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ABSTRACT 
 

The author presents a general analytical solution determining “the Occurrence probability of a sequence of 
events each following Poison Stochastic Process”. Generally, this probability is described under the form of an integral 
equation of order “ n ”. Where “n ” is number of the elementary events in the examined sequence.  

As far as the author can tell, the solution is original. It will be of a great interest to a wide range of system 
reliability problems such as: sequential calculations, dominos effects, dynamics fault trees, Markov systems, priority 
AND gates, events trees, stochastic optimisation, acceleration techniques for Monte-Carlo simulation, … 
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1 INTRODUCTIONIS 

The author is interested in determining “the occurrence probability of a well-defined sequence 
of ordered events obeying a Poisson stochastic process”, )(tpn .  

One meets often ordered events in system reliability analyses. Analysts may use “Dynamic 
Fault Tree” with “Priority Gates”, “Markov Graphs” or “Monte-Carlo Simulation” tools in order to 
deal with the dynamic aspect of this problem.  

A fault tree can be described by means of some cut sets. One may calculate the occurrence 
probability of each cut set. However, the calculated probability does not tell about the occurrence 
order of the involved events in the cut set.  A cut-set, containing n -independent events, may be 
expressed in n ! different ordered sequences. In many reliability and risk assessments, only some 
given ordered sequences may be of specific concerns. Consequently, it is of great interest to 
determine the occurrence probabilities of these sequences and their occurrence rates.  

In the paper, one describe the problem in the form of a given integral in §3 and a differential 
equation in §4. In [1], Fussell use the same integral equation as we use in §3, but the events are 
given in the opposite order. He uses Laplace transformation to find out an exact solution. Although 
the solution is exact, Fussell switched on to use the asymptotic form of the solution. In [2], Yunge 
uses the same differential equation given previously in §4 in order to model the sequential 
occurrence of events in a given priority AND gate (PAG). He uses Laplace transformation and find 
out the exact solution of the occurrence probability )(tpn . However, in both cases, the authors used 
complicated forms such that it did not allow putting in evidence the recurrence aspect of the 
solution. They were more concerned by inserting their models (PAG, ...) in a Dynamic Failure Tree 
than by other aspects of the solution.  

However, if they had not excluded the use of an equivalent Markov Graph, they would have 
noticed this interesting recurrence aspect of the model, and maybe, they would have used a simpler 
expression of the solution. 
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Many other authors followed almost the same way on modelling and produced very 
interesting applications, [3]-[7], without perceiving that the exact solution could be put in a simpler 
form. 

This would have extended the solution to other categories of problems rather than just the 
modelling of the PAG’s and their inclusion in Dynamic Failure Trees. 

Some other researchers could solve the same problem in using numerical techniques such as 
Petri Nets of Dynamic Bayesian Net (DBN). The use of a numerical technique prevents all 
possibility to underline the analytical solution and its interest. This is the case of Montani, [8] in an 
application relative to an active heat rejection system (AHRS) that he used to validate the 
methodology. The case would have been solved immediately if one had applied the analytical 
solution given herein. The problem contained only 8 sequences with a maximum length of 4 
successive failures. 

One may equally mention the case of the applications in [9]-[11], where the general analytical 
solution would have helped in treating the problems in exact way.  

Regarding rare sequential events, many researchers sought answers in developing methods 
based on Monte-Carlo simulation, [12]-[13]. Some other papers are given in [14]-[21] which have 
developed interesting methods as well as they developed solutions very close to the one proposed 
her. Two papers should particularly be underlined are [19] and [20]. 

The work presented here is limited to Poisson stochastic processes. However, it is of high 
interest because it will obviously improve the numerical procedures used to treat practical industrial 
cases.   

The analytical solution of this problem presents a particular interest by itself, because of its 
originality and simplicity. Besides, it suggests some interesting directions of investigation so that it 
may help in developing analytical solutions for some other specific time distributions different from 
Poison ones.  

2 PROBLEM DEFINITION 

Let T  describe a top event which results from the occurrence of some n  basic events ie  (
ni ,...,2,1 ) in a well determined sequential order. Basic events ie  are following Poisson stochastic 

processes and each is fully characterised by a constant occurrence rate i  and by its occurring order 
‘ i ’. The 1e  is the 1st occurred and ne  is the last event. 

One would like to determine the occurrence probability of the top event T  and its occurrence 
rate.  
 

