COOPERATIVE EFFECTS IN COMPLETE GRAPH WITH LOW RELIABLE ARCS

G. Tsitsiashvili
\bullet
IAM, FEB RAS, Vladivostok, Russia
e-mail: guram@iam.dvo.ru

Abstract

An analysis of the limit $\lim _{n \rightarrow \infty} P_{n}=A$ of connectivity probability (CP) P_{n} of complete graph with n nodes and independent arcs which have working probability n^{-a} is made. It is proved that for $0<a<1$ we have the equality $A=1$ and for $1<a$ the equality $A=0$.

1. INTRODUCTION

An analysis of the limit $\lim _{n \rightarrow \infty} P_{n}=A$ of connectivity probability (CP) P_{n} of complete graph with n nodes and independent arcs which have working probability n^{-a} is made. In the complete graph each pair of nodes is connected by single arc. It is proved that for $0<a<1$ we have the equality $A=1$ and for $1<a$ the equality $A=0$.

Analogously with [1] this zero-one low may be interpreted as a transition from chaos to order in a structure with all possible connections between nodes. The parameter a may be called order parameter with critical meaning $a=1$. Such model may be applied to an analysis of connection structure in the internet for example in social networks. Another field of applications may be a modeling of self organizing systems.

A calculation of CP for graphs with unreliable arcs is considered in a lot of monographs [2] [5] which become classical. This list may be added by articles on upper and low bounds of CP [6] [11], on transfer matrices [12], [13], on an application of groups of disjoint events [14] for accuracy CP calculation of two nodes in a graph, on accelerated algorithms [15] of accuracy CP calculation and on an application of Monte-Carlo simulations with some combinatory formulas for CP estimates [16]. There is a large number of other articles and monographs devoted to this very important problem of applied mathematics and applied probability.

But a consideration of complete graph with large number of nodes demand to construct special upper and low bounds of the probability P_{n} and its asymptotic analysis for $n \rightarrow \infty$. These approaches look like proofs of limit theorems in combinatory probability theory [17].

A formulation of considered problem appears from oral communication of E.A. Nurminsky. It is based on numerical experiment showed a fact of a transition from "chaos to order" in a graph with large number of connections between nodes. Our researches are accompanied by a lot of sufficiently long Monte-Carlo simulations which helped to define main properties of random graphs with large number of arcs and nodes.

2. FORMULATION OF MAIN RESULTS

Consider complete graph G_{n} with nodes $1, \ldots, n$ and with independently working arcs. Denote $p, 0<p<1$, working probability of an arc and put $P_{n}(i, j) \mathrm{CP}$ of the nodes i, j in the graph G_{n},
$\bar{P}_{n}(i, j)=1-P_{n}(i, j)$. It is obvious that $P_{n}(i, j)=P_{n}(k, s)$ for all pairs of nodes $i \neq j, k \neq s$. Denote P_{n} the CP of random realization of the whole graph, $\bar{P}_{n}=1-P_{n}$.

Theorem 1. Suppose that $p=p_{n}=n^{-a}, a \geq 0$, then

$$
\begin{gather*}
\lim _{n \rightarrow \infty} P_{n}=1,0<a<1 . \tag{1}\\
\lim _{n \rightarrow \infty} P_{n}=0, a>1 . \tag{2}
\end{gather*}
$$

Denote $Q_{n}(b)$ the probability that in random realization of the graph G_{n} there is more than $\left[n^{b}\right]$ connectivity components, $0<b \leq 1$. Here $[r]$ is integer part of real number r.
Theorem 2. Assume that $p=p_{n}=n^{-a}, a>0,0<b \leq 1$. Then

$$
\begin{gather*}
\lim _{n \rightarrow \infty} Q_{n}(b)=1,1+b<a \leq 2, . \tag{3}\\
\lim _{n \rightarrow \infty} Q_{n}(1)=1, a>2 . \tag{4}
\end{gather*}
$$

Remark 1. The condition $p=n^{-a}$ may be replaced in Theorems 1,2 by more general condition $p=\min \left(1, c n^{-a}\right)$, where c is arbitrary positive number.
Remark 2. The condition of the graphs $G_{n}, n>1$, completeness may be replaced by the suggestion that there is $C, 1 / 2<C \leq 1$, so that each node of the graph G_{n} is connected with more than $[C n]-1$ other nodes.

3. PROOFS OF MAIN RESULTS

Theorem 1. Suppose that $0<a<1$ then it is possible to use obvious statement that the probability of the graph G_{n} random realization disconnection equals with the probability that there are $k, 0<k \leq[n / 2]$, nodes which are not connected with rest $n-k$ nodes of the graph G_{n}. Consequently the inequality

$$
\begin{equation*}
\bar{P}_{n} \leq T=\sum_{0<k \leq[n / 2]} C_{n}^{k} q^{k(n-k)}, \tag{5}
\end{equation*}
$$

is true with $q=1-p$. Remark that the functions $C_{n}^{k}, q^{k(n-k)}$ of the discrete argument k for $0<k \leq[n / 2]$ do not decrease.

