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Abstract: Many real world systems (electric power, transportation, telecommunication, etc) are 
multistate systems composed of multistate components in which system reliability can be computed 
in terms reliabilities of its components. Such systems may be regarded as flow networks whose arcs 
(components) have independent, discrete, and multi-valued random capacities. An arc can, at 
different conditions, be characterized by different performance levels, causing network system to 
work with different levels of output performance. The criticality of such arcs must be measured 
with reference to their performance level and reliability, and its contribution to the overall system 
output performance measure(OPM).  In this paper, we introduce a generalized concept of 
importance measures and joint importance measures for the flow network made up of multistate 
arcs with respect to output performance measures (expected performance, reliability and 
availability). An approach based on the universal generating function (UGF) for the evaluation of 
the proposed joint importance measures is introduced.  An illustrative example is given.  
 
Keywords: Network reliability, availability, discrete state arc, joint importance measure, UGF.    
MSC 2000.   68M10, 90B25, 90B15. 
 
 1. Introduction 

        Since the very early times of reliability engineering, the network reliability is one of the main 
subjects of research. The network reliability theory has been applied extensively in many real-world 
systems such as computer and communication systems, power transmission and distribution 
systems, transportation systems, oil/gas production systems etc [8]. Network reliability evaluation 
approaches exploit a variety of tools for system modeling and reliability index calculation. Network 
reliability problems are generally classified based on the method used to transfer the flow (or 
signal) and how the flow conservation law is satisfied. Typically there are two categories; the 
multistate arc network (MAN) and the multistate node network (MNN). In MAN, each arc has a 
non-negative integer valued discrete random variable capacity (multistate arc) and all flows in the 
network obey the conservation law. Apparently in MNN, each node is a multistate node with 
discrete states determined by a set of nodes receiving the signal directly from it without satisfying 
conservation law. Both have their own applications; for example electrical power distribution 
system can be modeled by MAN, and computer networks or cellular phone networks can be 
modeled as MNN. 
       The standard mathematical and statistical theory of system reliability assumes both system and 
component behavior are of binary nature, functioning (state 1) and failed (state 0), [1]. However, in 
some systems, when components may be operating in a degraded state, the system may be operating 
in degraded state, and the system may still provide an acceptable level of service, [2]. The network 
reliability evaluation for complex designs relies on enumerative techniques, [12]. The flow 
reliability problem for the directed capacited-flow network in which the capacity of each arc has 
M+ 1 value from source to sink is generalized as a multistate system model, [10]. A graph theoretic 
method is used for the reliability evaluation of multistage interconnection networks with multistate 
elements, [14].  
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       Importance measure (IM) quantifies the criticality of a particular component within a system 
design. They have been widely used as tools for identifying system weakness, and to prioritize 
reliability improvement activities, [6]. They can also provide valuable information for the safety 
and efficient operation of the system. In multistate system (MSS), IMs characterizes, for a given 
component, the most important component state with regard to its impact on system reliability. The 
knowledge about the IM can be used as a guide to provide redundancy so that system reliability is 
increased.  Thus, measures that can differentiate such an impact are highly desirable. In general, 
there are two ways to improve the reliability of a binary system, 1) increase the reliability of 
individual components, and/or 2) add redundant components to the system.   Composite importance 
measures are developed with the aim of identifying and ranking particular arcs (components) in a 
network system depending on their impact on the multistate network reliability behavior, [13]. Joint 
reliability importance (JRI) of two or more components is a quantitative measure of the interactions 
of two or more components or states of two or more components, [5]. It is investigated to provide 
information on the type and degree of interactions between two or more components by identifying 
the sign and size of it, [5,15]. The value of JRI represents the degree of interactions between two or 
more components with respect to system reliability. Joint structural importance (JSI) is used when 
the component reliabilities are not available, [15].  Joint structural and joint reliability importance 
measures for any number of multistate components in the MSS are useful for the design engineers, 
[5], [17]. For the MSS with multistate components, the problem related to MSS reliability 
improvement is still evolving. The problem of finding the joint importance of more than two arcs in 
a network system with various output performance measures (e.g. reliability, availability, etc) still 
remains unsolved. To solve this problem, methods dependent on the information obtained from 
multistate IMs and joint importance measure(JIM)s can be developed for efficient resource 
allocation.  Many of the engineering systems are modeled by networks (electric power generation 
system, transportation system, telecommunication network system, etc) (see [7], [10], and [14]), 
hence the development of joint importance measures of two or more arcs with different output 
performances (e.g. productivity, capacity, etc) in a directed network with multistate performance 
levels is quite desirable. In order to answer this problem, we introduce the JIMs of two or more arcs 
in multistate directed network system with various output performance measures (expected 
performance, reliability and availability). We provide an algorithm based on universal generating 
function (UGF) for the evaluation of joint importance measure when network system has different 
output performances.   
         This paper is organized as follows. In section 2, we define the JIMs in network system with 
various output performance measures (expected performance reliability, and availability).  Section 3 
considers the application of UGF for the JIM evaluation. Illustration is given in section 4 followed 
by conclusions in the last section. 

