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ABSTRACT 

 
In this work the analytical expressions for reliability factor of steady-state 
network consisting of identical elements are accomplished. For obtaining of the 
analytical expressions of considered factors, the Markov process characterized by 
a certain combination of failed elements and by a network state is considered. It is 
shown that for definition of values of the obtained expressions it is sufficient to 
define the number of combinations of set capacity elements at which failure the 
network passes in non-operable state. For small dimension networks this factor 
may be defined precisely by analysis of all possible combinations of failed 
elements. For large-scale networks it is necessary to use Monte Carlo method or 
combined method. 

 
1 INTRODUCTION 

 
At network reliability assessment, reliability factors which define dynamics of behavior of 

the network are of great interest. Following are considered as reliability factors: mean time spent in 
operable and non-operable conditions within the steady-state mode. The simplest criterion for 
network operability is its connectivity. The network is considered to be connected if between any 
pair of nodes exists at least one path. 

In the course of deducing inference, we will use connectivity of a network as criterion of its 
operability. In section 5 the possibility of application of the obtained expressions at use of other 
criteria of a network operability is justified. 

If connectivity is used as a network operability criterion, than mean time spent in the 
connected state corresponds to mean time to failure (MTTF), and network mean time spent in the 
disconnected state corresponds to mean time to repair (MTTR). Therefore MTTF and MTTR may 
be considered instead of mentioned reliability factors. 

 
2 NETWORK RELIABILITY MODEL AND OBTAINING OF ANALYTICAL 

EXPRESSIONS 
 
Let us assume that network nodes being absolutely reliable and edges being identical on 

reliability fail independently from each other and their time to failure and time to repair are 
exponentially distributed with parameters λ and μ. 

Let us imply moving off of an edge from the network till its repair to be edge failure. 
Distinctive feature of networks which complicates definition of reliability factors is that at certain 
number of failed edges network may be connected as well as disconnected. For example, network 
presented on Figure 1 may not be precisely defined as connected then two or three edges are 
removed. 
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Figure 1: Example of the network 

 
The cuts of capacity i is employed as a key parameter which allows us to define considered 

reliability factors of the network. Let us denote this parameter by Yi. 
Let's define Yi for the network presented on Figure 1. Since considered network is 

biconnected, therefore one edge moving off cannot break its connectivity. Hence Y1=0. For 
definition of Y2 and Y3 we consider all possible states of the network when 2 and 3 edges are moved 
off respectively, Figure 2. 

Analyzing the data presented on Figure 2, it is possible to define that 2 cuts of capacity 2, 
and 14 cuts of capacity 3 are within the considered network, hence 2=2Y , 14=3Y . Any 

combination of i edges at i  > 3 is a cut, hence 







i
n

Yi =  at 4i . 

At small n, values of Yi may be defined by exhaustion of all possible states of the network. 
At great values of n, place Monte Carlo method or combined method should be used. 

 

 
 

Figure  2: Network state transition at failure of i edge (i=3) 
 

Knowing Yi it is possible to define probability of i edges to become disconnected in case of 
failure. Let us denote this factor by - Zi. 

Value of Zi is equal to ratio of Yi to the total number of possible combinations of i of n 
elements where n is the number of edges in the network, expression (1). 
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







i
n
YZ i

i =  (1) 

Consider a Markov process which describes network state transition at failure and repair of 
its edges. Each state is characterized by a certain combination of failed edges and by a network 
state. 

Denoted by E  is the set of operable states of the network, E  is the set of non-operable 
states of the network. 

Analytical expressions for definition of an average stay time of Markov and semi-Markov 
process in a subset of states have been obtained by  Ushakov (1969a, 1969b). 

For the considered case B.V.Gnedenko  (1983), the average stay time of Markov process on 
a set of states E  before the first entering to a state of set E  can be defined from expression: 
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 (2) 

 
where ij - rate of transition from state Ei  to state Ej , 

ji - rate of transition from state Ej  to state Ei . 
Similarly mean time for the process to be within the set of states E  is defined 
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 (3) 

 
Let us denote connected states by ),( 'ki  pair and disconnected network states by ),( 'ki  pair 

at i  failed edges. Then the left parts of expressions (2) and (3) may be written as follows: 
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where kiP , , kiP ,  - probability of states; and *
,ki   - rate of transition from state ),( 'ki  to 

states belonging to the set E , *
', ki

  - rate of transition from state ),( 'ki  to states which belong to 

the set E . 
Summary edge failure rate at i  state equals to )( in  , and summary rate to repair - i  

therefore: 
 *

)',(

*

)',(
)(=

kiki
Zin    (6) 
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)',(

*

)',(
=  kiki

Zi  (7) 

where *
),( kiZ   - probability of network transition to disconnected state from ),( 'ki  in case of 

one edge failure; 
**

),( kiZ   - probability of network transition to connected state from ),( 'ki  state in case of one 
edge repair. 