Choose $\gamma>0$ and integer K from the conditions

$$
\begin{equation*}
0<\gamma<1-a, 0<1-K \gamma<\gamma . \tag{6}
\end{equation*}
$$

and so

$$
\begin{equation*}
K \gamma>a . \tag{7}
\end{equation*}
$$

Choose N so that for $n>N$ the inequality $n^{K \gamma}<n / 2$ is true and put then $n>N$. Represent the sum T as follows

$$
\begin{equation*}
T=\sum_{i=1}^{K} T_{i}+T_{0}, T_{i}=\sum_{\left[n^{(i-1)\rangle}\right] \leq k \leq\left[n^{*}\right]} C_{n}^{k} q^{k(n-k)}, 1 \leq i \leq K, T_{0}=\sum_{\left[n^{k_{\gamma}}\right] \leq k \leq[n / 2]} C_{n}^{k} q^{k(n-k)} . \tag{8}
\end{equation*}
$$

As the functions $C_{n}^{k}, k(n-k), 0<k \leq[n / 2]$, do not decrease then

$$
T_{i} \leq n^{i \gamma} q^{\left[n^{(i-1) \gamma}\right]\left(n-n^{(i-1) \gamma}\right)} C_{n}^{\left.n^{i \gamma}\right]}, T_{0} \leq\left[\frac{n}{2}\right] q^{\left[n^{K_{\gamma}}\right]\left(n-n^{K_{\gamma}}\right)} C_{n}^{[n / 2]}
$$

From the formula $q=1-n^{-a}$ and monotone increasing of the sequence $\left(1-n^{-1}\right)^{n}, n \geq 1$, to the limit $\exp (-1)$ it is easy to obtain the inequalities

$$
\begin{align*}
& T_{i} \leq n^{i \gamma} \exp \left(-n^{-a}\left[n^{(i-1) \gamma}\right]\left(n-n^{(i-1) \gamma}\right)\right) C_{n}^{\left[n^{\left.i^{\prime}\right]}\right]} \tag{9}\\
& T_{0} \leq \frac{n}{2} \exp \left(-n^{-a}\left[n^{K \gamma}\right]\left(n-n^{K \gamma}\right)\right) C_{n}^{[n / 2]} \tag{10}
\end{align*}
$$

From the Sterling formula [18, chapter II, paragraph 9, formula (9.15)] we obtain for $0<\delta<1$:

$$
\begin{gather*}
C_{n}^{\left[n^{\delta}\right]}=\frac{n!}{\left[n^{\delta}\right]!\left(n-\left[n^{\delta}\right]\right)!} \leq \\
\leq \frac{\exp (1 / 12 n) n^{n} \exp (-n) \sqrt{2 \pi n}}{\left[n^{\delta}\right]^{\left[n^{\delta}\right]} \exp \left(-\left[n^{\delta}\right]\right) \sqrt{2 \pi\left[n^{\delta}\right]}\left(n-\left[n^{\delta}\right]\right)^{n-\left[n^{\delta}\right]} \exp \left(-\left(n-\left[n^{\delta}\right]\right)\right) \sqrt{2 \pi\left(n-\left[n^{\delta}\right]\right)}}, \tag{11}
\end{gather*}
$$

Denote $R_{\delta}=\left(1-2^{-\delta}\right)^{2^{\delta}}$ then for $n>1$

$$
\begin{gather*}
{\left[n^{\delta}\right]^{\left[n^{\delta}\right]} \geq\left(n^{\delta}-1\right)^{n^{\delta}-1} \geq n^{\delta\left(n^{\delta}-1\right)} R_{\delta},} \tag{12}\\
\left(n-\left[n^{\delta}\right]\right)^{\left.n-n^{\delta}\right]} \geq\left(n-n^{\delta}\right)^{n-n^{\delta}}=n^{n-n^{\delta}}\left(1-n^{\delta-1}\right)^{n-n^{\delta}} \geq n^{n-n^{\delta}} R_{1-\delta}^{n^{\delta}} . \tag{13}
\end{gather*}
$$

From the formulas (11)-(13) for $0<\delta<1$ we obtain

$$
\begin{equation*}
C_{n}^{\left[n^{\delta}\right]} \leq \frac{\exp (1 / 12 n) n^{n^{\delta}(1-\delta)+\delta}}{\sqrt{2 \pi\left(n^{\delta}-1\right)\left(1-n^{\delta-1}\right)} R_{\delta} R_{1-\delta}^{n^{\delta}}} . \tag{14}
\end{equation*}
$$

