the cumulative distribution of a standard normal variable. 
 

 
Table 2.  Commonly used distributional lifetime models 

 
Name Probability density & hazard function 

Exponential density ( )exp tb - b  
 hazard b  

Weibull density ( )( ) ( )( )1
expt t

b- b
b h h - h  

 hazard ( )( ) 1
t

b-
b h h  

Extreme 
- value 

density         1 exp exp expu t b u t b u    

 hazard     1 expu t b u  

Log-Normal density ( )( ) ( )( )2 21 2 exp ln 2t tps - - m s  

 hazard ( )( ) ( )( )( ) ( )( )(2 21 2 exp ln 2 1 lnt t tps - - m s - F - m s

 
Gamma density ( ) ( )( )1 tt e

b- - ll l G b  

 hazard ( ) ( )( ) ( )( )1
1 ,tt e I t

b- - ll l G b - b l  

Bathtub density ( )( ) ( )( ) ( )( )( )1 1 1
exp exp expt t t

b- b- b-
b h h h - h  

 hazard ( )( ) ( )( )1 1
expt t

b- b-
b h h h  

 

6.3 Proportional hazard models 
 

Covariate models play very important roles in lifetime analysis. Cox (1972) initiated 
proportional hazards (abbreviated as PH) model as following: 

( ) ( ) ( )0; , ; Th t h t yb g b V g=  (22)

where ( )0 ;h t b is called the baseline hazard function having a fuzzy parameter b  defined on the 

credibility measure space ( ), ,X DA , while :V +®R R  with 
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0 1 1
T

p py y yg g g g= + + +L  (23)

where ( )11, , ,
T

py y y= L is covariate vector and ( )0 1, , ,
T

pg g g g= L is covariate effect parameter 

vector. A typically function of :V +®R R  used is the exponential function ( ) xx eV = . It is easy to 

show that the accumulated hazard if covariate y is not time-dependent is 

( ) ( )0; , ; .
T yH t H t egb g b=  (24)

And therefore the average chance distribution with covariate y is 

( ) ( ) ( )( ) ( ) ( ){ }2

1

1 2 0 1

0

, , : ; ln 1 d
T yt y H t eg tt t b t a aF = і - -тD  (25)

where covariate y is assumed to be uncertain distributed but parameter g  is assumed to be 
determined. Other options are also possible to be formulated. 
 

7 EXPONENTIAL RANDOM VARIABLE WITH IMPRECISE PARAMETER 

 
The purpose to have this section is double-folded: (a) exponential hybrid lifetime is an 

important member for system lifetime analysis; (b) the arguments for deriving the average chance 
distribution are demonstration in line with hybrid variable reliability analysis. Bearing this agenda 
in mind, the following step-by-step developments will be very beneficial. 

Let us use exponentially distributed hybrid lifetime which has probability density 

 
0 0

;
0t

t
f t

e t
 


  

 (26)

where the imprecise parameter β has a five-piece-wise linear uncertainty distribution function (Liu 
(2007)) 

   
 

 

0 if 

if 
2

.0.5 if 

2
if c

2

1 if 

x a

x a
a x b

b a

x x b x c

x d c
x d

d c

x d




   


     
    


 

  (27)

Note that  

    Pr 1 tt e       (28)

Therefore the event ( ){ }{ }: Pr tЈ іt x t a  is an uncertain event and is equivalent to the 

uncertain event ( ) ( ){ }: ln 1 tq b q aі - - . As a critical step toward the derivation of the average 

chance distribution, it is necessary to calculate the uncertain measure for the uncertain event 
( ) ( ){ }: ln 1 tq b q aі - - , i.e., obtain the expression for 

( ) ( ){ }: ln 1 tі - -D q b q a  (29)
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Accordingly the range for integration with respect to a can be determined as shown in Table 
3. Recall that the expression of ( )ln 1x ta= - - appears in Equation (29), which facilitates the link 

between intermediate variable   and average chance measure. 
 

