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ABSTRACT 
 

An optimally coordinated energy dispatching among generating units may contribute to 
attain higher performances of electric networks. Within this wide research field this paper 
focuses on a theoretical study aimed at proposing an optimal dispatching policy maximizing 
reliability and Mean Time To Fault of a park of programmable generating units whose 
failure rate models take into account the dependency from the instantaneous loading 
condition.  

 
 
 
1  INTRODUCTION 
 

The operation environment of power systems is becoming increasingly dynamical due to the 
continually evolving functions required, Madani & King (2008), Bose (2010). 

It is a fact that operational and environmental conditions have a significant effect on 
accelerating or decelerating the rate of degradation processes which occur prior to failure. Most 
conventional failure models are developed on the premise that the prevailing environmental and 
operating conditions either do not change in time, or have no effect on deterioration and failure 
processes. These hypotheses may give misleading results whose accuracy does not fulfill the 
requirements imposed by an envisaged technical and economical dynamic environment in which 
future power systems are called to operate.  

In the future scenarios more advanced reliability analysis tools are required.  
The intent of this paper is to focus on an optimal dispatching policy of a heterogeneous park 

of programmable generating units whose failure rate model is supposed dependent on the loading 
condition. 

 
2 FAILURE RATE AND COVARIATES 
 

A lot of literature has been devoted to the study of failure models for applications in reliability 
engineering. A comprehensive survey of the settled failure models currently adopted in this field 
may be found in Singpurwalla (1995). 

Among these failure models, in engineering systems analysis the approach based on the 
definition of a failure rate function λ(t) plays a key role in reliability and survival analysis; it has 
generally turned out to be a useful device for expressing a connection between the physics of failure 
and the probability of survival. Condition-Dependent Failure Rate (CDFR) models are currently an 
interesting research issue in reliability engineering also applied to power systems, Pan et al. (2009), 
Sun et al. (2010), Wang & Xie (2008). 

In conventional reliability evaluation of power systems failure rate, derived from the collected 
statistical data, has usually been assumed to be constant; it has been realised from the real-time 
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operation that it is not constant and varies with several parameters: in details λ(t) may depend upon 
explanatory variables (covariates) such as loading conditions, installation environment, 
manufacturer, etc. When such is the case, the explanatory variables become a part of the observable 
history, and so their effect needs to be incorporated in failure rate expression	ݐ)ߣ, ,(ݐ)ࢆ  where ,(ݐ)ࣂ
Z(t) is a vector of covariates and θ(t) are other model’s parameters, generally time dependent, Aalen 
(1989), Cox (1972), Peña & Hollander (2004), Singpurwalla (2006).  The conceptual advantage of 
this model lies in the representation of a non observable entity, the failure rate, through observable 
and sometimes controllable entities.  

Generating units’ failure rates may depend on loading/stress history (e.g. active and reactive 
power, voltage, peak values, number of occurrence of a peak, highest derivative etc.) and 
environmental variables history (e.g. temperature, humidity, pollutants’ concentration, etc.). 
Generally some of the loading variables are controllable; some environmental parameters may be 
controlled only in particular installation conditions.  

In this paper the generating units’ failure rate is assumed dependent on the active 
instantaneous loading status, (ݐ)ܮ, so ݐ)ߣ, ,(ݐ)ܮ  .(ݐ)ࣂ

Extensive studies in survival analysis, Cox & Oakes (1984), applied for instance to 
biostatistics, have proposed the following model: 

 )()(exp)())(,( tLttotLt                                                             (1) 
Comprehensive studies on these dependences, under static loading conditions, based on data 

collected for some mechanical elements, e.g. contact bearing, spring, gear, etc., Carderockdiv. 
(1994), proposed the following model: 

y

cL
tL

tctLt













)(
)())(,(                                                            (2) 

Where λc and Lc are the reference failure rate and the corresponding load, respectively; y 
denotes the load dependent exponent (up to 10).  