For definition of 
ET  and 

ET  from expressions (4) and (5) it is necessary to know values 

)',( ki
P  and 

)',( ki
P . Since all edges are identical on reliability therefore all states with i  failed edges 

are equiprobable. 
The probability of i edges in the network to be failed is equal to 
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The total number of such states is 







i
n

, therefore 
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
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Further, using Zi defining from expression (1), it is possible to define the number of 
disconnected states at i failed edges. 

 
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n

ZY ii =  (10) 

Similarly, the number of connected states 
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If we substitute (6), (7), (8), (10) (11) into (4) and (5), and placing variables independent of i 
and k outside summation symbols, we obtain 
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Practical use of the obtained expressions is made difficult by necessity to consider all 
possible n2  states of the systems for definition of *

),( kiZ  ; **
),( kiZ  . 

In Tkachev (1999, 2010) it is shown, that defining of Zi value is sufficient to define the 
values of expressions (12) and (13). 
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If at i failed edges the network is in one of connected states, then at one of (n-i) operational 
edges failure the network may transit to one (n-i)  states with i+1 number of the failed edges. Let 

)',( ki
S  of them be disconnected, then from definition *

)',( ki
Z  follows that 

 
in

S
Z ki

ki 
)',(*

),( =  (14) 

For example, 2/5=*

)'(2,1
Z  (point А on  Figure 2). 

Now, sum expression may be presented as *

)',( ki
Z . 
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where '
iC  - the total number of transitions from the set of connected states ),( 'ki  to the set 

of disconnected states )1,( ' ki . 
For definition of '

iC  value the following reasoning may be employed. 
If the network is in one of Yi disconnected states, then at failure of one of (n-i)  operational 

edges the network may transit to another disconnected state with the number of failed edges i+1. 
The total number of transitions from disconnected states with the number of failed edges i  to 
disconnected states with the number of failed edges i+1 equals to )( inYi  . Then value of 1iY  may 
be expressed through iY  and '

iC  as follows: 
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The denominator equals to i+1 because the network can transit in each state with the 
number of failed edges i+1 from i+1 states with the number of failed edges i (point B on Figure 2) 
. 

On the other hand, in compliance with definition 
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If we substitute 1iY  from (16) to (17) we obtain 
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In addition, 

 
1

=
1 


















 i

in
i
n

i
n

 (19) 

If we substitute expressions (10) and (19) to (18), then after simplification we obtain 
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whence it follows that 
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Substituting (22) to (12), we obtain 
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After notation we obtain 
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Thus, expression (23) may be brought to the form 
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The numerator of this expression is probability for the network to be in connected state at an 
arbitrary point of time. If we substitute iR  from (24) and iP

~  from (9) we obtain 
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By similar reasoning it is possible to obtain expression for system's mean time spent in the 
disconnected state from (13). 

If at i failed edges the network is in one of disconnected states, then at repair of one of i 
edges the network may transit to one of i states with the number of failed edges i-1. Let 

)'',( ki
S  of 

them be connected, then from **
),( kiZ   definition follows that 
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Now sum expression may be given: **
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where '
iC  - the total number of transitions from disconnected set ),( 'ki  to connected set 