2. Joint importance measures of arcs in multistate network system 
 Consider a directed multistate network made up of n arcs. Each arc i may be in one of 

1iM  states, }M,...,,{ i10 , }.n,...,,{i 21   Let )(tW  output performance  of the multistate 

network at time t which takes the values wi, i=0, 1, 2, … M, where }{max i
i

MM  , depending on 

the system state i at time t. The two vectors of the system performance realizations, w={wi, 0
Mi  }, and of the system state probabilities, p={pi, 0 Mi  }, define the system output 

performance distribution. Let  )(t  is the state of the MSS  at time t.  
   We use some measures of the performance of a MSS for obtaining joint importance 

measures.   
 The steady-state the probability distribution of the system states is: 

},)(Pr{lim}(t)Pr{lim
t

i
t

i wtWip 


   0 Mi  . 
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 An associated simple measure of system output performance is its expected value of system 
state defined, in  the steady-state, as: 


i

is ip)]t([E  . 

     A similar measure of system output performance is its expected value of system output 
performance, in  the steady-state, as: 


i

ii pwE . 

 When applied to MSS, the concept of availability is related to the ability of the system to 
meet a required demand  kw , corresponding to state k . The general definition of instantaneous 

multistate system availability is, then: 
})(Pr{})(Pr{)( kwtWkttA   . 

 If the system is under operation without break up to time t, then  )t(A  is  the system 
reliability: 

})(Pr{})(Pr{)( kwtWkttR   . 

 The MSS stationary availability is defined as 





M

i
ki wpA

0
i )(w1 . 

 

         Let ),( ANG   represent a stochastic capacited network with known demand d from a 
specified source node s to a specified sink node t. N represents the set of all nodes and 

}1|{ niaA i   represents the set of all arcs. The current state (capacity) of arc ia , represented by 

},...,1,0{ ii Mx  , the range of states of arc ia .  The vector )p,...,p,p,p(p
iiMiiii 210  represents the 

probability associated to each of the values taken by ix . The system state vector ),...,,( 21 nxxxx   

denotes the state of all the arcs of the network system. Function ZZx n :)( , where 
},...,2,1,0{ MZ  , }{max i

i
MM  , maps the system state vector into system state. That is, )(x , is 

the network capacity from source to sink under system state vector x , which represents a multistate 
structure function, [2]. Network reliability may be defined as the probability that a demand of d 
units can be supplied from source to sink through the multistate arcs. We shall make the following 
assumptions for the network reliability system. 
        1. Arc states are stochastically independent.  
        2. The structure function )(x is statistically coherent. That is, improving an arc  
            performance cannot cause to degrade the performance of the network system and all arcs  
           are relevant.       
 Joint reliability importance (JRI) of the two edges in an undirected network in binary nature 
is an extension of the marginal reliability importance (MRI) of edges, [6].  In an undirected 
network, reliability is the probability that source and terminal are connected by working edges, [6].  

