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ABSTRACT 
 

This paper describes some  models and measures of reliability for multistate systems. The expected cumulative 
reward for the continuous time Markov  reward models are used for deriving the structure function for a multistate 
system where the system and its components can have different performance levels ranging from perfect functioning 
to complete failure. The suggested approach presents with respect to the non-homogeneous and homogeneous 
Markov reward model of two stochastic process for computation of these availability and reliability measures. A 
particular case for three  levels is analyzed numerically by assuming Weibull and exponential distributions for failure 
and repair times.            
 
Keywords: Markov reward model, demand, multistate system, availability and reliability measures. 
 
 
 

1. INTRODUCTION  
 
         Traditional binary-state reliability models allow for a system and its components only two 
possible states: perfect functioning (up) and complete failure (down). However, a system can have a 
finite number of performance rates. And, many real-world systems are composed of components 
that in their turn can have different performance levels and for which one cannot formulate an “all 
or nothing” type of failure criterion. Failures of some system elements lead, in these cases, only to 
performance degradation. Such systems are called multi-state systems (MSS) [11]. Traditional 
reliability theory, which is based on a binary approach, has recently been extended by allowing 
components and systems to have an arbitrary finite number of states.  
 
         According to the generic multi-state system  model [8], any system element }n,,2,1{j 
can have k different states corresponding to the performance rates, represented by the set 

},g,,g,g{g jk2j1jj   where jig  is the performance rate of element j in the state 
}.k,,2,1{i,i   The performance rate )t(G j  of element j at any instant 0t    is a discrete-state 

continuous-time stochastic process that takes its values from .g)t(G:g jjj  The system structure 
function ))t(G,),t(G()t(G n1   produces the stochastic process corresponding to the output 
performance of the entire MSS. In practice, a desired level of system performance (demand) also 
can be represented by a discrete-state continuous-time stochastic process ).t(W  The relation 
between the MSS output performance and the demand represented by two corresponding stochastic 
processes should be studied in order to define reliability measures for the entire MSS. For reliability 
assessment, MSS output performance and the desired performance level (demand) are often 
assumed to be independent stochastic processes. In practice, the most commonly used MSS 
reliability measures are probability of failure-free operation during time interval ]t,0[  or MSS 
reliability function ),t(R  MSS availability, mean time to MSS failure, mean accumulated 
performance deficiency for a fixed time interval ],t,0[  and so on. 
 
         Many technical systems are subjected during their lifetime to aging and degradation. After any 
failure, maintenance is performed by a repair team. Maintenance and repair problems have been 
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widely investigated in the literature. [1], [4], [16] survey and summarize theoretical developments 
and practical applications of maintenance models. Aging is usually considered as a process which 
results in an age-related increase of the failure rate. The most common shapes of failure rates have 
been observed in [12], [18]. An interesting approach was introduced in [7], where it was shown that 
aging is not always manifested by the increasing failure rate. 
 
         After each corrective maintenance action or repair, the aging system’s failure rate )t(  can be 
expressed as: 

),t()q1()0(q)t( *  
where q is an improvement factor that characterizes the quality of the overhauls )1q0(   and 

)t(* is the aging system’s failure rate before repair [20]. If ,1q   it means that the maintenance 
action is perfect (system becomes “as good as new” after repair). If ,0q   it means that the failed 
system is returned back to a working state by minimal repair (system stays “as bad as old” after 
repair), in which failure rate of the system is nearly the same as before. The minimal repair is 
usually appropriate for multi-state systems. In such situation, the failure pattern can be described by 
non-homogeneous Poisson process (NHPP). Incorporating the time-varying failure intensity into 
existing Markov model was suggested in [17] for reliability modeling of hardware/software 
systems. More details and interesting examples one can find in [19]. Based on this, the extended 
approach is suggested, which incorporates the time-varying failure intensity of aging component 
into Markov reward model that is using for general reliability measures evaluation of non-aging 
MSS [7]. Such unified model will be called as a non-homogeneous Markov reward model.  
 