 
2.1 Optimal Control 
 
The covariate induced failure rate process	ݐ)ߣ, ,(ݐ)ࢆ  may be useful to identify optimal (ݐ)ࣂ

control strategies of a subset of	,(ݐ)ࢆ	ࢆ஼ , of controllable variables capable of optimizing expected 
reliability performances. The general criterion is to select the control/decision variables, subject to 
constraints, in order to maximize the expectation of an objective goal functional, over a time 
horizon. 

Reliability based control applied to power systems may be effective for identifying the most 
economical policies that can be used to fulfil the expected mission and minimize life cycle costs. 
Different control concepts and different reliability target formulations can be evaluated; in 
particular reliability criteria based on crossing rates and on approximations of the extrema of 
random performance measures could be adopted. 

The past decades have seen great development of reliability based optimal control 
methodologies in several engineering fields (e.g. civil, mechanical, marine, offshore); the research 
issue is still open because of the various difficulties in stochastic dynamics and reliability theory. 

The prospected evolution of power systems paves the way for an efficient integration of these 
methodologies; moreover the rapid development of the monitoring technologies, particularly 
sensing techniques, Proceedings of CMD (2010), Proceedings of PHM (2010), non-invasive 
communication systems (e.g. wireless sensor networks), Baker et al. (2009), Lu et al. (2005), and 
their expected pervasive diffusion in future power systems for collecting field data may constitute a 
valid technological support for the actuation of  novel reliability-based control techniques.  
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Implementing this architecture on power systems requires the development of algorithms to 
perform each of its separate functions. That is where some of the real technical challenges are 
found. 
3 PROBLEM FORMULATION 

 
Assume a set of n programmable generators, all of them characterized by a failure rate model 

as (1) or (2). The effect of the electrical network is neglected at this initial stage, so a one-node 
model is considered, Billington & Allan (1984). The objective is to identify a dispatching policy, 
which optimizes reliability performances. In particular as first objective is identified the 
minimization of the risk correlated with any intervention on the system; that is the maximization of 
the reliability of the series of all generators evaluated at the mission time T. This objective may be 
of interest in case of power systems installed in remote areas, or installed on-board, for which the 
costs of any intervention are high. Secondly will be evaluated an optimal loading policy 
maximizing Mean Time To Fault (MTTF) as generally required for improving availability 
performances and optimal maintenance policies.  

In particular let ( ଵܶ, ଶܶ, … . ௡ܶ)	be the random variables (r.v.) describing the operating life of 
each generator; given the failure rate of each generator	ߣ௜(ݐ, ,(ݐ)௜ܮ  All the covariates are .(ݐ)࢏ࣂ
assumed external as defined in Kalbfleisch (2002). If the hazard potential Xi of the generators are 
supposed independent, and given that Hi(t) are known the r.v. Ti are independent, Singpurwalla 
(2006),  so the probability that all n generators are operating during the mission time T is: 

 
ܴ(ܶ) = ܲ( ଵܶ > ܶ, ଶܶ > ܶ,… . ௡ܶ > ,(ݐ)௜ܮ|ܶ ,(ݐ)࢏ࣂ i = 1, . . . , n) =

∏ P( ௜ܶ > ܶ|୬
୧ୀଵ ,(ݐ)௜ܮ  (3)                 ((t)࢏ࣂ

 
4 DETERMINISTIC CASE 
 

If the total load required to the generators L(t) and the failure rate model’s parameters are 
known deterministic the formulation of the optimization problem is:  

 
max௅భ(௧),…,௅೙(௧)[ܴ(ܶ)]                                                                          (4)  

s.t. 

෍ܮ௜(߬) = (߬)ܮ
௡

௜ୀଵ

, ∀߬ ∈ [0, ܶ] 

(߬)௜ܮ ∈ [0, ,[௜ெ஺௑ܮ ∀݅ ∈ [1,2, . . , ݊], ∀߬ ∈ [0, ܶ] 
 

Considered the monotonicity of the argument function, problem (4) is equivalent to: 
max௅భ(௧),…,௅೙(௧) ቂ−∫ ∑ ௜(߬,௡ߣ

௜ୀଵ
்
଴ ,(߬)௜ܮ  ቃ                                              (5)߬݀((ݐ)࢏ࣂ

So, solving problem (5), the optimal dispatching ۺ∗(τ) is:  
 
