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THE RISK ANALYSIS OF SEISMIC ACTIVITY INCIDENCE IN ROMANIA  
  

I. M. Dragan, Al. Isaic-Maniu 
 

Academy of Economic Studies, Bucharest, Romania 
  

e-mail: irina.dragan@csie.ase.ro, al.isaic-maniu@csie.ase.ro 
 
 
 

ABSTRACT 
 

In Romania there is one of most powerful seismic activity region from Europe, known as 
Vrancea. In the past 300 years, a single major seismic event occurred with an epicenter outside this 
area (1916). This paper starts from going over all major seismic events, with a magnitude of over 6 
degrees on Richter’s scale, which were documented. Was tested the most plausible statistic 
behavioral model and was determined the probabilities for future large scale earthquakes, by 
different time horizons. 

Key words: seismic risk, modeling, validation, prediction, statistic distribution 
 
 
 
1  INTRODUCTIVE FEATURES 
 

Europe, from the geologically point of view, confirms high seismic risk areas such as Italy, 
Turkey, Iceland, Serbia, Bulgaria, Greece and Romania, as in figure 1. The seismic intensity zones 
are marked by color code. So in Romania stand out the Eastern region of the country (Figure 2) the 
Carpathian Mountains. Agglomerations of black dots on the map represent earthquakes frequencies. 
One can remark a region of high concentration of earthquakes, which is known as the Vrancea area. 

In general, is recognized that the occurrence of major seismic phenomena is a “rare event” 
from a statistical point of view. Due to the very large time horizon that can be taken into 
observation as against to registering events in artificial systems, as well as the non-periodicity of 
these events, there is the possibility of interpretation and statistical modeling of these seismic 
phenomena. In Romanian: Dragomir (2009), Lungu (1999), Lungu and Arion (2000), Radulescu 
(2004). 

The statistical studies regarding the earthquakes usually start from the fact that rare events are 
best described using the exponential law – if considering the succession of time intervals between 
events, or Poisson’s law – if it is intended to model the frequency of earthquakes (Săcuiu & 
Zorilescu, 1978; Johnson, Kotz & Balakrishnan, 1994; Evans, Hasting & Peacock, 2000). 

The easiness of using these two distribution laws, distinct in nature, consists of the fact that 
they are defined by the same parameter, characterizing the same phenomenon – the behavior of a 
system in time, from both continuous and discrete points of view. A previous study made on 
seismic phenomena in Romania (Voda & Isaic-Maniu, 1983) covering the time period 1400-1977, 
has failed to confirm the hypothesis of an exponential behavior, the confirmed model being the bi-
parametric Weibull model.  

In the followings, we shall extend the area of investigation starting with the year 1100, with 
some additions to the identified supplementary information, as well as to the earthquake in 1977, 
the last one taken into account in the previous study. 

We considered major seismic events those with a level of over 6 degrees on Richter’s scale. 
Obviously, historical assessments are somewhat subjective, as the intensity was evaluated 
indirectly, since Mercalli (1931) and Richter’s (1956) scales are more recent. The chronicles used to 
register that: “the earth had been shaken and the bells were ringing by themselves in Golia’s tower” 
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(n.n. Iasi – Romania), which indicates that an important seismic event took place. We used 
information in the profile literature (Constantinescu & Marza, 1980) as well as other official 
sources as those of the National Institute for the Physics of Earth (www.infp.ro). 
 

 

 
Source http://geology.about.com/ 
Figure 1. The hazard of seismic activity in Europe 

 

 
Source Geoscience Interactive Databases - Cornell University/INSTOC 
Figure 2. The seismic activity in Romania 
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2  THE RECORD OF MAJOR SEISMIC ACTIVITY  
 

The main seismic events which occurred in Romania, and their characteristics, as they were 
recorded at the time in documents, or in modern and official registrations, were as follows in table 
1. 