         This paper considers measures of availability and reliability for a multi-state system where the 
system and its components can have different performance levels ranging from perfect functioning 
to complete failure. In section 2 a general approach is presented for the computation of main MSS 
reliability measures. This approach is based on the application of the Markov reward model. The 
main MSS reliability measures can be found by corresponding reward matrix definitions for this 
model and then by using a standard procedure for finding expected accumulated rewards during a 
time interval ]t,0[  as a solution of a system of differential equations.  In section 3 a general 
approach is presented for computing reliability measures for aging MSS under corrective 
maintenance with minimal repair. This approach is based on non-homogeneous Markov reward 
model, where specific reward matrix is determined for finding any reliability measure. This chapter 
is based on [9], [11], and presents a model representing demand as a continuous-time Markov chain 
with three logic levels. In section 4 we introduce illustrative example in order to illustrate the 
approaches. 
 
 
 
2. MARKOV REWARD MODEL FOR MULTI-STATE SYSTEM 
 
2.1. Generalized MSS Reliability Measures 
 
         The MSS behavior is characterized by its evolution in the space of states. The entire set of 
possible system states can be divided into two disjoint subsets corresponding to acceptable and 
unacceptable system functioning. MSS entrance into the subset of unacceptable states constitutes a 
failure. The MSS reliability can be defined as its ability to remain in the acceptable states during the 
operation period. The system state acceptability depends on the relation between the MSS output 
performance and the desired level of this performance (demand ))t(W  that is determined outside the 
system. Often the demand )t(W  is also a random process that can take discrete values from the set 
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}.w,,w{w M1   The desired relation between the system performance and the demand at any 
time instant t can be expressed by the acceptability function )).t(W),t(G(  In many practical 
cases, the MSS performance should be equal to or exceed the demand. So, in such cases, the 
acceptability function takes the following form:  

              
                )()())(),(( tWtGtWtG                                 (1) 

 
and the criterion of state acceptability can be expressed as: .0))t(W),t(G(    
A general expression defining MSS reliability measures can be written in the following form: 
 

                    ,))(),(( tWtGFER                             (2) 
 
where E expectation symbol, F functional that determines corresponding type of reliability 
measure, and  acceptability function. Many important MSS reliability measures can be derived 
from the expression (2) depending on the functional F that may be determined in different ways. 
For example, it may be a probability  0))t(W),t(G(Pr   throughout a specified time interval 

]t,0[  and the acceptability function (1) will be nonnegative. In this case, this probability 
characterizes MSS availability. It may be also an expectation of an appropriate function up to the 
time of the MSS,s initial entrance into the set of unacceptable states, where 0))t(W),t(G(   is 
the number of such entrances within time interval ]t,0[  and so on. For a power system where the 
available generating capacity at time instant t is )t(G and the corresponding load demand is ),t(W if 
the acceptability function is defined as: 
                     









)t(G)t(Wif,0
)t(G)t(Wif),t(G)t(W

))t(W),t(G(  

 
A function, 

  ,dt))t(W),t(G())t(W),t(G(F
T

0
  

 
will characterize an accumulated performance deficiency during time interval [0, T]. 
 
 
2.2. Markov Reward Model: General Description 
 
         The general Markov reward model was introduced in [6]. It considers the continuous-time 
Markov chain }0t|)t(X{  with a set of states }k,,1{  and a transition intensity matrix 

.k,,1j,i],a[A ij   It is assumed that while the process is in any state i during any time unit, 
some money iir  should be paid. It is also assumed that if there is a transition from state i to state j 
the amount ijr  will be paid. The amounts iir  and ijr  are called rewards. Rewards can be negative 
while representing a loss or penalty. Such a reward process associated with its states or/and 
transitions is called a Markov process with rewards. For such processes, in addition to the transition 
intensity matrix, a reward matrix k,,1j,i],r[r ij   should be determined. The main problem is 
to find the total expected reward accumulated up to time instant t under specified initial conditions.  
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         Let )t(Vi  denotes the total expected reward accumulated up to time t at state i. The following 
system of differential equations must be solved under the initial conditions: k,,1i,0)0(Vi   in 
order to find the total expected reward. 
 

