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Abstract: In this article, we study, the maximum likelihood as well as Bayes estimation on 
parameters of Mixture of Weibull with ‘nearly instantaneous failure’ as introduced in Lai et.al. 
(2007). For Maximum likelihood estimation, the EM algorithm is used. For Bayes estimation of 
parameters, we used  three different algorithms namely, Population Monte Carlo method (PMC), 
Mixture version of Metropolis-Hasting and Gibbs sampler.  The methods are compared using a 
simulation study. A numerical example is also discussed at the end of the paper. 
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1. Introduction 
 

The mixed failure time distribution arises frequently in many different contexts in statistical 
literature. For instance, when we put units in a life testing experiment, then some of the units fail 
instantaneously and thereafter the life time of units follow a distribution such as exponential, 
Weibull, gamma etc. Such situations may be represented as a mixture of singular distribution at 
zero and a positive continuous random variable distribution. Lai et. al. (2007) has proposed a model 
as a mixture of generalized Dirac delta function and the 2-parameter Weibull having a closed form 
expression for survival function and hazard rate. The density of such a mixture can be shown as 
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For sufficiently small d. Here p > 0 is the mixing proportion. We note that 
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where () is the Dirac delta function that is well known in mathematical analysis. One can view the 
Dirac delta function as a normal distribution having a zero mean and standard deviation that tends 
to 0. For a fixed value of d, the distribution becomes a mixture of a Weibull with Uniform 
distribution. 
 
 As a special case, the model presented in (1) for x0 =0 becomes a mixture of Weibull with a 
uniform distribution (See Muralidharan and Lathika, 2007). The pdf of mixture of Weibull with 
‘nearly instantaneous failure’ occurring uniformly over [0, d] can be given as 
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Taking f1 ~ U (x0, x0 +d) and f2 ~ Weibull (,), then (2) can be written as 
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If  nXXX ,...,, 21  are the random sample of size n from (3), then the likelihood function is given by 
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After some simplification, the Log-likelihood can be written as 
 

 ),|()1(ln
),|(

)|(

1
ln)),|,,,(ln( 2

1 2

1 




























 


i

n

i i

i
i xfp

xf

dxf

p

p
zzxdpL    (5) 

 
 For further development in the study, we make use of the likelihood given in (5). One may 
refer to Lai et.al. (2007) paper for various characteristics of the model and the parametric estimation 
of the model. 
 

Here, we compute the Maximum likelihood estimator using EM algorithm (see section-2), 
while in section-3, the Bayes estimators of the parameters are calculated. The posterior samples 
have been generated using three different approaches namely, Population Monte Carlo, Mixture 
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version of Metropolis-Hasting and Gibbs sampler. The performance of the algorithms is evaluated 
using a simulation study.  The last section discusses a practical example.  
 

 
2. Maximum Likelihood Estimators 
 
 

To find MLE of the parameters of an underlying distribution we use EM algorithm given by 
Dempster, Laird and Rubin (1977). The EM algorithm has two advantages here: The first occurs 
when the data indeed has missing values, due to problems with or limitations of the observation 
process. The second occurs when optimizing the likelihood function is analytically intractable but 
when the likelihood function can be simplified by assuming the existence of and values for 
additional but missing (or hidden) parameters. There is much literature devoted to extensions and 
applications of the EM algorithm, and this is summarized in McLachlan & Krishnan (1997).  
 
 The expectation step or E-step computes the expected likelihood for the complete data. Let   
be the complete collection of parameters occurring in the mixture, i.e.  = (d,,). 
 
E-Step: We take expectation and get Q function 
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M-Step: Here we maximize the expectation, i.e., the Q-function that we computed in the E-step. 
The two steps may be repeated as per requirement 
 

Maximizing )|( )(tQ   w.r.t.  yields the update equations 
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Since equation (9) cannot solved analytically, we use )()1(
i

t xMaxd  since dxxx i  00 . To 

obtain (t+1), we solve equation (11) numerically using Newton-Raphson method. 
 

The EM algorithm starts by assigning initial values to all parameters to be estimated. It then 
iteratively alternates between two steps, the E-step and M-step. The E-step computes the expected 
likelihood and the M-step re-estimates all the parameters by maximizing the Q-function. If the 
convergence criteria is not met, then the parameters p,a,l and d are updated. We can repeat E-step 
followed by the M-step until the likelihood converges. Every iteration is guaranteed to increase the 
log-likelihood and the algorithm is guaranteed to converge to a local maximum of the likelihood 
function.  

 
 
 
3. Bayesian Estimate when all parameters are unknown 
 
 

Let the prior distributions be 
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Thus, the posterior density is proportional to 
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To generate sample from (13), we use Population Monte Carlo (PMC) algorithm and Mixture 
version of Metropolis-Hasting algorithm. The PMC algorithm is an iterated importance sampling 
scheme, it is an adaptive algorithm that calibrates the proposal distribution to the target distribution 
at each iteration by learning from the performance of the previous proposal distributions. A 
complete detail about PMC can be found in Capp’e et al. (2004). Letting ),,,(  dp , the PMC 

algorithm can be given as  
 
 
Algorithm-1 
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 1.3 Resample M values with replacement from the )(
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t ’s  using the   weights w(i). 

  
Step – 2 Repeat step – 1 for t=2 to N 
 
 
 
Below we present Metropolis-Hasting (MH) algorithm corresponding to the mixture distribution 
shown in (13). 
 
Algorithm-2 
 

Initialize )0( ; set t=0. 