 
Table 1. The main indicators of risk and reliability 
 

November 5th, 1107 6.2 degrees Richter 
August 8th, 1126 6.2 degrees Richter 
April 1st, 1170 7.0 degrees Richter 
February 13th 7.0 degrees Richter 

May 10th, 1230 7.1 degrees Richter 
year 1276 6.5 degrees Richter 
year 1327 7.0 degrees Richter 

October 10th, 1446 7.3 degrees Richter 
August 29th, 1471 7.1 degrees Richter 

November 24th, 1516 7.2 degrees Richter 
July 19th, 1545 6.7 degrees Richter 

October 16th, 1550 7.2 degrees Richter 
November 2nd, 1558 6.1 degrees Richter 
August 17th, 1569 6.7 degrees Richter 

May 10th, 1590 6.5 degrees Richter 
August 10th, 1590 6.1 degrees Richter 
August 4th, 1599 6.1 degrees Richter 

May 3rd, 1604 6.7 degrees Richter 
November 24th 1605 6.7 degrees Richter 
January 13th, 1606 6.4 degrees Richter 
October 8th, 1620 7.9 degrees Richter 
August 9th, 1679 6.8 degrees Richter 
August 8th, 1681 6.7 degrees Richter 
June 12th, 1701 7.1 degrees Richter 

October 11th, 1711 6.1 degrees Richter 
May 31st, 1738 7.0 degrees Richter 

December 7th, 1746 6.5 degrees Richter 
year 1750 6.0 degrees Richter 

 

 
January 18th, 1778 6.1 degrees Richter 
March 18th, 1784 5.8 degrees Richter 

April 6th, 1790 7-8 degrees Richter 
December 8th, 1793 6.1 degrees Richter 
October 26th, 1802 7.9 degrees Richter 

March 5th, 1812 6.5 degrees Richter 
January 5th, 1823 6.0 degrees Richter 

November 26th, 1829 7.5 degrees Richter, 
October 15th, 1834 6.0 degrees Richter 
January 23rd, 1838 7.5 degrees Richter 
October 15th, 1847 6.2 degrees Richter 
October 17th, 1859 6.0 degrees Richter 

April 27th, 1865 6.4 degrees Richter 
November 13th, 1868 6.0 degrees Richter 
November 23rd, 1868 6.5 degrees Richter 
November 26th 1868 6.1 degrees Richter 
October 10th, 1879 6.2 degrees Richter 
August 31st, 1894 7.1 degrees Richter 

September 13th, 1903 6.3 degrees Richter 
October 6th, 1908 7.1 degrees Richter 
May 25th, 1912 6.3 degrees Richter 

January 26th, 1916 6.4 degrees Richter 
March 29th, 1934 6.9 degrees Richter 

November 10th, 1940 7.7 degrees Richter 
March 4th, 1977 7.4 degrees Richter 

August 30th, 1986 7.1 degrees Richter 
May 30th, 1990 6.9 degrees Richter 

October 27th, 2004 6.0 degrees Richter 
 

 
In the area of Vrancea (analyses of the area in Ivan, 2007; Ivan, 2011; Ardelean, 1999) there 

are registered almost daily earthquakes under 3 degrees. 
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Figure 3. The distribution of major seismic events in 
100 years intervals in Romania
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3  THE STATISTIC REPRESENTATION OF MAJOR SEISMIC ACTIVITY 
 

The registered data were processed firs of all, statistically descriptive. The results as 
distribution series are presented in Table 2, the grouping being done in intervals of 100 years. 

 
Table 2 - The distribution of major seismic events in 100 years intervals 

No. Interval(years) Number of major 
seismic events 

1 1100 – 1200 4 
2 1200 – 1300 2 
3 1300 – 1400 1 
4 1400 – 1500 2 
5 1500 – 1600 7 
6 1600 – 1700 7 
7 1700 – 1800 9 
8 1800 –  1900 15 
9 1900 – 2000 11 
10 2000 – 1 

 TOTAL n = 59 
 
The series (Table 2 and Figure 3) seems to suggest an acceleration of events in the last 250 

years: in the first decade D1 one earthquake was registered;  2 eQ M 5.5  earthquakes, and in

9D 14.6 . This could be the effect of an energetic acceleration in the intensity of the activity of the 
terrestrial crust, but most probably it is the result of information inconsistencies in the medieval 
period which seem to suggest this seismic intensification. The maximum value in an interval of 100 
years is 15 major seismic events (1800 – 1900). The total number of major earthquakes is 59. The 
average in a 100 year interval is 5.9, with a standard deviation of σ 4.75  and a variation 
coefficient of CV = 0.805 which suggests a strong heterogeneity of the observation series. Standard 
error = 0.502. 