Model (1) 
Let φ(τ): 

φ(τ) = exp ቎
୐(த)ା∑

ౢ౤ቀಓబ౟(ಜ)∙ಊ౟(ಜ)ቁ

ಊ౟(ಜ)
౤
౟సభ

∑ భ
ಊ౟(ಜ)

౤
౟సభ

቏                                                  (6) 

if φ(τ) ≥ λ଴୧(τ) ∙ β୧(τ) ∙ exp[β୧(τ) ∙  [௜ெ஺௑ܮ
(߬)∗௜ܮ = ௜ெ஺௑ܮ  

 
if φ(τ) ≤ λ଴୧(τ) ∙ β୧(τ) 
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(߬)∗௜ܮ = 0 
 

otherwhise 

(߬)∗௜ܮ =
௅(ఛ)ା∑ ௟௡൬

ಓబౠ(ಜ)∙ಊౠ(ಜ)

ಓబ౟(ಜ)∙ಊ౟(ಜ)
൰

భ
ಊౠ(ಜ)೙

ೕసభ
ೕಯ೔

ଵା∑ భ
ಊౠ(ಜ)

౤
ೕసభ
ೕಯ೔

                                                           (7) 

 
Model (2) 
If ݕ௜ ≠ 1 , let φ(τ) defined by: 

∑ ቈ
௅೎೔
೤೔

ఒ೎೔∙௬೔
φ(τ)቉

భ
೤೔షభ

= ௡(߬)ܮ
௜ୀଵ                                                        (8) 

φ(τ) ≥ 0 

if φ(τ) ≥ ௖೔ߣ ∙ ௜ݕ ∙
௅೔ಾಲ೉
೤೔షభ

௅೎೔
೤೔  

(߬)∗௜ܮ = ௜ெ஺௑ܮ  
otherwhise 

(߬)∗௜ܮ = ቈ
௅೎೔
೤೔

ఒ೎೔ ∙௬೔
φ(τ)቉

భ
೤೔షభ

                                                                    (9) 

It can also be proved that ࡸ∗(߬) maximize the MTTF.  
 
4.1 Maximum MTTF for Periodic Deterministic Load 
If the load L(t) is supposed deterministic and periodic, with period ℎ =  ௜ not explicitlyߣ ,ܶ∆

depending on the time, ߣ௜൫ܮ௜(ݐ),  parameters periodic too with the same period (ݐ)࢏ࣂ ൯, and the(ݐ)࢏ࣂ
of the load (This last hypothesis could be physically justified by periodic maintenance policies), 
applying Bellman’s optimality principle the maximum MTTF* is given by: 

MTTF∗ = max
(୲)ۺ

୲∈[଴,∆୘]

ቐන R(t)dt
∆୘

଴
+ R(∆T) ∙ max

(୲)ۺ
୲∈[∆୘,ାஶ]

{MTTF}ቑ = 

= max (୲)ۺ
୲∈[଴,∆୘]

ቄ∫ R(t)dt∆୘
଴ + R(∆T) ∙ MTTF∗ቅ                                                    (10) 

It’s worth noting that this formulation is possible because ageing is neglected. 
Equation (10) is the recurrent formulation of the maximization problem. 
Banach fixed point theorem guarantees the existence and uniqueness of a fixed point MTTF*: 

∗ܨܶܶܯ = ∫ ோ∗(௧)ௗ௧∆౐
బ
ଵିோ∗(∆୘)

                                                      (11) 
where ܴ∗(ݐ) is the reliability evaluated for the optimal loading policy	ۺ∗(τ). 
 

5 STOCHASTIC CASE 
 
Given a filtered probability space (Ω, ℑ, ܲ) with a filtration	{ℑ௧}, the load ܮ(߬) and the failure 

rate parameters [λ଴୧(t), β୧(t),… ]	are supposed stochastic processes adapted to the filtration, Pham 
(2009). 