            For an undirected stochastic network ),( ENG , where }1|{ nieE i   is set of all edges, N

, the set of nodes, let )(GR  represents the probability that the source and terminal are connected by 

working edges and )q,...,q,q(q n21  where }workingisEePr{q ii  .  MRI of edge ie  in an 

undirected network is defined as
i

G q

)G(R
)i(I




 , [6].  Again JRI of two edges is defined as follows. 
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Definition 1.  The JRI of two edges ie  and je  is the second order partial derivative of reliability of 

an undirected network with respect to reliabilities of both edges: 

ji
G qq

GR
jiI





)(

),(
2

. 

An explicit expression for this JRI of two edges is    
)()()()(),( **** jiGRijGRjiGRjiGRjiIG   

 
where jiG *  represents G with edge ie  contracted and edge je  is deleted.  The JRI is expressed in 

terms of MRI of edges in same sub-graphs as,   
)()(),( * iIiIjiI jGjGG   and ).()(),( * jIjIjiI iGiGG    

         Alternatively the following relationships are obtained.  

j

jGG
G p

iIiI
jiI

)()(
),( 
  and .

)()(
),(

i

iGG
G p

jIjI
jiI 
  

         We now proceed with the problem of measuring joint importance in the directed network 
system with respect to expected performance. First we find the JRI of any number of arcs in the 
network where the arc capacity is represented as finite discrete state in nature. That is each arc can 
take the value in a discrete state space },...,1,0{ iM  where iM  represents the maximum flow (best 

state) through the arc i.  For finding the JRI of more than two arcs, we follow the method for finding 
JRI in MSS, [5]. Suppose for instance the probability distribution of each arc is unknown, then we 
use the joint structural importance of multistate system (JSIM) of more than two components, [5].      
The     JSIM (i, j), for two components i and j is given by,    


 


i lM

m

M

k

)}k€,m;l,i(SIM)k,m;l,i(SIM{)l,i(JSIM
1 1

                      

            where )k,m;l,i(SIM  =  
2

1

1 






n

X

j

q

illiilli

)M(

)qj)X,k,m€(,j)X,k,m((
il


, ,mm€ 1  and 

),x,...,k,...,m,...,x,x(X nliil 21  the state space vector of system components. 

Here χ(true)=1 and  χ(false)=0, qjXkmjXkm illiilli  ),,€(,),,(   determines the critical path 

vector to the level  j with state m of component i. The JSIM (i,j,k) for three components is   

,)}n€,k,m;r,l,i(JSIM)n,k,m;r,l,i(JSIM{)r,l,i(JSIM
i l rM

k

M

n

M

m

  


1 1 1  

where ).n,k€,m;r,l,i(SIM)n,k,m;r,l,i(SIM)n,k,m;r,l,i(JSIM   So in order to find the JSIM of 
three arcs we have to find JSIM of two arcs for  each state of third arc and, take successive 
difference and total sum. Again the change in JSIM of three components with fourth component 
provides JSIM of four components. Thus proceeding like this we can find JSIM of any number of 
arcs. 
          Suppose that the arc probabilities are known. Then to find the joint reliability importance of 
more than two multistate arcs for the network, one may proceed as follows.  The joint reliability 
importance (JRIM) of MSS, for k components is defined as follows, [5]. The joint reliability 
importance of state 1b  of component 1a , state  2b  of component 2a ,..., state kb  of the component  

ka  )( nk   of the MSS is  
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,,...,2,
...