 
Table 3 – Descriptive statistics  

Statistic Value 

Sample Size 10 

Range 14 

Mean 5,9 

Variance 22,544 

Std. Deviation 4,7481 

Coef. of Variation 0,80476 

Std. Error 1,5015 

Skewness 0,72385 

Excess Kurtosis -0,36372 

 
The shape of the series is completed (table 3) with the values of the Skewness coefficient: 

 
3

1 3/22

μ€β 0.724
s

   (where 3μ  is the centered moment of rank 3, and s2 – the centered moment of 
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rank 2), and respectively 2β€  - Kurtosis coefficient: 
 

4
2 22

μ€β 0.364
s

    (where 4μ  is the centered 

moment of rank 4). The minimum value in a 100 year interval was 1, and none of intervals 
frequencies were zero. The value of the first quartile was Q1 = 1.75 and the third was Q3 = 9.5 
respectively. 
 
4  THE STATISTIC MODEL OF THE SEISMIC INCIDENCE ACTIVITY 

 
In order to analyse the process of earthquake occurrence, we tested several distribution laws, 

obviously starting with “the law of rare events” – Poisson, continuing with the exponential law 
(Evans, 2000) and Weibul (Isaic-Maniu, 1983). For the series of 50 years interval (Dragan & Isaic-
Maniu, 2011), the best results were obtained for the log-logistic statistic model (Johnson, Kotz & 
Balakrishnan, 1995; Evans & Hastings, 2000; Stephens, 1979; Paiva, 1984; Ahmad, Sinclair & 
Werritty, 1988) by filtering three different selection tests. 

Probability Density Function (PDF) 
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For the distribution of 100 years interval, the best results were obtained for the Beta statistic 

model. The general formula for the probability density function of the beta distribution is: 

     
  

1 2

1 2

1 1

1 21
1 2

, ; , 0
,

x a b x
f x a x b

B b a

 

   
 

 

 

 
   


   (3) 

where 1  and 2  are the shape parameters, a and b are the lower and upper bounds, respectively, of 
the distribution, and  1 2,B    is the beta function. The beta function has the formula  

   
1

11

0

, 1B t t dt           (4) 

The case where a = 0 and b = 1 is called the standard beta distribution. The equation for the 
standard beta distribution is  

   
 

21
11

1 2
1 2

1
,0 1; , 0

,
x x

f x x
B



 
 

 
        (5) 

Typically we define the general form of a distribution in terms of location and scale 
parameters. The beta is different in that we define the general distribution in terms of the lower and 
upper bounds. However, the location and scale parameters can be defined in terms of the lower and 
upper limits as follows: location = a; scale = b – a. 
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Since the general form of probability functions can be expressed in terms of the standard 
distribution, all subsequent formulas in this section are given for the standard form of the function.  

The following (figure 4) is the plot of the beta probability density function for four different 
values of the shape parameters 

 

 
Figure 4. The beta probability density function 

 
The formula for the cumulative distribution function of the beta distribution is also called the 

incomplete beta function ratio (commonly denoted by Ix) and is defined as  

   
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21
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0
1 2 1 2
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x

t t dt
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 

 
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where B is the beta function defined above. 
The formulas below are for the case where the lower limit is zero and the upper limit is one. 
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1

1 2


 

 

Mode  
1

1 2
1 2

1 , , 1
2


 

 



 

 

Range  0 to 1  
Standard Deviation  

   
1 2

2
1 2 1 2 1

 
     

 

Coefficient of 
Variation  

 
2

1 1 2 1


   
 

Skewness   
 

2 1 1 2

1 2 1 2

2 1
2

   

   

  

 
 

First consider the case where a and b are assumed to be known. For this case, the method of 
moments estimates are  

 
1 2

1
1

x x
x

s


 
  
 
 

        (7) 
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   
2 2

1
1 1

x x
x

s


 
   
 
 

        (8) 

where x  is the sample mean and s2 is the sample variance. If a and b are not 0 and 1, respectively, 

then replace x  with x a
b a



 and s2 with 
 

2

2
s

b a
 in the above equations.  