3 PROBLEM MODELLING 

A will defined top event T  will occur if and only if some discrete and independent events ie  
happen according to a well specified order  neeee ,...,,, 321 . The corresponding occurring instants 
are defined by  ntttt ,...,,, 321 , where  ntttt  ...321 . Each of these instances  ntttt ,...,,, 321  
has its distribution probability function (pdf). The first event is 1e  and the last one is ne . 

 
The probability )(tpn  that Event T  happens within the interval [0,t] is given by: 
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Where: tn   ...0 321  and,  

i  is the Poisson density function characterising the event ie  [ i = t
i

ie  * ].  
 
Many authors could previously developed analytical solutions fo Equation (1) when it was a 

matter of limited number of ordered events obeying a Poison’s Stochastic Process, e.g. 
[1][2][19][20].  

Here, the paper develops a simpler form of the exact solution of Equation (1). 

4 ANALYTICAL SOLUTION 

It is obvious that Equation (1) can equally be expressed on the following differential form: 
 

 )(1 tp
dt
d

n  = )(1 tn )(tpn   (2)

 
Let )(tpn  be the occurrence probability of a sequence T , a set of chronologically ordered 

events  neeee ,...,,, 321 . The probability )(tpn  is the solution of the Equation (1) and (2).  
 
Let )(tpn  be expressed by following expression: 
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Where, each event ie  is defined by a constant occurrence rate i , {  ni ,...,2,1 }. 
The solution of the problem resumes in determining the coefficients n

iC .  
In appendix (1), we demonstrate the solution proposed in Equation (3) and show that the 

coefficients i
jC  are fully determined thanks to some recurrence pattern, as following:  
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Some examples for calculating the parameters i

jC  are given in appendix (2).  
 

4.1 Occurrence Density and Occurrence rate 

By definition, the corresponding occurrence density function )(ti  can directly be deduced 
via the first derivative of the occurrence probability function as following: 

 

 )(tn   = 
dt

tdpn )(  (5)

 
The occurrence density function will then be defined by: 
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We may also define an equivalent occurrence rate i  of the whole sequence T , such as: 
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As we may expect, although the ordered events are individually governed by a Poisson 

Stochastic Process, the sequence T  is not. The occurrence rate of the sequence T  is time 
dependent, Eq.(7).  
 

4.2 Mean Occurrence Time 

One may also determine the mean occurrence time n  corresponding to a given sequence ( nS ) 
of n-events  neeee ,...,,, 321 , such as: 
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The solution of Eq.(8) is elementary and described by: 

 

 n  = 





n

j
n

jnl
l

n
jC

1
1

)( 
 (9)

 

4.3 Asymptotic Behaviour 

Having demonstrated that the occurrence probability )(tpn  of a given sequence of n-well 
defined ordered events can be described by Equation (3), it is straightforward to demonstrate that 
the occurrence probability )(tpn  has an asymptotic value equal to: 
 

 )( tpn     


n

j

n
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1
 (10)

 
The occurrence probability density function n  of the sequence nS  has an asymptotic value 

equal to: 
 

 )(  tn     0. (11)
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Similarly, the equivalent occurrence rate n  of the sequence nS  has an asymptotic value 
equal to: 
 

 )(  tn     0. (12)
 

5 NUMERICAL APPLICATION 

Two illustrative numerical applications are given in the following in order to help in sizing the 
interest of having a generic analytical solution determining the occurrence probability of a given 
sequence ( nS ) of n-events  neeee ,...,,, 321  in the given order. 
 

5.1 Occurrence Order 
In this application, we are focusing on the dependence of the occurrence probability on the 

occurrence order of the basic events.  
 
A very simple example is illustrated in figure (1) where the time evolution of the occurrence 

probability of a sequence of four basic events  4321 ,,, eeee  whose occurrence rates are constant and 

having the following values: 410  /h, 310*5   /h, 210*5.2   /h, 110*25.1   /h. In Figure (2), we are 
comparing two configurations represented by a red curve and a blue one.  
 
 
 

 
 

Figure (1) : the occurrence probability of the same set of events in two different orders 
(dec: decreasing order, inc.: increasing order) 

 
 

The red curve represents the case where the sequence of events follows the increasing order of 
the occurrence rates (less frequent occurs first). While, the blue curve describes the case where the 
sequence of events following the decreasing order of the occurrence rates (more frequent occurs 
first). 