),...,;,...,(
21

1,1

21

nk
bRbRbR

E
bbaaJRIM

kaaa

s
k

kk

k







 

where 



M

j
s )j)x((PE

0

  is the expected performance of system and },k,...,,{i 21  

)( iaia bxPbR
ii
  are  the component reliabilities. Thus in finding the JRIM of k multistate arcs, we 

have to find the  kth partial derivative of the overall expected performance of network with respect to 
the reliabilities of each arc under consideration. For instance we consider the JRIM of states of three 
components. Let  )j)X,n,k,m((PP ilrrlimkn    and )mX(Pp iim  .    For k=3,  i.e. 

differentiating  sE  partially with respect to  ,pim  lkp  and rnp , we get,   

].PPPP[]PPPP[
ppp

E
n€k€m€n€km€n€k€mn€mknk€m€knm€nk€mmkn

rnlkim

s 


 3

 
But observe that 

nkmknmnkmmkn PPPP €€€€   is JRIM of states of two components when third 

component is in state n.  Therefore JRIM of states three components are expressed in terms of JRIM 
of states of two components as follows:                                                                                          

rr n€
li

s
n

li

s

rli

s ]
kRmR

E
[]

kRmR

E
[

nRkRmR

E











 223

 

         JRI working states for edges can be written as 
11
)(2

li RR
GR



  where .1 ii pR   It shows that the 

above result holds with binary nature of edges, i. e., M=1. Hence, the results of JRI of two edges in 
a binary network, [5], can be considered as a generalization of the results JRIM, [6], to any number 
of binary and multistate edges when considering undirected network system.  Thus we have the 
following theorem for three arcs of a directed network system. 

Theorem 1.  The joint reliability importance of three arcs in a multistate network with multistate 
arcs is 

)][]([
1 1 1

€

22

1 1 1

3

    
     










 i l r

rr

i l r M

m

M

k

M

n
n

li

s
n

li

s
M

m

M

k

M

n rli

s

kRmR

E

kRmR

E

nRkRmR

E
     

where sE    is the expected output performance of network,  nRandkRmR rli ,,   are the reliabilities 

of arcs i, l, and r  with respect to performance level m, k, and n respectively.� 
  In the above discussed joint reliability importance measures and joint structural importance 
measures, we used the expected performance of the network as output performance measure.  But in 
order to find the JIMs with respect to other output performance measures, reliability and  
availability, of the multistate network systems, we proceed as follows. 

 When the generic j-th multistate arc is considered, one can introduce a performance 
threshold  and divide the complete ordered set of its states into two ordered subsets corresponding 
to the arc performance above and below the level , respectively. By so doing, we re-introduce a 
collectively binary logic for the arc’s states. Let arc j be constrained to performance below , while 
the rest of arcs of the network system are not constrained: we denote by 

jOS  the network system 

OPM (reliability or availability) obtained in this situation. Similarly, we denote by 
jOS  the 

network system OPM resulting from the dual situation in which arc j is constrained to performances 
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above . The network system performance measures so introduced rely on a restriction of the 
achievable performance of the network arcs. Different modeling assumptions in the enforcement of 
this restriction will lead to different performance values. Using the measures 

jOS   and 
jOS , 

we can define Birnubaum importance measures for multistate elements 
jjj OSOSOS    . 

 Suppose that j,i
,OS   represents the Birnubaum importance of the component i when 

component j is restricted to the performance above level  . Similarly define j,i
,OS   the Birnubaum 

importance of the component i when component j is restricted to below level   . Thus we can 
define the joint importance of two components i and j to the network system performance as  

j,i
,

j,i
,

j,i
, OSOSOS    . 

 Similarly we can obtain the higher order joint importance measures for more than two arcs, 
i.e., for example, to measure the improvement of joint  importance of two arcs with respect to the 
interactive effect of more than two arcs, at first we shall calculate change in the joint importance of 
two arcs with respect to the change of third arc. If there is any change in the joint importance of two 
arcs due to change in performance of third arc from upper states to lower states we can say that 
there is an interactive effect for three arcs for the network OPM improvement. We shall find the 
joint importance measures at steady state system performance in the following section.  