For the case when a and b are known, the maximum likelihood estimates can be obtained by 
solving the following set of equations  

   1 1 2
1

1 lg
n

i

i

Y a
n b a

    


      
       (9) 

   2 1 2
1

1 lg
n

i

i

b Y
n b a

    


      
      (10) 

The maximum likelihood equations for the case when a and b are not known are given in 
pages 221-235 of Volume II of Johnson, Kotz & Balakrishnan (1994). 

 
 

5  FITTING THE DISTRIBUTION 
 
In order to test the statistic nature of the distribution, we used the Kolmogorov-Smirnov, 

Anderson-Darling and Pearson-Fisher tests (Stephans, 1979; www.mathwave.com; 
www.vosesoftware.com). 

Kolmogorov-Smirnov 
The test is defined for the hypothesis  
H0: the distribution of earthquakes is Beta 
H1: the distribution of earthquakes is not Beta. 
We compute the empirical distribution function  €F x : 

  
1

1€
i x

n

X
i

F x I
n 



         (11) 

where 
i xXI


 is the indicator function, equal to 1 if xX i   and equal to 0 otherwise. 
The Kolmogorov-Smirnov statistic for a given cumulative distribution function  xF  is 

    €supn
x

D F x F x        (12) 

and F(x) the theoretical values of distribution. 
The Dn computed value is compared to the maximum admitted equivalent. 
The statistic computed value for the presented case resulted in 0,19999nD 

 
is inferior to the 

critical level 0.48893 for a significance level of 01,0 , respectively inferior to value 0.40925 for 
95%. The Beta distribution hypothesis is not rejected even for 0, 2  . 

The Anderson-Darling test – is also a distance test, proposed by Wilbur Anderson and 
Donald A. Darling in 1952. 

The statistic of the test is  
2A N S           (13) 

where: 
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      1
1

2 1
ln ln 1

n

i n i
i

i
S F X F X

N  



          (14) 

in which F is the cumulative distribution function. For a significance level , we validate one of the 
two hypotheses H0 and H1. The critical values for various specified distributions are computed by 
Stephens (1979). 

The value of the statistics of the test: 4.3274 refute the Beta distribution for 01,0 , with 
critical value 3.9074, respectively 2.5018 for 0,05   

Pearson-Fisher Statistic 
Chi Square or Pearson-Fisher  2  test was proposed as a measure of random departure 

between observation and the theoretical model by Karl Pearson (Pearson 1900). The test was later 
corrected by Ronald Fisher trough decrease of the degrees of freedom by a unit (decrease duet of 
the existence of the equality relationship between the sum of observed frequencies and the sum of 
theoretical frequencies, (Fisher 1922), and by the number of 692 unknown parameters of the 
theoretical distribution when they come as estimated from measures of central tendency (Fisher 
1924). 

The chi-square test is used to test if a sample of data came from a population with a specific 
distribution. An attractive feature of the chi-square goodness-of-fit test is that it can be applied to 
any uni-variate distribution for which you can calculate the cumulative distribution function. The 
chi-square goodness-of-fit test is applied to binned data (i.e., data put into classes). 

The test is defined for the hypothesis 
H0: The data follow a specific distribution 
H1: The data do not follow the specific distribution 
The statistic is calculated as (in original): 

   











 


k

i i

ii

E
EO

m
mxS

1

2
2

2
2 :        (15) 

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin i and is 
calculated by 

     iui YFYFNE         (16) 
where F is the cumulative distribution function and Yu and Yi are the upper and lower limits for 
class i. 

The test statistic follows, approximately, a chi-square distribution with (k - c) degrees of 
freedom where k is number of non-empty cells and c - the number of estimated parameters for the 
distribution +1. 