If the power system under study is “grid-connected” all the generators may be generally 
deterministically controlled. If the system is isolated and without storage the controllable variables 
may be “n-1” among “n”, supposing that the remaining generator, the “slack”, let it be the j-th, is 
capable supporting the load, that is: 
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௝ெ஺௑ܮ ≥ max௧∈[଴,ାஶ][(ݐ)ܮ] − ∑ ௜ெ஺௑௡ܮ
௜ୀଵ
௜ஷ௝

                                                     (12) 

As it is physically reasonable max௧∈[଴,ାஶ][(ݐ)ܮ]	is supposed to be deterministic; it is assumed 
also that relation (12) is verified ∀݆ ∈ [1,݊]. 

Naturally this hypothesis, in a real case, must be evaluated in the light of load-following 
regulating performances of the j-th generator, that in this paper are supposed adequate to support the 
dynamics of the control policy. 

Chosen a generator j-th as slack, the objective is to identify a loading policy which maximizes 
the expected Reliability for the mission time T.  

Let: 
߯ ቀ߬, ,(߬)ܮ ቁ(߬)ܒદ,(߬)࢐ࡸ = ∑ ,ݐ)௜ߣ ,(ݐ)௜ܮ ௡(ݐ)࢏ࣂ

௜ୀଵ
௜ஷ௝

+ ,ݐ)௝ߣ (߬)ܮ − ∑ ௡(ݐ)௜ܮ
௜ୀଵ
௜ஷ௝

,                   ((ݐ)࢏ࣂ

(13) 
with 

(߬)࢐ࡸ = …,(ݐ)ଵܮ] , ,(ݐ)௝ିଵܮ …,(ݐ)௝ାଵܮ ,  [(ݐ)௡ܮ
દ(ݐ)ܒ = …,(ݐ)૚ࣂൣ , ,(ݐ)࢐ି૚ࣂ …,(ݐ)࢐ା૚ࣂ . ,  .൧(ݐ)࢔ࣂ

Given the problem: 
max࢐ࡸ[଴,்]൛ൣܧ ௝ܴ(ܶ)൧ൟ                                                       (14) 

s.t. 
(߬)௜ܮ ∈ [0, ,[௜ெ஺௑ܮ ∀݅ ∈ [1, . . ݆ − 1, ݆ + 1, . . ݊],∀߬ ∈ [0, ܶ],  

 
considered that the processes describing loads and failure rate parameters have been supposed 

adapted to the filtration	{ℑ௧}	, according to the principle of optimality (14) may be written as: 
 

0 = min࢐ࡸ[଴,்] ቄܧ ቂ߯ ቀ߬, ,(߬)ܮ ቁቃ(߬)ܒદ,(߬)࢐ࡸ − ܧ ቂ߯ ቀ߬, ,(߬)ܮ ቁቃ(߬)ܒદ,(߬)࢐ࡸ ∙ (ݐ)ܬ +       ቅ(ݐ̇)ܬ
(15) 

with 

(ݐ)ܬ = min
(ఛ)࢐ࡸ
௧ஸఛஸ்

ቊܧ ቈන ߯ ቀ߬, ,(߬)ܮ ቁ(߬)ܒદ,(߬)࢐ࡸ ݌ݔ݁ ቈ−න ߯ ቀݏ, ,(ݏ)ܮ ݏቁ݀(ݏ)ܒદ,(ݏ)࢐ࡸ
ఛ

௧
቉ ݀߬

்

௧
቉ቋ 

(ܶ)ܬ = 0 
(0)ܬ = 1 − max࢐ࡸ[଴,்]൛ൣܧ ௝ܴ(ܶ)൧ൟ. 

 
The equation (15) implies that the optimal loading policy ࢐ࡸ∗(߬) satisfies: 
 

min࢐ࡸ(ఛ) ቄܧ ቂ߯ ቀ߬, ,(߬)ܮ  ቁቃቅ                                           (16)(߬)ܒદ,(߬)࢐ࡸ
s.t. 

(߬)௜ܮ ∈ [0, ,[௜ெ஺௑ܮ ∀݅ ∈ [1, . . ݆ − 1, ݆ + 1, . . ݊], ∀߬ ∈ [0, ܶ]. 
 