 
3. Application of UGF 

 
         In MSS modeled by networks with respect to various output performances, we modify the 
above joint importance measures. The UGF is found to be a useful tool in assessment of output 
performance measures of the network systems, [11]. The method of UGF generalizes the technique 
that is based on using a well known ordinary generating function. The basic ideas are introduced by 
Ushakov in 1987,. [11]. The approach proved to be very convenient for numerical realization. It 
requires relatively small computational resources for evaluating MSS reliability indices and, 
therefore, can be used in complex reliability operations. Importance measure evaluation in MSSs 
using UGF can be see in Ref. [9]. 
          The MSS model includes the performance distribution of all arcs and the system structure 
function: ),,...,,(,1,, 21 njj xxxnjpx   where any system element j can have finite number, jM

of discrete states, and its performance distribution is represented by ordered sets 
),...,,(: 21 jjMjjj xxxx  and ),...,,(: 21 jjMjjj pppp  that relate the probability of each state with 

performance corresponding to this state. 
         The UGF of a discrete variable X corresponding to the state of an arc is defined as the 
polynomial 

kxM

k
k Zp)Z(U 




0

 

where the discrete random variable X has M possible values and kp  is the probability that X is 

equal to kx .  In order to represent all the possible combinations of states of the two arcs 1a  and 2a , 

one has to relate the corresponding probabilities of states of two multistate arcs subsystem with 
values of the vector )x,x( aa 21

  in these states. For these purpose, we consider a composition 

operator Ω over UGFs of individual multistate arcs which takes the following form for a pair (i, j) 
of multistate arcs.                                                                                                             
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 

 






 



 

The resulting polynomial )Z(U i,i 1  represents the probability distribution of the subsystem 

containing arcs i and i+1. Applying the operator Ω to all other arcs one by one we get the resulting 
polynomial that takes the form, 

 



M

k

y
kn,...,,

kZq)Z(U
0

21
 

The polynomial represents distribution of state of connections between source and sink of the entire 
network. This polynomial relates the probabilities of all the possible states of whole network, kq , 

with the output performance corresponding to these states, ky . Thus we can obtain the reliability of 

network as 





M

k
k )ttosfrompliedsupunitsdofdemand(I.qR

0

 

where (.)I  is the indicator function.  To evaluate the joint importance measures we need the 
steady state distribution of the observed performance of the network system under some constraints. 
In order to use the UGF in joint importance measure evaluation, we use the following approach.  

  Let jkO  be the output performance of multistate network system when arc j is in fixed state k 

while the rest of the arcs evolve stochastically among their corresponding states with steady-state 
performance distributions },{ , ilil px  iMl,ni  01 .  Assume that the arc j is in one of its states, 

k, with performance not greater than  . We denote by jk  the state  in the ordered set of states of 

arc j whose performance 
jjkx  is equal or immediately below  , i.e., .xx .jkjk jj 1


  The 

conditional probability of the arc j being in a generic state k characterized by  a performance 

jkj xX   not greater than a pre-specified level threshold )kk( j 
 
is:   

j

jk

k

r
jr

jk
jkjjkj p

p

p

p
pkkxX

j   






0

*
1]|Pr[ . 

Similarly, the conditional probability of arc j being in a state k when it is known that  jkk  is  

.
p

p

p

p

]kkPr[

p
p]kk|xXPr[

j

jk

M

kr
jr

jk

j

jk
jk

*
jjkj j

j


















1

2

 

Now consider  the joint  probability distribution of two arcs i and j,  for jhjiki xX,xX   given 

four additional restrictions, (1)   ji hh,kk , (2)   ji hh,kk , (3)   ji hh,kk  and (4) 

  ji hh,kk . Thus now under the consideration that the arcs are independent we could arrive at 

probability distributions given below. That can be computed as earlier result for independent arcs as 
follows. Let 

 ,

pp

pp
p]hh,kk|xX,xXPr[

i jk

r

h

m
jmir

jhik
hk

**

jijhjikik

 
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0 0
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Similarly we can find joint distributions of any number of arcs with the specified restrictions. We 
define  jOS   as the network output performance measure ( e.g. reliability or availability) obtained 
when arc  j  is forced to visit  only states with performance not greater than  :   
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Similarly, we define as jOS   the network output performance measure obtained under the 
condition that the arc j stays only in states with performance greater than    :  
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         Thus the Birnubaum importance takes the form, 

jjj OSOSOS    . 