kitVarar
dt

tdV
j

k

j
ij

k

ij
j

ijijii
i ,,1),(

)(
1,1

 





                                    (3) 

 
         Markov reward models are widely used in financial calculations and operations research [5]. 
General Markov reward models for system dependability and performability analysis one can find 
in [2], [14], and [10]. Here the new approach is presented where the main MSS reliability measures 
can be found by determination of the corresponding reward matrix. Such an idea was primarily 
introduced for a binary-state system and constant demand in [15]. In this chapter, the approach is 
extended for multi-state systems and variable demand. 

 
 
2.3. Rewards Determination for MSS Reliability Computation 
 
         MSS instantaneous (point) availability )t(A  is the probability that the MSS at instant 0t   is 
in one of the acceptable states:  .0))t(W),t(G(Pr)t(A   
 
         The MSS average availability )t(A  is defined in [13] as a mean fraction of time when the 

system resides in the set of acceptable states during the time interval [0, t], 
t

0

.dt)t(A
t
1)t(A  

         In order to assess  for MSS the rewards in matrix r for the MSS model should be 
determined in the following manner: 
 

 The rewards associated with all acceptable states should be defined as one. 
 The rewards associated with all unacceptable states should be zeroed as well as all rewards 

associated with all transitions. 
 
         The mean reward )t(Vi  accumulated during interval ]t,0[  will define a time that MSS will be 
in the set of acceptable states in the case when the state i is the initial state. This reward should be 
found as a solution of the system (3). After solving (3) and finding ),t(Vi  MSS average availability 
can be obtained for every initial state ,k,,1i  .t))t(V()t(A ii   
 
         Usually, the initial state is assumed as the best state. 
 
         Mean number )t(N f of MSS failures during time interval [0, t] measure can be treated as the 
mean number of MSS entrances to the set of unacceptable states during time interval [0, t]. For its 
computation the rewards associated with each transition from the set of acceptable states to the set 
of unacceptable states should be defined as one. All other rewards should be zeroed. In this case 
mean accumulated reward )t(Vi  will define the mean number of entrances in the unacceptable area 
during time interval [0, t]: ).t(V)t(N if   
 

)t(A
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         Mean time to failure (MTTF) is the mean time up to the instant when the MSS enters the 
subset of unacceptable states for the first time. For its computation the combined performance-
demand model should be transformed; all transitions that return MSS from unacceptable states 
should be forbidden, because for this case all unacceptable states should be treated as absorbing 
states. In order to assess MTTF for MSS the rewards in matrix r for the transformed performance-
demand model should be determined in the following manner: 
 

 The rewards associated with all acceptable states should be defined as one. 
 The rewards associated with unacceptable (absorbing) states should be zeroed as well as 

rewards associated with transitions. 
 
In this case mean accumulated reward )t(Vi will define the mean time accumulated up to the first 
entrance into the subset of unacceptable states or MTTF. 
 
         Probability of MSS failure during time interval [0, t]: The model should be transformed as in 
the previous case; all unacceptable states should be treated as absorbing states, and therefore all 
transitions that return MSS from unacceptable states should be forbidden. Rewards associated with 
all transitions to the absorbing states should be defined as one. All other rewards should be zeroed. 
Mean accumulated reward )t(Vi will define for this case the probability of MSS failure during time 
interval [0, t] if the state i is the initial state. Therefore, the MSS reliability function can be obtained 
as: ),t(V1)t(R ii   where .k,,1i    
 