Analogously we have

$$
\begin{equation*}
C_{n}^{[n / 2]}=\frac{n!}{([n / 2])!(n-[n / 2])!} \leq \frac{\exp (1 / 12 n) n^{n} \sqrt{2 \pi n}}{[n / 2]^{[n / 2]} \sqrt{2 \pi[n / 2]}(n-[n / 2])^{n-[n / 2]} \sqrt{2 \pi(n-[n / 2])}} \tag{15}
\end{equation*}
$$

As $(n-1) / 2 \leq[n / 2] \leq n / 2$ so

$$
\begin{gather*}
{[n / 2]^{[n / 2]} \geq((n-1) / 2)^{(n-1) / 2} \geq \frac{n^{n / 2-1 / 2}}{2^{n / 2-1 / 2}}(2 / 3)^{3 / 2},} \tag{16}\\
(n-[n / 2])^{n-[n / 2]} \geq(n-n / 2)^{n-n / 2} \geq[n / 2]^{[n / 2]} \geq \frac{n^{n / 2-1 / 2}}{2^{n / 2-1 / 2}}(2 / 3)^{3 / 2}, n>2 . \tag{17}
\end{gather*}
$$

From the formulas (15) - (17) we obtain

$$
\begin{equation*}
C_{n}^{[n / 2]} \leq \exp \left(\frac{1}{12 n}\right) \cdot 27 \cdot 2^{n-7 / 2} \sqrt{\frac{n}{\pi(1-2 / n)}} . \tag{18}
\end{equation*}
$$

Consequently from the formulas (9), (14) and from the condition (6) and from the existence of the number $f<\infty$ so that

$$
R_{i \gamma}>f^{-1}>0, R_{1-i \gamma}>f^{-1}>0,1 \leq i \leq K,
$$

we have

$$
\begin{equation*}
T_{i} \leq n^{i \gamma} \exp \left(-\left[n^{(i-1) \gamma}\right]\left(n-n^{(i-1) \gamma}\right) n^{-a}\right) \frac{\exp (1 / 12 n) f^{1+n^{i \gamma}} n^{n^{i \gamma}+i \gamma}}{\sqrt{2 \pi\left(n^{i \gamma}-1\right)\left(1-n^{i \gamma-1}\right)}} \rightarrow 0, n \rightarrow \infty . \tag{19}
\end{equation*}
$$

Analogously the formulas (10), (18) and the conditions (6), (7) lead to

$$
\begin{equation*}
T_{0} \leq 27 \exp \left(-\left[n^{K \gamma}\right] n^{-a}\left(n-n^{K \gamma}\right)+\frac{1}{12 n}\right) 2^{n-9 / 2} \sqrt{\frac{n^{3}}{\pi(1-2 / n)}} \rightarrow 0, n \rightarrow \infty \tag{20}
\end{equation*}
$$

Unite the formulas (8), (19), (20) we obtain that $T \rightarrow 0, n \rightarrow \infty$. Consequently from the formula (5) we have (1).

Assume now that $a>1$. If all arcs connected with the node 1 do not work then the nodes $1 ; 2$ are disconnected and so

$$
\begin{equation*}
\bar{P}_{n} \geq \bar{P}_{n}(1,2) \geq(1-p)^{n-1}=\left(1-n^{-a}\right)^{n-1}=\left(\left(1-n^{-a}\right)^{a^{a}}\right)^{\frac{n-1}{n^{a}}} \tag{21}
\end{equation*}
$$

As $\left(1-n^{-a}\right)^{n^{a}} \rightarrow \exp (-1), n \rightarrow \infty$, and $a>1$, then $\bar{P}_{n} \rightarrow 1, n \rightarrow \infty$. The formula (2) is proved.
Theorem 2. It is obvious that $Q_{n}(b)$ is not smaller than the probability that the nodes $1,2, \ldots\left[n^{b}\right]$ are isolated in random realization of the graph G_{n}. That is

$$
\begin{equation*}
Q_{n}(b) \geq\left(1-n^{-a}\right)^{\left[n^{b}\right]}=\left(\left(1-n^{-a}\right)^{n^{a}}\right)^{n^{1-a}\left[n^{b}\right]} . \tag{22}
\end{equation*}
$$

Suppose that $1+b<a<2$, then from the formula $\left(1-n^{-a}\right)^{n^{a}} \rightarrow \exp (-1), n \rightarrow \infty$, the condition $a>1+b$ and the formula (22) we obtain the inequality (3).

Assume that $a>2$ then

$$
\begin{equation*}
Q_{n}(1) \geq\left(1-n^{-a}\right)^{n^{2}}=\left(\left(1-n^{-a}\right)^{n^{a}}\right)^{n^{2-a}} \tag{23}
\end{equation*}
$$

Consequently from the condition $a>2$ the formula $\left(1-n^{-a}\right)^{a^{a}} \rightarrow \exp (-1), n \rightarrow \infty$, and the formula (23) we obtain the equality (4).