Step  1:  Generate )|(~~ )(tq   and u ~ Uniform (0, 1) 

Step 2:  Compute 
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Step 3:  If u < r then 
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 else 
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Step 4: Repeat steps 1 to 2 for t = 1,2,…,N and return the values )()1( ,..., T . 
 
 
It is to be noted that in both the algorithms, the instrumental distributions q, for (p, d,,) is taken 
as their prior distributions. As seen above, Population Monte Carlo method is a combination of the 
Markov Chain Monte Carlo algorithms (for the construction of the proposal), Importance Sampling 
(for the construction of appropriate estimators), Sampling Importance Resampling (for sample 
equalization) and Iterated particle systems (for sample improvement). Thus the Population Monte 
Carlo (PMC) algorithm is in essence an iterated importance sampling scheme that simultaneously 
produces, at each iteration, a sample approximately simulated from a target distribution and provide 
unbiased estimates for that distribution. The sample is constructed using sample dependent 
proposals for generation and importance sampling weights for pruning the proposed sample. 
 

Now, we define another approach to carry out Bayes estimation in mixture context. 
Introducing latent in the structure, Posterior density can be written as  
 

      

  













 

 /)1(11
1

)(1

1

)1()1( ba
z

x
i

zn

i

eppeexp
d

p i
i

i

          (14) 

 
Then the full conditional distribution of (p, d,,) is given by 
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For generating a sample from this full conditional distribution, we use following algorithm. 
 
 
 
Algorithm-3 
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Step – 6 Generate ),|(~ )1()1(
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Step – 7 Repeat step-1 to 6 for t = 2, 3, …, N 
 
 

To implement the M-H algorithm, it is necessary that a suitable candidate-generating density 
be specified. If the domain explored is too small, compared with the range of f, the Markov chain 
will have difficulties in exploring this range and thus will converge very slowly so q may be (for 
both a and l, candidate-generating density is taken as exponential distribution) chosen in such a 
way that it converge to target distribution. Wide range of choices of q has been given in the 
literature; see Tierney (1994) and Chib and Greenberg (1995) and references contained therein. 

 
4. Simulation Study 
 

Here we have used the entire three algorithms to generate a posterior sample. A simulation 
study is carried out to compare the performance of different algorithms. A sample of size 50 was 
drawn from the population by taking different values of the parameters. On the basis of this sample, 
Bayes estimates are calculated using these algorithms.  It was seen that, the number of iterations 
necessary to reach convergence for PMC is below 5000, while for M-H, it is below 15000 and for 
Gibbs, and it is above 20,000. A deeper difficulty in implementing Algorithm 3 is the existence of 
computational trapping states. Table-1 shows the ML estimators and Bayes estimators using three 
different algorithms.  
 
  Table 1 MLE and Bayes estimates   
 

Parameter MLE PMC M-H Gibbs
p=0.2 
d=0.05 
=2.0 
=1.5 

0.2567 0.2084 0.2156 0.1692
0.0486 0.0467 0.0532 0.0594
1.8345 1.8857 1.8678 1.8523
1.4976 1.3885 1.3563 1.6974

p=0.6 
d=0.05 
=2.0 
=1.5 

0.5678 0.6132 0.5817 0.6679
0.0497 0.0522 0.0423 0.0526
1.8754 1.8804 1.7923 1.9069
1.6925 1.4760 1.5398 1.6856

 
 
 
5. Application to a real life data   
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Here, we consider the wood dryness data of 40 boards analyzed in Lai et.al. (2007) with 
ti=0, i=1,2,…,28 and the other positive observations are 0.0463741, 0.0894855, 0.4, 0.42517, 
0.623441, 0.6491, 0.73346, 1.35851, 1.77112, 1.86047, 2.12125, 2.12. Here we spread the zeros 
uniformly over an interval taking d=0.042 so that t1 = 0, t2 = 0.0015, t3 = 0.003,…, t28 = 0.042. We 
obtain MLE estimates using EM algorithm as 7625.0ˆ MLEp , 0.0418, 5689.1ˆ MLE and

2458.1ˆ MLE . PMC method is used to find Bayesian estimates. Below we present two Bayes 

estimates related to same data set but with different prior values.  
 

(i) 936300404068990 .ˆ,.ˆ,.ˆ  BAYESBAYESBAYES dp   and 9704.1ˆ BAYES  for q = 1.6,   h=1.1, x=0.9, 

b=2.3, a=1.5, b=1.9 

(ii) 901500649071870 .ˆ,.ˆ,.ˆ  BAYESBAYESBAYES dp  and 9704.1ˆ BAYES for q = 2.5, h=4.0, x=0.05, 

b=2.3, a=2.0, b=2.0 
 
  
6.  Sensitivity analysis.  
 

As can be seen from tables 2 and 3 that the estimate of the estimates depends on the choice 
of d.  In practice, the value of d can be manually estimated quite accurately from the dataset. Even if 
the value of d is inside the peak of the target distribution (here it is Weibull), we are still able to 
estimate all four parameters of the model.  The estimates are consistent for both parametric and 
Bayesian set up.   
 

Table 2. Uniform spread of “nearly instantaneous failures” with d = 0.135 
 p d α λ 
Maximum likelihood estimates 0.78960 0.135 1.6852 1.2398 
Bayes Estimates using PMC 0.8729 0.1265 1.2351 1.4388 

 
Table 3. Uniform spread of “nearly instantaneous failures” with d = 0.2 

 p d α λ 
Maximum likelihood estimates 0.6125 0.2000 1.2341 1.3563 
Bayes Estimates using PMC 0.7142 0.2764 1.5434 1.7649 
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