Therefore, the hypothesis that data are from a population with the specified distribution is 
rejected if 

 2
,

2
ck             

where 2
, ck  is the chi-square percent point function with k - c degrees of freedom and a 

significance level of .  
The computations lead to a value of the 2 7,3289E-8c   statistic inferior to the critical value 

2
0,01 6,6349,  so that the H0 hypothesis is accepted with a probability of 99%. Either for different 

values of   (0.02; 0.05; 0.1) respectively 0.2 (critical value 1.6424) the Beta distribution 
hypothesis is not rejected. 

 
Considering the three applied tests (Kolmogorov-Smirnov, Anderson-Darling and Pearson-

Fisher), two of them confirm with a high confidence degree the Beta distribution, by parameters: 
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1

2

0.34225
0.63562

1.0
15.0

a
b










 

The Probability Density Function (pdf) for the estimated values of the parameters is presented 
in Figure 5 and The Hazard Function in Figure 6. 

 
 

Figure 5. The Probability Density Function Figure 6. The Hazard Function 
 
Table 4 presents the values of the main indicators of the Beta distribution for a number of x = 

1, …, 15 events. 
 

Table 4. The Values for pdf, CDF, h(x) şi S(x) 
Statistic 

Functions 
Values computed for x (earthquakes) equal to: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
pdf-

probability 
density 
function - 0.115 0.075 0.059 0.051 0.045 0.042 0.040 0.039 0.038 0.039 0.040 0.044 0.054 - 
CDF - 

cumulative 
distribution 

function 0.000 0.328 0.419 0.485 0.539 0.587 0.631 0.672 0.711 0.749 0.788 0.827 0.869 0.918 1.000 
h(x) - 
hazard 

function - 0.171 0.129 0.115 0.110 0.110 0.114 0.122 0.134 0.153 0.183 0.234 0.338 0.655 - 
S(x) -

distribution 1.000 0.672 0.581 0.515 0.461 0.413 0.369 0.328 0.289 0.251 0.212 0.173 0.131 0.082 0.000 
 
 
6 CONCLUSIONS 

 
In the followings, through simulation operations for the values of the Beta distribution, we 

formulate various hypotheses on the occurrence of seismic events, for the confirmed statistic model. 
Thus, if we limit, for a 100 years interval, the number of major seismic events between 1 2x   

and  2 10x   respectively, we have: 
P (x < x1) = 32.51 % 
P (x > x1) = 67.19 % 
P (x1 < x < x2) = 42.14 % 
P (x < x2) = 74.95 % 

Probability Density Function
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P (x > x2) = 25.05 % 
It is an optimistic variant that the chances for less than two major seismic events to occur in a 

100 year interval are around 33%, and for more than 10 major seismic events is reduced to 25%. 
If we modify the limits to 1 1x   and 2 3x   major seismic events, then: 
P (x < x1) = 0 % 
P (x > x1) = 99.99 % 
P (x1 < x < x2) = 41.89 % 
P (x < x2) = 41.89 % 
P (x > x2) = 58.11 % 
So, there is a small probability that in Romania, less than 1 earthquake will occur, and slim 

chances that more than 3 earthquakes will occur. There is a probability of approximately 42% that 
in an interval of 100 years, between 1 and 3 events could occur. 

If we modify the limits to 1 4x   and 2 12x   major seismic events, then: 
P (x < x1) = 48.5 % 
P (x > x1) = 51.5 % 
P (x1 < x < x2) = 34.3 % 
P (x < x2) = 82.7 % 
P (x > x2) = 17.3 % 
Romania represents an unique case in the world, from a seismic point of view: earthquakes of 

over 7 degrees Richter in magnitude which originate from Vrancea affect approximately 50% of the 
territory and approximately 60% of the population, including the capital, Bucharest. Nonetheless, 
the earthquake in 1977 was not the most powerful. It was only the fourth in magnitude among the 
earthquakes in the last 200 years. In Romania, there were 6 earthquakes of over 7 degrees Richter in 
the last 200 years. More technical details on the area Vrancea can be found in Ivan (2007, 2011). 