So taking into account the Taylor expansion of (16) around the expected value of 
,(߬)ܮൣ દܒ(߬)൧, and adopting a multi-index notation, Marti (2008),: 

 

min࢐ࡸ(ఛ) ൝
߯൫߬, ,തതതതതത(߬)ܮ દ଎(߬)തതതതതതത൯,(߬)࢐ࡸ +

ଵ
ଶ
∑ ఈܦ ቀ߯൫߬, ,തതതതതത(߬)ܮ દ଎(߬)തതതതതതത൯ቁ|ఈ|ୀଶ,(߬)࢐ࡸ ∙ ൧(߬)ܒદ,(߬)ܮ൫ൣൣܧ − ൧൯(߬)ܒદ,(߬)ܮൣ

ఈ൧
ൡ           

(17) 
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where ൣܧ൫ൣܮ(߬),દܒ(߬)൧ − ൧൯(߬)ܒદ,(߬)ܮൣ
ఈ൧ are the covariances in multi-index notation; 

applying Lagrange multipliers method, the particularized equations for failure rate model (1) are: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧߰௝(߬) + (߬)௜ߚ]݌ݔ݁ ∙ [(߬)௜ܮ ∙ (߬)௜ଶܮൣ ∙ (߬)௜ߴ + (߬)௜ܮ ∙ (߬)௜ߩ + ௜(߬)൧ߢ + ௜ߤ − ௜ߛ = 0

߰௝(߬) = (߬)௝ߚൣ݌ݔ݁ ∙ ௝(߬)൧ݖ ∙ (߬)௝ଶݖൣ ∙ (߬)௝ߥ + (߬)௝ݖ ∙ (߬)௝ߦ + ௝(߬)൧ߞ
(߬)௝ݖ = തതതതതത(߬)ܮ − ∑ ௞(߬)௡ܮ

௞ୀଵ
௞ஷ௝

(߬)௝ߥ = −
ఉೕ(ఛ)∙ఙഁ೔ഁೕ(ఛ)∙ఒ೚ണ

തതതതത(ఛ)

ଶ
0

(߬)௝ߦ = (߬)ఉೕఉೕߪ− ∙ (߬)௢ఫതതതതߣ − (߬)ఉ೔ఉೕߪ4 ∙ ఫഥߚ (߬)

(߬)௝ߞ = (߬)௢ఫതതതതߣ− ∙ ఫഥߚ (߬) ∙ ቂ
ଵ
ଶ
ఫഥߚ(߬)௅௅ߪ (߬)ଶ + (߬)௅ఉೕߪ2 ∙ ൫1 + ఫഥߚ (߬)ଶ൯ + 1ቃ +

ఫഥߚ2− (߬)ଶ ∙ (߬)௅ఒ೚ೕߪ − (߬)ఒ೚ೕఉೕߪ4

(߬)௜ߴ =
ఉഢതതത(ఛ)∙ఒ೚ണതതതതത(ఛ)∙ఙഁ೔ഁೕ(ఛ)

ଶ

(߬)௜ߩ = (߬)ఉ೔ఉ೔ߪ(߬)௢పതതതതߣ + (߬)ఒ೚೔ఉ೔ߪ(߬)పഥߚ2
(߬)௜ߢ = (߬)పഥߚ(߬)௢పതതതതߣ + (߬)ఒ೚೔ఉ೔ߪ2

௜ߤ ∙ (߬)௜ܮ) − (௜ெ஺௑ܮ = 0
௜ߛ ∙ (߬)௜ܮ = 0
௜ߤ ≥ ௜ߛ	0 ≥ 0

									           

(18) 
∀݅ ∈ [1, . . ݆ − 1, ݆ + 1, . . ݊] 

.ݎ	ℎ݁ݐ	݊݁݁ݓݐܾ݁	݁ܿ݊ܽ݅ݎܽݒ݋ܿ	ℎ݁ݐ	ݏ݅	(߬)ௌ஽ߪ .ݒ  .ܦ	݀݊ܽ	ܵ
For model (2), for sake of simplicity of the analytical expression, are reported only the 

particularized equations with known and constant failure rate parameters and ݕ௝ > 2,∀݆: 
 

min࢐ࡸ(ఛ)