3. NON-HOMOGENEOUS MARKOV REWARD MODEL FOR AGING MULTI-STATE 
SYSTEM UNDER MINIMAL REPAIR 
 
3.1. Model Description 
 
         The MSS output performance )t(G  at any instant 0t   is a continuous-time Markov chain 
that takes its values from the set ,g)t(G},g,,g{g k1    where ig  is the MSS output 
performance in state .k,,1i,i   For Markov MSS transition rates (intensities) ija  between states 
i and j are defined by the corresponding system failure ij  and repair ij  rates. The minimal repair 
is a corrective maintenance action that brings the aging equipment to the conditions it was in just 
before the failure occurrence. Aging MSS subject to minimal repairs experiences reliability 
deterioration with the operating time, i.e., there is a tendency toward more frequent failures. In such 
situations, the failure pattern can be described by a Poisson process whose intensity function 
monotonically increases with t. A Poisson process with a non-constant intensity is called non-
homogeneous, since it does not have stationary increments [4]. It was shown (see, for example, 
[20]) that NHPP model can be integrated into the Markov model with time-varying transition 
intensities ).t()t(a ijij   Therefore, for aging MSS transition intensities corresponding to failures 
of aging components will be functions of time ).t(a ij  
 
3.2. Non-Homogeneous Markov Reward Model 
 
         For non-homogeneous Markov model a system’s state at time t can be described by a 
continuous-time Markov chain with a set of states  k,,1   and a transition intensity matrix 

)],t(a[)t(A ij   ,k,,1j,i   where each transition intensity may be a function of time t. For such 
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model, in addition to the transition intensity matrix, a reward matrix k,,1j,i],r[r ij   should be 
determined [2].  
 
         Let )t(Vi be the expected total reward accumulated up to time t given the initial state of the 
process at time instant 0t   is state i. Howard differential equations [14] with time-varying 
transition intensities )t(a ij  should be solved under specified initial conditions in order to find the 
total expected rewards: 
 

kitVtartar
dt

tdV
j

k

j
ij

k

ij
j

ijijii
i ,,1),()()(

)(
1,1

 





                               (4) 

 
In the most common case, MSS begins to accumulate rewards after time instant ,0t   therefore, the 
initial conditions are: 
        

                kiVi ,,1,0)0(                             (5) 
 
 If for example the state k with the highest performance level is defined as the initial state, the value 

)t(Vk  should be found as a solution of the system (4). 
 
         It was shown in [7] and [11] that many important reliability measures for non-aging MSS can 
be found by determination of rewards in a corresponding reward matrix. Here this approach is 
extended for aging MSS under minimal repair. And, notice that the approach is applied only for 
minimal repair. 
 
3.3. Rewards Determination for Computation of Different Reliability Measures for Aging 
MSS 
 
         The reliability measures can be determined by the same manner as it was indicated in section 
2.3. 
 
4. ILLUSTRATIVE EXAMPLE 
 
         Consider the air-conditioning system used in a hospital. The system consists of three identical 
air conditioners which are connected in parallel. Demand is a continuous-time Markov chain with 
three levels: peak, middle, and low. The state-space diagram for this system is presented in figure 
(1). 
 
         There are 12 states. States from 1 to 4 associated with the low demand period, states from 5 to 
8 associated with the middle demand period, and states from 9 to 12 associated with the peak 
demand period. 
 
         States 12, 8, and 4 indicate all components work, the system performance is 

.3ggg 4812   States 11, 7, and 3 indicate two components work and the third component 
failed, the system performance is .2ggg 3711   States 10, 6, and 2 indicate that one 
component only works, the system performance is .1ggg 2610   States 9, 5, and 1 indicate 
full system failure, the system performance is .0ggg 159   If in the peak-demand period the 
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required demand level is w = 3, in the middle-demand  period the required demand level is w = 2, 
and in the low-demand period the required demand level is w = 1, then there are six acceptable 
states: 12, 8, 4, 7, 3, and 2. States: 11, 10, 6, 9, 5, and 1 are unacceptable. 
 