)1,( 'ki  . 
For definition of '

iC  the following reasoning may be used. 
 If the network is in one of Yi disconnected states, then at repair of one of i failed edges the 

network may transit to connected or disconnected state with the number of failed edges i-1. The 
total number of transitions from disconnected states with the number of failed edges i , is equal to 
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iYi *)( . '
iC  of them are transitions into connected states. Then value of 1iY  be expressed through iY  

and '
iC  as follows: 
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The denominator equals to 1)(  in  because the network can transit in each state with the 

number of failed edges i-1 from 1)(  in  states with the number of failed edges i. 
From expression (30) we obtain 
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Substituting Yi from (10) in (31), we obtain 
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In addition, 
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If we substitute '
iC  value from (34) into (29) and expression (29) into (13), we get 
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After notation 
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where 

 
i

i
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Results of calculation of ***,,, iiii ZZZY  values for the network on Figure 1 are presented in  
Table1. 
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Table 1. ***,,, iiii ZZZY  values for the network on Figure 1 
  i  









i
n

  
 iY    iZ   *

iZ    Z **
i   

 0   1   0   0   0   0  
 1   7   0   0   0,095238   0  
 2   21   2   0,095238   0,336842   0  
 3   35   14   0,4   1   0,238095  
 4   35   35   1   0   0,4  
 5   21   21   1   0   1  
 6   7   7   1   0   1  
 7   1   1   1   0   1  

 
If we substitute ***,,, iiii ZZZY  values from Table 1 into expressions (26), (27), (37), where 

=0,01 (1/hour) and  = 1(1/hour), we obtain following values of considering reliability factors.  
23,769=

ET  hour.; 0,980645=R ; 0,469=
ET  hour. 

 
3 COMPARISON WITH KNOWN RESULTS 

 
For checking of the obtained expressions we define values of considered system reliability 

factors (Figure 3) for which analytical estimations are known. 
 

 
 

Figure  3: Parallel - series system 
 
Following expressions may be found in  Gnedenko&Belyayev&Solovyov (1965). For s 

identical elements connected in parallel with   and   parameters. 
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Substituting in this expressions 3=2,= ks ,  =0,1(1/hour),  =1 (1/hour) we obtain 

20,000=
ET  hour.; 0,975411=R ; 0,504=

ET  hour. 

For definition of these reliability factors using expressions (26), (27), (37), values of Yi and 
Zi should be defined. 

It is obvious that 0=1Y  and 0,0=1Z . In case of 2 elements failure there are three 
combinations resulting in disconnection (nonoperativity) of the system (1,2), (3,4), (5,6). The total 
number of probable combinations is 12, hence 3=2Y  and 3/12=2Z . For definition of 3Y  and 3Z  
let us consider all probable combinations of 3 elements (Table 2). As followed from the results 
provided in Table 2, 12=3Y  and 12/20=3Z . At failure of 4 or more elements, the system will be 
disconnected, therefore 1=== 654 ZZZ . 

 
Table 2. State of the system on Figure 3 at failure of 3 elements. 

 
1 123 - 11 234 - 
2 124 - 12 235 + 
3 125 - 13 236 + 
4 126 - 14 245 + 
5 134 - 15 246 + 
6 135 + 16 256 - 
7 136 + 17 345 - 
8 145 + 18 346 - 
9 146 + 19 356 - 

10 156 - 20 456 - 
 

Table 3. Calculation results of system performance (for Figure 3) 
 

  i  








i
n

 iP    iY    iZ   *
iZ    Z **

i  iQ   iR   

 0   1   0,5644739301   0   0   0   0   0,0000000000   0,5644739301  
 1   6   0,3386843580   0   0   0,2   0   0,0000000000   0,3386843580  
 2   15   0,0846710895   3   0,2   0,5   0   0,0169342179   0,0677368716  
 3   20   0,0112894786   12   0,6   1   0,33333   0,0067736872   0,0045157914  
 4   15   0,0008467109    15   1   0   0,6   0,0008467109   0,0000000000  
 5   6   0,0000338684    6   1   0   1   0,0000338684   0,0000000000  
 6   1   0,0000005645    1   1   0   1   0,0000005645   0,0000000000  

  
The rest results are presented in Table 3. Substituting the data from Table 3 into expressions 

(26), (27), (37), we obtain: 
 

20,000=
ET  hour.; 0,975411=R ; 0,504=

ET  hour. 

 
4 EXAMPLES OF NETWORK RELIABILITY ANALYSIS 

 
We will consider biconnected networks which node degrees satisfy to the inequality 
32  k . 
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Let us denote the number of nodes by m and the number of edges by n. It is necessary to pay 
attention that for each pair of (m,n) there is a topology providing the maximum level of reliability. 
For definition of such topologies the algorithms offered in Artamonov (1999) have been used. 