In the case of Romania, the warning period for an earthquake is 25-30 second, which is 
relatively short in comparison to Mexico City - 60 seconds. However, it is enough to interrupt 
dangerous activities: nuclear reactors, heavy water production, chemical industry, gases, electricity 
and water. For trains and subways, stopping the electrical power is enough to stop the carriages. 
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ABSTRACT 

 

Methods of classification retrospective data on independent groups of homogeneous data and estimations of reliability 
the assumption of constant speed of deterioration during normative service life are developed. 
Keywords. The transformer, diagnostics, criteria, speed of the change, the guaranteed estimations 
  

I. INSTRUCTION 
 

Increase of efficiency of the control of conformity of a technical condition power transformers and 
autotransformers (further: TR) to shown requirements represents the important and difficult problem. Its importance 
caused by the high cost TR, expenses increasing in process of ageing TR for diagnostics, restoration of deterioration, 
and growth of influence of the human factor. Difficulty of the decision this problem connected with an insufficient 
computerization of process the analysis of retrospective data, including results of measurement diagnostic parameters 
(DP). Stochastic character of change DP, influence on DP numerous factors, deterministic the approach in methodology 
of the analysis of the technical condition TR, not considering these features, is a principal cause of observable 
discrepancy of results the analysis to real process. 

Application of modern methods to research of technical condition TR demands automation of calculations. 
Considering, that number DP TR is estimated in tens, and number of versions of attributes of distinction TR - hundreds, 
application of computer technologies allows to solve not only challenges, but also extremely bulky.  

"Tool" of practical realization of these technologies are the intellectual automated information systems (IAIS) 
with that difference from known AIS, that alongside with formalization and storage of retrospective data in special 
"database", ordering and a press of the information necessary for the analysis, they carry out this analysis and represent 
recommendations on maintenance service and repair TR.  

As bright example of such approach, recommendations [1] serve at chromatographic analysis of the dissolved 
gases in oil TR. The essential contribution to perfection of system of the analysis of results of measurement DP brought 
with the researches [2] focused on use of expert systems. Authors of clause spend the researches for more severe 
constraints - when number experts is limited by units, and IAIS provides with their necessary information and the 
recommendations, allowing to prove made decisions with the set size of risk of the erroneous decision. 

At the analysis of data of measurement DP, along with comparison DP with maximum permissible values, the 
great value has also the analysis of speed of change DP. This parameter calculated under the formula: 

        
 12

12
12 ,,

tt
tПtПtПttП




  ;    (1) 

where:  2tП  and  1tП  - accordingly current and preceded values DP ( П ) during the moments of time 2t  and 1t . 
Its local character, which does not allow comparing with speed of change various DP (owing to distinction of 
dimensions) concerns to, lacks of this parameter. 
 The lack it is deprived speed of change of the relative values DP, calculated under the formula: 

           
 12

12
12

,,,,
tt

tПIztПIztПIzttПIz



     (2) 

where:  tПIz ,  - relative size DP ( П ), a describing degree of deterioration of property of a material of units TR 

during the moment t . In conformity with the developed practice, the size  tПIz ,  in abbreviated form named by 

"deterioration" during the moment t  and calculated under the formula: 

   
oд

o

ПП
ПtПtПIz


,       (3) 

where: дП  and оП - accordingly, maximum permissible and initial values DP. Having substituted (3) in (2), we shall 
receive: 
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 So that to pass to relative values of speed of change DP, it is necessary to divide absolute value of speed of 
change DP on  од ПП  . In some cases, the size оП  ignored. It is inadmissible, if in process of deterioration size 

DP decreases. If in process of deterioration size DP increases, the error depends on a paritynd дП . This parity is more 

the error of calculations is more. The estimation of size   tПIz ,  is not end in itself. According to [3]   tПIz ,  
it compared to precede value. 
 So, according to [1] change of speed for concrete DP more, than on 10 % a month testifies to presence of 
quickly developing defect in TR. In other words: 

       
   1,0
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1223 
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If  23 tt  =  12 tt   the formula (5) becomes simpler and looks like: 
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 On fig.1 law of change DP according to four measurements, accordingly, during the moments 0t , 1t , 2t , 3t  

where 0t  - the moment of measurement оП  is resulted. 