    
 

Figure (1): The state-space diagram for a system with three identical air conditioners 
 
         The transitions from state 12 to state 11, from state 8 to state7, and from state 4 to state 3 are 
associated with the failure of one of the three conditioners and have an intensity of  3λ(t). The 
transitions from state 11 to state 10, from state 7 to state 6, and from state 3 to state 2 are associated 
with the failure of the second conditioner and have intensity of 2λ(t). The transitions from state 10 
to state 9, from state 6 to state 5, and from state 2 to state 1 are associated with the failure of the 
third conditioner and have intensity of λ(t). 
 
         The transitions from state 1 to state 2, from state 5 to state 6, and from state 9 to state 10 are 
associated with repair of one of the three failed conditioners and have intensity of 3µ(t). The 
transitions from state 2 to state 3, from state 6 to state 7, and from state 10 to state 11 are associated 
with repair of one of the two failed conditioners and have intensity of 2µ(t). The transitions from 
state 3 to state 4, from state 7 to state 8, and from state 11 to state 12 are associated with repair of 
the failed conditioner and have intensity of µ(t). 
 
         The transitions from state 12 to state 8, from state 11 to state 7, from state 10 to state 6, and 
from state 9 to state 5 are associated with a variable demand and have intensity of λ1(t). The 
transitions from state 8 to state 4, from state 7 to state 3, from state 6 to state 2, and from state 5 to 
state 1 are associated with a variable demand and have intensity of λ2(t). The transitions from state 
12 to state 4, from state 11 to state 3, from state 10 to state 2, and from state 9 to state 1 are 
associated with a variable demand and have intensity of λ3(t). The transitions from state 8 to state 
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12, from state 7 to state 11, from state 6 to state 10, and from state 5 to state 9 are associated with a 
variable demand and have intensity of λ4(t). The transitions from state 4 to state 8, from state 3 to 
state 7, from state 2 to state 6, and from state 1 to state 5 are associated with a variable demand and 
have intensity of λ5(t). The transitions from state 4 to state 12, from state 3 to state 11, from state 2 
to state 10, and from state 1 to state 9 are associated with a variable demand and have intensity of 
λ6(t).                            
         In order to find the MSS average availability  we should present the reward matrix Ar  in 
the following form: 
 















































100000000000
000000000000
000000000000
000000000000
000010000000
000001000000
000000000000
000000000000
000000001000
000000000100
000000000010
000000000000

][ ijA rr
                       (6) 

 
         In this matrix, rewards associated with all acceptable states are defined as one and rewards 
associated with all unacceptable states are zeroed as well as all rewards associated with all 
transitions. 
 
         The system of differential equations (7) can be written in order to find the expected total 
rewards .12,,1i),t(Vi   The initial conditions are: .12,,1i,0)0(Vi   
After solving this system and finding ),t(Vi  MSS average availability can be obtained as follows: 

,t)t(V)t(A 12  where the 12-th state is the initial state. 

)t(A
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         In order to find the mean total number of system failures  we should present the reward 
matrix Nr  in the form (9). In this matrix the rewards associated with each transition from the set of 
acceptable states to the set of unacceptable states should be defined as one. All other rewards should 
be zeroed. 
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][ ijN rr

                           (9) 

 
         The following system of differential equations (10) can be written in order to find the 
expected total rewards .12,,1i),t(Vi   
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Here 121 C,,C   are calculated via formulas (8). 
The initial conditions are: .12,,1i,0)0(Vi   After solving this system and finding ),t(Vi  

the mean total number of system failures  can be obtained as follows: ),t(V)t(N 12f   where 
the 12-th state is the initial state. 
 
         In order to calculate the mean time to failure (MTTF), the initial model should be 
transformed; all transitions that return MSS from unacceptable states should be forbidden and all 
unacceptable states should be treated as absorbing states. The transformed model is shown in figure 
(2). 
 