Table 3.  Range analysis for   
 

Range for 
x  

a  and credibility measure expression 

x a- Ґ < Ј

 
Range for a  0 1 atea -Ј Ј -  

( ) ( ){ }: ln 1 tі - -D q b q a  1 
a x b< Ј  Range for a  1 1at bte ea- -- < Ј -  

( ) ( ){ }: ln 1 tі - -D q b q a  ( ) ( )( )1 2x a b a- - -  
b x c< Ј  Range for a  1 1bt cte ea- -- < Ј -  

( ) ( ){ }: ln 1 tі - -D q b q a  0.5 
c x d< Ј  Range for a  1 1ct dte ea- -- < Ј -  

( ) ( ){ }: ln 1 tі - -D q b q a  ( ) ( )( )2d x d c- -  
d x< < + Ґ

 
Range for a  1 1dte a-- < Ј  

( ) ( ){ }: ln 1 tі - -D q b q a  0 

The average chance distribution for the exponentially distributed hybrid lifetime is then 
derived by splitting the integration into five terms according to the range of   and the 
corresponding mathematical expression for the uncertain measure ( ) ( ){ }: ln 1 tі - -D q b q a , 

which is detailed in Table 3. Then the exponential random fuzzy lifetime has an average chance 
distribution function:  

( ) ( ) ( ){ }

( ) ( )

1

0

t = : ln 1 d

       1
2 2

bt at dt ct

t

e e e e

b a t d c t

- - - -

Y і - -

- -
= + +

- -

т Dx q b q a a

 (30)

and the average chance density is 

( )
( ) ( )

( ) ( )

2

2

t =
2 2

       
2 2

at bt bt at

ct dt ct dt

e e be ae

b a t b a t

e e ce de

d c t d c t

- - - -

- - - -

- -
+

- -

- -
+ +

- -

xy

 (31)

Similar to the probabilistic reliability theory, we define a reliability function or survival 
function for a random fuzzy lifetime and accordingly name it as the average chance reliability 
function, which is defined accordingly as 

( ) ( )=1R t tx x- Y  (32)

Then, for exponential random fuzzy lifetime, its average chance reliability function is 

( )
( ) ( )

=
2 2

at bt ct dte e e e
R t

b a t d c t

- - - -

x

- -
+

- -
 (33)

In standard statistical lifetime modelling and analysis reliability function reveals the system 
functioning behaviour. The average chance reliability function should play similar roles in hybrid 
lifetime modelling and analysis. In order to gain an intuitive perceptions on the average chance 
reliability function, let us assume that the trapezoidal identification function defined by (0.1, 0.15, 
0.25, 0.30), i.e., the parameters for specifying the identification function are 0.1,  0.15a b= = , 



R.	Guo,	Y.	H.	Cui,	C.	Thiart,	D.	Guo	‐	HYBRID	RELIABILITY	MODELLING	WITH	IMPRECISE	PARAMETER	

	
RT&A	#	01	(20)		

(Vol.2)	2011,	March	
	

 

93 

0.25, 0.30c d= = . For comparison purpose, we define an exponentially distributed random 
lifetime with fixed valued parameter, 0.20, which is obtained by 

( ) 0.20m Eb b= =  (34)

Then the reliability function for the exponentially distributed random lifetime with parameter 
0.20mb =  is  

( ) ( );0.20 exp 0.2R t t= -  (35)

The corresponding average chance reliability function,   ;tR : 

( )
( ) ( )10 10

; =
at bt ct dte e e e

R t
t t

- - - -

x

- -
b +  (36)

Figure 1 gives a graphic comparison between ( );R tx b  and ( );0.20R t . 

 

 
 

Figure 1. Exponential hybrid lifetime average chance reliability ( );R tx b   

(Red), corresponding exponential lifetime reliability ( );0.20R t (Blue),  

and the difference function ( ) ( )( ); , ;0.20d R t R tx b  (Sienna) 
 

Intuitively, we can see that given two systems: the first one is an exponentially distributed 
hybrid system with trapezoidal uncertain distributed parameter ( )0.10,0.15,0.25,0.30b =  and the 

second one is an exponentially distributed random system with parameter 0.20mb = , the first one 

enjoys a higher reliability than that of the second one. Definitely, a rigorous mathematical proof 
should be pursued before stating this impression as a general statement. 
However, the purpose for us to develop hybrid lifetime analysis theory is a serious effort to 
facilitate a foundation for analyzing reliability data collected from system performance.  
 

8 CONCLUDING REMARKS 

 
In this paper, we develop a framework for modeling hybrid lifetimes (of Type I) and the 

average chance distribution as well as the average chance reliability. The models are constructive. 
We use exponentially distributed hybrid lifetime with an imprecise parameter having a five-piece-
like uncertainty function as an example to illustrate the model developments on hybrid lifetimes. It 
should mention that for two-parameter with impreciseness, the bivariate copula-linked uncertainty 
marginals approach can facilitate a bivariate uncertainty distribution for imprecise parameters and 
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further the derivation of the average chance distribution. Guo et al. (2007) demonstrated hybrid 
variable theory in repairable modeling, although in random fuzzy context. However, many research 
work need to be done ahead, for example, the parameter estimation, the asymptotic distribution for 
the estimated parameters, the small sample theory, etc. 
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