Remarks 1, 2. Remark 1 proof almost word by word repeats Theorems 1, 2 proofs. To prove Remark 2 it is enough to replace the inequality (5) by

$$
\bar{P}_{n} \leq T \leq \sum_{0<k \leq[n / 2]} C_{n}^{k} q^{k([C n]-1-n / 2)},
$$

the inequality (21) by

$$
\bar{P}_{n} \geq \bar{P}_{n}(1,2) \geq(1-p)^{[C n]-1}=\left(1-n^{-a}\right)^{C_{n-1}}=\left(\left(1-n^{-a}\right)^{n^{a}}\right)^{\frac{C_{n}-1}{n^{a}}},
$$

the inequality (22) by

$$
Q_{n}(b) \geq\left(1-n^{-a}\right)^{C n^{b+1}}=\left(\left(1-n^{-a}\right)^{a^{a}}\right)^{C n^{b+1-a}},
$$

the inequality (23) by

$$
Q_{n}(1) \geq\left(1-n^{-a}\right)^{C n^{2}}=\left(\left(1-n^{-a}\right)^{a^{a}}\right)^{C n^{2-a}}
$$

4. CONCLUSION

This paper is written using complicated numerical calculations. It is obvious that further for a realization of these calculations it is necessary to use supercomputers.

The author thanks A. Losev and G. Grenkin for large help in a realization of auxiliary numerical experiments.

REFERENCES

1. Prigojin I., Stengers I. 1986. Order from Chaos. Moscow: Progress. (In Russian).
2. Barlow R.E., Proschan F. 1965. Mathematical Theory of Reliability. London and New York: Wiley.
3. Ushakov I.A. et al. 1985. Reliability of Technical Systems: Handbook. Moscow: Radio and Communication. (In Russian).
4. Popkov V.K. 2006. Mathematical Models of Connectivity. Novosibirsk: Institute for Computing Mathematics and Mathematical Geophysics, Siberian Branch of RAS. (In Russian).
5. Riabinin I.A. 2007. Reliability and Safety of Structural Complicated Systems. SanktPetersberg: Edition of Sankt-Petersberg university. (In Russian).
6. Lomonosov M.V., Polesskiy V.P.1971. Upper Bound of Reliability of Information Networks. Problems of information transmission . Vol. 7. Numb. 4. Pp. 78-81. (In Russian).
7. Polesskiy V.P. 1971. Estimates of connectivity probability of random graph. Problems of information transmission. Vol. 7. Numb. 2. Pp. 88-96. (In Russian).
8. Lomonosov M.V., Polesskiy V.P. 1972. Low Estimate of Network Reliability. Problems of information transmission. Vol. 26. Numb. 1. Pp. 47-53. (In Russian).
9. Polesskiy V.P. 1990. Estimates of Connectivity Probability of Random Graph. Problems of information transmission. Vol. 26. Numb. 1. Pp. 90-98. (In Russian).
10. Polesskiy V.P. 1993. Low Estimates of Connectivity Probability for Some Classes of Random Graphs. Problems of information transmission. Vol. 29. Numb. 2. Pp. 85-95. (In Russian).
11. Polesskiy V.P. 1992. Low Estimates of Connectivity Probability in Random Graphs Generated by Doubly-Connected Graphs with Fixed Base Spectrum. Problems of information transmission. Vol. 28. Numb. 2. Pp. 86-95. (In Russian).
12. Tanguy C. 2007. What Is the Probability of Connecting Two Points? J. Phys. A: Math. Theor. V. 40. Pp. 14099-14116.
13. Tanguy C. 2009. Asymptotic Dependence of Average Failure Rate and MTTF for a Recursive Meshed Network Architecture. Reliability and risk analysis: theory and applications. V. 40. Pp. 14099- 14116.
14. Solojentsev E.D. 2003. Specific of Logic-Probability Risk Theory with Groups of Incompatible Events. Automatics and remote control. Numb. 7. Pp. 187-203. (In Russian)
15. Rodionov A.S. 2011. About Accelaration in Calculation of Reliability Polynom of Random Graph. Automatics and remote control. Vol. 7. Pp. 134-146. (In Russian).
16. Gertsbakh I., Shpungin Y. 2010. Models of Network Reliability. Analysis Combinatorics and Monte-Carlo. CRC Press. Taylor and Francis Group.
17. Shiriaev A.N. 1989. Probability. Moscow: Science. (In Russian).
18. Feller W. Introduction to Probability Theory and Its Applications. Vol. 1. 1984. Moscow: World. (In Russian).