 
Figure (2): The state-space diagram for the transformed system with three identical air conditioners 

with absorbing states 
 
 
 
         In order to assess MTTF for MSS, the rewards in matrix r for the transformed model should 
be determined in the following manner. The rewards associated with all acceptable states should be 
defined as one and the rewards associated with unacceptable (absorbing) states should be zeroed as 
well as all rewards associated with transitions. 
 
The reward matrix r for this system is as follows: 
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The following system of differential equations can be written in order to find the expected total 
rewards .12,11,8,7,6,4,3,2,1i),t(Vi   
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The initial conditions are: .12,11,8,7,6,4,3,2,1i,0)0(Vi   
After solving this system and finding ),t(Vi  the MTTF for MSS can be obtained as ),t(V12  

where the 12-th state is the initial state. 
          

         To calculate the probability of MSS failure during time interval [0, t] the model should be 
transformed as in the previous case: all unacceptable states should be treated as absorbing states 
and, therefore, all transitions that return MSS from unacceptable states should be forbidden. 
Rewards associated with all transitions to the absorbing state should be defined as one. All other 
rewards should be zeroed. 
 
The reward matrix r for this system is as follows: 
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Mean accumulated reward )t(Vi  will define the probability )t(Q  of MSS failure during time 
interval [0, t]. 
 
The following system of differential equations can be written in order to find the expected total 
rewards .12,11,8,7,6,4,3,2,1i),t(Vi   
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(15) 
Here 12,11,8,7,6,4,3,2,1i,Ci   are calculated via formulas (13). The initial conditions are:  

.12,11,8,7,6,4,3,2,1i,0)0(Vi   
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After solving this system and finding ),t(Vi  MSS reliability function can be obtained as 
),t(V1)t(R 12  where the 12-th state is the initial state. 

 
Now, we consider two types of the parameters as follows: 

 
(i) The air conditioners failure and repair rates are time-varying 
      
         As a particular case, we assume that the working time and the repair time of each conditioner 
are both Weibully distributed. We can then write: 
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Using MAPLE program, the MSS average availability  against time is illustrated in figure (3) 
with numerical solutions based on Runge-Kutta method. 
 
 

 
 

Figure (3): The average availability versus the time t (case i) 
 
         Similarly, the mean total number of system failures ),t(N f  the MTTF for MSS, and the MSS 
reliability function )t(R  against time are illustrated in figures (4), (5), and (6), respectively. 
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Figure (4): The mean total number of system failures versus the time t (case i) 
 
 

 
 

Figure (5): The MTTF for MSS versus the time t (case i) 
 
 

 
 

Figure (6): The MSS reliability function )t(R versus the time t (case i) 
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(ii) The air conditioners failure and repair rates are constant: 
      
         As a particular case, we assume that the working time and the repair time of each conditioner 
are both exponentially distributed. We can then write: 
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Using MAPLE program, the MSS average availability  against time is illustrated in figure (7) 
with solutions based on Laplace transform method. 
 

 
 

Figure (7): The average availability versus the time t (case ii) 
 
         Similarly, the mean total number of system failures ),t(N f  the MTTF for MSS, and the MSS 
reliability function )t(R against time are illustrated in figures (8), (9), and (10), respectively. 
 
 

 
 

Figure (8): The mean total number of system failures versus the time t (case ii) 
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Figure (9): The MTTF for MSS versus the time t (case ii) 
 
 

 
 

Figure (10): The MSS reliability function )t(R versus the time t (case ii) 
 

time to MSS failure, mean accumulated performance deficiency for a fixed  
 
 
5.  CONCLUSIONS 
 
1. Extension of continuous-time Markov chain to Markov reward models make them even more 
useful.                                            
 
2. A Markov reward models was developed as the basis for the generalized computation of 
availability and reliability measures.  
 
3. The method has been suggested for the computation of MSS reliability and availability 
measures based on a different reward matrix determination for the Markov reward model.   
         
4.  A Markov reward models is well formalized and suitable for practical application in reliability 
engineering.                              
 
5.  The numerical results are presented in order to illustrate the suggested model.                                                                            
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