 
Fig.1. Graphic illustration of change DP before restoration of deterioration 

 

As follows from fig.1, the given measurements during the moment 3t  testify to that that  3tП < дП . 

However, speed of change DP does not satisfy to a condition (6). Speed on a site  32 tt   essentially is more, than on 

a site  21 tt  ,   1,1, tП . If to extrapolate line cd , that is to assume, that at 3tt   speed of change DP 

remains constant it will appear, that  tП  will be equal дП  during the moment of time 4t . 
A seeming simplicity of these calculations is deceptive. Process of deterioration TR far not always corresponds 

a broken curve ekdcba . The analysis of features of real process of deterioration, the account of these features is an 
indispensable condition of objectivity of the automated calculations.  

If deterioration of the transformer connected with growth DP, in process of increase in service life, TR 
observed not only natural continuous increase in numerical value DP, but also its discrete reduction at use of those or 
other forms of restoration of deterioration or discrete increase at influence of operational factors. For example [1], at 
decontaminations of oil, addition of the decontaminated oil and of some other ways of improvement quality of oil TR, 
concentration of the gases dissolved in oil decreases. Moreover, at refusal of system of cooling, influence of through 
currents of short circuit, concentration of the gases dissolved in oil sharply increases and at absence of defects TR 
during one - two months decreases. Dependence of many DP from temperature of oil known. 

Let us consider algorithm of ordering of data of speed of change DP. Let in empirical table ET ( П ) databases 
the sequence of results of tests of park TR of a power supply system is placed. 
1.   We spend sample of measurement set DP; 
2.   From this sample systematized given measurements DP for concrete TR on time. These data include: 

2.1. Initial data (result of measurement DP at input of unit TR in work during the moment 0t  
For separate units the moment of implementation coincides with the moment of implementation TR. Chances 
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when these moments are various). 
2.2. Results of measurement DP in process of increase in service life jt > 0t ; iMpj , ; iM - number of 

measurements DP for i -th TR. 

3.  Under the formula (2) speed of change of relative values DP during the moment 1jt  and jt  is calculated with 

iMj ,1 ; 

4.  The negative values   tПIz ,  corresponding this or that form of restoration of deterioration are excluded from 
consideration. 

Results of calculation are brought in empirical table ET ( П ) together with data about service life (
  2/1, jjjсл ttt   ), design features TR and conditions of operation. 

Enter concept of rated speed of change DP and designate as  Пн . Further assume, that 

    slодн TППП / , where slT  - normative service life TR. Hypothetical law of change DP thus corresponds to 

a line af  fig.1. It is obvious, that 4t < slT . And that it has not occurred, necessary to restore deterioration TR in an 

interval 43 tt  . The parity speed of change DP on sites  10 tt   and  21 tt   does not satisfy to a condition (6), but 

equality  tП  and дП  occurring the moment 5t >> slT . In other words, a condition (6) and  tП < дП  are often 
inconsistent.  
 As fuller characteristic of conformity of technical condition TR shown requirements are served with a 
condition not excess of size of relative change   12 ttП   of unit. Calculations spent under the formula: 

     ПtПtП н /,,      (7) 

If now in the formula (7) to substitute values  tП,  and  Пн  and to consider (3), receive: 

      
   
     1,,, 12

12

12






















 ttПТ
ПП

tПtП
tt

Т
tПtПIz sl

од

sl    (8) 

 What as much as possible admissible value DP should be after restoration of deterioration during the moment 

3t  to provide non-failure operation of work TR till the moment of time slТ  at speed of deterioration on an interval 

 3tt sl   no more   23, ttП  . Designate a size as well as  3
* tП  and calculate it under the formula: 

           
  

23

23
333

*

tt
tПtП

tttПtП sl 


      (9) 

 Thus, shown, that:  
�  �not excess current value DP of maximum permissible size DP does not testify yet to absence of defect ТР. The 

reasons of such discrepancy are or the overestimated (underestimated) value � дП , or the underestimated 