 
Example 1. Ring with one diagonal m=20, n=21 

 
It is obvious that 0=1Y  and 0=1Z . Considering combinations of 2 edges one may see that 

they form a cut even when they belong to the same chain. In addition, any combination of 2 edges 
which belong to the same chain is a cut itself. Calculation results of values Yi and Zi for the network 
(Figure4) are presented in Table 4а. Table 4b includes 

ET , 
ET  and R values calculated for various 

λ. Value μ=1. Here and elsewhere the unit of measurement for λ and μ is 1/hour, for 
ET and 

ET   - 

hour. 

 
Figure 4. Network with parameters m=20, n=21 

 
Table 4a. Yi and Zi values for the network presented on Figure 4. 

 
  i   1   2   3   
 Yi   0   63  

 







i
n

  

 Zi   0   0,3000   1  
 

Table 4b. 
ET , 

ET , R  valuesfor the network presented on Figure 4. 

 
      

ET    
ET   R   

 0,1   1,13   0,6983   0,617547  
 0,01   79,56   0,4997   0,993759  

 0,001   7928,59   0,4995   0,999937  
  

Example 2. Network with parameters m=20, n=24 
 
As presented in Artamonov (1999), to reach the maximum reliability it is necessary to find 

the minimal diameter network with 2(n-m) nodes of degree 3, and distribute nodes of degree 2 on 
the edges of this network equally. The network presented on Figure 5 may be found as a result. 

Yi values of this network may be defined by exhaustion of all possible states. Results of 
calculations are presented Table 5a and Table 5b. 
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Figure  5.  Network with parameters m=20, n=24. 

 
 

Table 5a. Values Yi and Zi for the network on Figure 5. 
 

  i   1   2   3   4   5   6   
 Yi   0   12   328   4082   29960  









i
n

  

 Zi   0   0,043478   0,162055   0,384252   0,704875   1  
 

Table 5b. Values 
ET , 

ET , R  for the network on Figure 5. 

 
      

ET    
ET   R   

 0,1   2,13   0,3334   0,864576  
 0,01   390,86   0,4845   0,998762  

 0,001   41415,64   0,4986   0,999988  
   

5 USE OF OTHER OPERABILITY CRITERIA AND MODELS OF NETWORK 
RELIABILITY 

 
The connectivity of all nodes of the network has been used as operability criterion so far. 

However the following question would be appropriate: whether loss of communication with one of 
nodes is a failure? If we consider the loss of connectivity with k nodes to be admissible, then the 
following network operability criterion may be used: the network is considered operational, if 
number of connected nodes )( km  . 

The obtained results may be also used in this case, but respective alterations in algorithm of 
definition of values Yi should be made. In Table 6 values 

ET and R at various values of k are 

presented for the network on Figure 5. 
 

Table 6. Values 
ET  and R  at various values of k, 

λ=0,01, μ=1 for the network on Figure 5. 
 

  k    
ET    R   

 1   5780,49   0,999943591  
 2   9843,50   0,999967012  
 3   

31455,53  
 0,999990157  
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It is possible to weaken restriction on equireliability of edges. It is possible to present each 
edge in the form of serial connection of certain quantity of equireliable elements. Thus fictitious 
nodes are entered into network structure. After such transformations values of Zi are defined. If one 
of elements making an edge fails, then this edge is removed from the network. Network 
connectivity is checked without considering of fictitious nodes. 

It should be mentioned that obtained results may be used in case of failure of nodes when 
edges are absolutely reliable. Node failure may be modeled by removal of all edges emanating from 
this node. 

This method of the analysis of networks reliability can be used also when those states are 
only considered as operable at which value of certain network parameters, for example, the network 
capacity will satisfy to preset values. 

For high dimension networks the statistical estimation of values Zi can be defined using a 
Monte-Carlo method. The random combination of i fault elements is generated, and then operability 
of a network is checked. The ration of an amount of trials at which the network will appear non-
operable to the total number of trials will be statistical estimation Zi. 

However it is necessary to consider that for reaching of high accuracy of statistical 
estimation Zi, the amount of trials should be great enough (105-106). 

 
6 CONCLUSION 

 
Analytical expressions defining reliability factors of networks consisting of identical 

elements are obtained. These elements fail and repair independently from each other and have 
exponentially distributed time to failure ad time to repair. Moreover both nodes and edges of the 
network may be regarded as absolutely reliable. Fidelity of the obtained result is vindicated by 
calculation of reliability factors of redundant system for which analytical estimations are known. 
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