It is obvious that the occurring order of events impacts on the time behaviour of the occurring 
probability of any sequence of events.  

The asymptotic behaviour of the occurrence probability can also be underlined. 
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5.2 Treatment of a Markov Graph  
In this example, a given system is described by Markov graph. The system has 8 possible 

states. The transitions between different states are fully determined by their transition rates. 
In this illustrative example, Figure (2), a unique transitions rate value of 110  1h  is 

considered for all transition rates as following: 
 

12  = 13  = 14  = = 25  = 52  = 36  = 47  = 56  = 68  = 110  1h  
 

We are interested in the sequences nS  leading to the absorbing states 7e  or 8e , which are the 
following: 
 

3S  = 741 eee  , 

4S  = 8631 eeee  , 

5S  = 86521 eeeee  , 

nS 25  =   86521 eeeee n  ,   ,...2,1,0n  
 
Where;  
 052 ee   = 52 ee   

 152 ee   =   5252 eeee   

 2
52 ee   =     525252 eeeeee   

 
 
 
 

 
 

Figure (2) : Schematic presentation of a Markov Graph 
 
 

One would, then, like to determine for each sequences ( 3S , 4S , 5S , 7S ) its occurrence 
probability time-profile, )(tpn . The occurrences probabilities of the sequences 3S , 4S , 5S , 7S  are 
illustrated in Figure (3). Higher order sequences would have much lower contribution than that of 

7S  as illustrated in Figure (3). 
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Figure (3) Occurrence probability as a time-function of each sequence rank 
( 3S , 4S , 5S , 7S ) 

 
The asymptotic values of the occurrence probabilities of the sequences ( 3S , 4S , 5S , 7S ,...) are 

illustrated for the application in Figure (4). 
 
 
 

 
 

Figure (4) : the asymptotic probability as a function of the sequence rank 
 
 
 
 

Finally, one would also determine the mean occurrence time of the sequences ( 3S , 4S , 5S , 7S
,...) as a function of the sequence order.  
 
 
 

Pr
ob

.

hr

5

4

3

7

n

=



Mohamed Eid - A GENERAL ANALYTICAL SOLUTION FOR THE OCCURRENCE PROBABILITY OF A SEQUENCE OF ORDERED EVENTS FOLLOWING A 
POISON STOCHASTIC PROCESS 

 
RT&A # 03 (22)  

(Vol.2) 2011, September 
 

 

109 

 
 

 
 

Figure (5) : Meantime of occurrence as a function of the sequence length 
 
 

6 CONCLUSIONS 

The paper proposes a general solution in order to determine the occurrence probability of a 
given sequence of n-events following Stochastic Poison’s Processes. The solution is analytical and 
original. 

Some interesting asymptotic characteristics of this analytical solution have been assessed. 
Two simple numerical applications are illustrated in order to underline the interest of 

possessing an analytical generic solution to this problem. 
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Appendix (1) 
 
Let )(tpn , the occurrence probability of the sequence T, be the solution of the Equation (1) and (2) 
and be expressed as: 
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1st Condition 
 

t
i

j

i
j

i
i

ieCC 1**
1

1
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




 




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


   =0 

 
Then; 
 

1
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

i
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i
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1
,  ni ,...,2,1  

 
 
2nd Condition 
 



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


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
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

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Then, 
 

1
1




i
jC  = i

ji

jil
l

i C*1

1

1


 






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Appendix (2): 
 
Consider the case of a sequence containing 4 basic events in some well-determined order, so we 
have :  
 

1
1
iC  =



i

j

i
jC

1
, and  1

1C  = 1 

1
1




i
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

 1

1

1
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i
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l

i
j

i
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
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We may, then, find out the coefficients i

jC  as following: 
1N  

1
1C  = 1 

 
2N  

2
1C  = 1, 
2
2C  = 

12

2





  
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3N  
3
1C =(1-

12

2





), 

3
2C =

23

3





 ,  

3
3C =+

123

3



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*
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2



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4N  

4
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2
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


 )-(
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3




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
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
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4
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
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
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4
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
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*
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4
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So, the occurrence probability of this given sequence will, then, be determined by: 
 

)(4 tp  =


 
 

4

1

)(
4 )1(*

4
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j
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l
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 = 4
1C  * ( te 41  )   

  + 4
2C  * ( te )( 341   )   

  + 4
3C  * ( te )( 2341   )  

  + 4
4C  * ( te )( 12341   ) 

 
 