         In order to compute the joint importance of  two arcs i and j, i.e., let ij
,OS   denote the joint 

importance of two arcs with respect to the network output performance measure OS, then 

ijijij OSOSOS  ,,,    

 i.e.,                    

jh,ik

M

kk

M

hh

hk
**

jh,ik

k

k

h

h

k

k

M

hh

M

kk

h

h

hk
**

jh,ikhk
**

jh,ikhk
**

ij
, OpOpOpOpOS

i

i

j

j

i j i j

j

i

i

j

      
      


1 1

4
0 0 0 1 1 0

321
 

  

 




 



V.	M.	CHACKO,		M.	MANOHARAN	‐	JOINT	IMPORTANCE	MEASURES	IN	NETWORK	SYSTEM	
RT&A	#	04	(23)		

(Vol.2)	2011,	December	
	

 

137 

Similarly by finding change in joint importance of two arcs with respect to third arc, we get the 
joint importance of three arcs. Continuing like this we get the joint importance of any number of 
arcs with respect to network output performance measure and state space restricted probabilities of 
all arcs. 

         In order to obtain the state space restricted measures, one has to modify the UGF of arcs as 
follows, 
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when evaluating UGF of ij
,

ij
,

jjii OSand,OS,OS,OS,OS,OS   . We use the 

following algorithm for evaluation of ij
,

ij
,

jjii OSand,OS,OS,OS,OS,OS   . 

 Obtain the u-functions of all of the system elements. If the system contains a pair of 
elements connected in parallel or in series, replace this pair with an equivalent macro-element with 
u-function obtained by ‘sum’ or ‘min’ operator for  (.). If the system contains more than one 
element, do it again and again. Then, determine the u-function of the entire series-parallel system as 
the u-function of the remaining single equivalent macro-element. The system probability and 
performance distributions are represented by the coefficients and exponents of this u-function, 
corresponding to the state probabilities and performance levels, respectively. Compute the system 
OPM for the given level with the given vectors of the state probabilities and performance levels.                          

4.  Illustrative example  
 
For the network in figure 1, it is desired to obtain the probability that a demand of 10 units can be 
supplied from source to sink, [13]. Here the system can be considered as the MSS in Ref. [5]. Table 
1 presents arc probabilities. In table 2, we computed JRIM of pair of arcs with α=2, β=2 which 
influences system most with respect to system output met the demand or not.  
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It  shows the pair (8,9) has largest JRIM with respect to system reliability.  

 
 

4. Conclusion 
 
       In this paper joint importance measures of two or more arcs in multistate arc network with 
various output performance measures are developed.  The procedure of evaluating joint importance 
measures using UGF is proposed. The proposed measures can be used in any systems modeled as 
multistate networks having various output performance measures with multistate arcs.   

 
 

Table 1 
Arc State State probabilities 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0  3  4        8 
0  3  4    6 
0  3 
0  3  4 
0  3 
0  3        6 
0  3 
0  3  4    6 
0  3  4        8 

0.005  0.005    0.01               0.98 
0.02    0.01     0.015    0.955 
0.02    0.98 
0.01    0.015   0.975 
0.02    0.98 
0.005   0.02                  0.975 
0.01     0.99 
0.01    0.015    0.005    0.97 
0.02    0.01      0.01  
0.96 

 

Table 2 

Pair (1,2) (8,9) (1,4) (2,6) 
JRI 0.000394 0.089946 -0.894983 -0.01469 
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