⎩
⎪
⎨

⎪
⎧

∑ ൤ߣ௖೔ ൬
௅೔(ఛ)
௅೎೔

൰
௬೔
൨௡

௜ୀଵ
௜ஷ௝

+
ఒ೎೔

௅೎೔
ഊ೎೔

⎣
⎢
⎢
⎢
⎡ ቆܮത(߬) − ∑ ௜(߬)௡ܮ

௜ୀଵ
௜ஷ௝

ቇ
௬ೕ

+

+ ଵ
ଶ
௝ݕ௝൫ݕ − 1൯ ቆܮത(߬) − ∑ ௜(߬)௡ܮ

௜ୀଵ
௜ஷ௝

ቇ
௬ೕିଶ

⎦(߬)ଶ௅ߪ
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

                

(19) 
s.t. 

 
(߬)௝ܮ ∈ ൣ0,  ௝ெ஺௑൧ܮ

 
 ௖೔ are the parameters for the i-th generatorܮ ௖೔andߣ

 
 .(߬)ܮ ଶ௅(߬) is variance ofߪ

 
The analysis performed allows, also, identifying the i-th optimal slack generator which 

optimizes expected reliability, determined by: 
 

݅: [(ܶ)௜ܴ]ܧ = max௝ୀଵ,..,௡ ቂൣܧ ௝ܴ(ܶ)൧ቃ                                       (20) 
 

Applying an analogous procedure used for the solution of problem (14) it is possible to show 
that: 
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ൣܧ  maximize (߬)∗࢐ࡸ ௝ܴ(ܶ)൧	∀ܶ  ⇔  ௝൧                            (21)ܨܶܶܯൣܧ maximize (߬)∗࢐ࡸ
 
5.1 Maximum expected MTTF for Stochastic-Load with periodicity 
Following the procedure applied in the deterministic case, and similarly, supposing that ߣ௜ is 

not explicitly time dependent, and the processes describing load and failure rate parameters are 
supposed periodic with fixed period ℎ = Δܶ, the maximum expected MTTF* is given by the 
following recurrent equation: 

 

∗௝ܨܶܶܯ = max࢐ࡸ[଴,୼்] ൝ܧ ൥
∫ ܴ(߬, ,0]࢐ࡸ Δܶ], ߬݀(߬)ܮ
୼்
଴ +

+ܴ(Δܶ, ,[Δܶ,0]࢐ࡸ ,0]ܮ Δܶ]) ∙ ∗௝ܨܶܶܯ
൩ൡ .                          (22) 

 
Banach fixed point theorem guarantees the existence and uniqueness of a fixed point ܨܶܶܯ௝∗ 

given by: 

∗௝ܨܶܶܯ =
ாቂ∫ ோ(ఛ,࢐ࡸ∗[଴,୼்],௅(ఛ)ௗఛ

౴೅
బ ቃ

ଵିாൣோ(୼்,࢐ࡸ∗[଴,୼்],௅[଴,୼்])൧
                                                 (23) 

 
Even in this case the analysis performed allows identifying the i-th optimal slack generator 

which optimizes the expected MTTF. It coincides with that one given by (20).   
                                 

6 CONCLUSION 
 
Reliability-based control applied to power systems may be effective for identifying the most 

economical policies that can be used to fulfill the expected mission and minimize life cycle costs. In 
this field adequate methodological and technological development may have very high potential 
value for future applications in electrical power systems. Recent development of the monitoring 
technologies, particularly sensing techniques, non-invasive communication systems and 
implementation framework, and their expected pervasive diffusion in future power systems for 
collecting field data may constitute a valid technological support for the actuation of novel 
reliability-based control techniques. 

The theoretical discussion of this paper focuses on a study of a reliability-based optimal 
dispatching policy of a heterogeneous park of programmable generating units whose failure model 
takes into account the dependency from the instantaneous loading condition. In deterministic 
analysis rigorous analytical expressions of the dispatching policy has been obtained for a generic set 
of heterogeneous components within simplification assumptions. Some general results have also 
been obtained in presence of stochastic loads and failure rate’s parameters.  
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