(overestimated) value of admissible change of speed�  tП, . This conclusion based on known in the theory of 
reliability process of deterioration of materials («a curve life») when after the normal period (speed of deterioration 
is constant) there comes the period of ageing and catastrophic deterioration (speed of deterioration nonlinear 
increases); 

�  �Excess of speed of change DP more than on 10% in comparison with preceded value is not necessarily connect 
with occurrence of local defect. It speaks casual character of change�  П � and essential influence of some 
factors (design features and conditions of operation); 

�  �Essential growth speed of change DP and not excess of predicted value of residual service life of normative size 
is a significant attribute of presence of the defect demanding restoration; 

�  �Relative value of speed of change DP �   tПIz , in view of reference value DP allows to compare with 
speeds of change various DP. 

 Noted above a ratio have been received in the assumption of constant speed of deterioration on an interval of 
service life TR ( slT ) and not excess DP of maximum permissible value ( дП ). In real conditions of operation, TR can 
appear that this assumption is erroneous. A principal cause to that is heterogeneity of set results of measurement DP and 
noted above discrepancy of limiting values DP and speeds of change DP to real process of deterioration. 
 So that to raise accuracy of the forecast of a residual operating time to excess DP of maximum permissible 
value it is necessary to consider first of all stochastic character of deterioration TR and to develop: 
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1.   The method of classification of retrospective data of speed of change DP on groups of variety of attributes (VP). 
2.   The method of an estimation of reliability of the assumption of constant speed of deterioration on an interval of 

time slT ; 
As a matter fact, the first method provides an opportunity of application of the second method. According to 

the terminology accepted in mathematical statistics, agree to name set of data of calculation relative speed of 
deterioration park TR of a power supply system a final data set (FDS), and a data set, chosen of FDS on the set version 
of one or of some attributes - sample. 
 Agree that data of relative values of speed of change DP TR collected and placed in the empirical table (ET). 
In columns ET the serial number of measurement, numerical values   tПIz , , the name of distinctive attributes 
are consistently registered. To distinctive attributes concern not only nameplate data TR, i.e. its design features, but also 
attributes of conditions of operation TR, such as: service life, an operating time after major overhaul, the name of the 
enterprise and substation, etc. 
 Designate number of considered distinctive attributes through n , and number of variety of attributes (VP) - 
through ir  with ni ,1 . Set of results of calculation   ПIz  concrete DP, forming FDS, we shall designate as 

   jvПIz , , where kv ,1 ; k - number DP; vMj ,1 ; vM  - number of realizations for j -th DP, and set 

of realizations   ПIz  of sample with set VP - as    ВjvПIz ,  with kv ,1  and ВvMj ,,1 ; ВvM ,  - 

number of realizations   ПIz  for v -th VP in sample ( В ). 
 

II. QUALITY MONITORING OF IMPOSING APPEARANCE OF SAMPLE OF REALIZATIONS 
   jvПIz , . 

 
The method is based on a following axiom: if sample of realizations   tПIz ,  for some from set VP, 

having the greatest absolute value of the maximal divergence of statistical function of distribution (s.f.d.) from s.f.d. 
FDS, it is representative, other samples of set of versions of considered attributes are representative also all.  

Under representative, we shall understand sample, the maximal divergence s.f.d. Which from s.f.d. FDS 
satisfies to a condition:  

( )[ ]{ } ( )[ ] ***** >>1< ЭmЭmk FFFF -      (10) 

where:   tПIz jvjv ,,,   - symbolic notation; Rk  1 ; k  - mistake of the first sort;  *
эF  - the 

greatest divergence between s.f.d. FDS (designate it as )(* F ) and s.f.d. Samples (designate its )(* ВF ). Calculated 
under the formula: 

    jэ FxamF  **       (11) 

where: ВvMj ,,1  

Let's agree size  *
эF  to name the greatest deviation empirical distributions  jF *

  and  jВF * . 

     jВjj FFF  ***        (12) 

  vi MiF /*
,                           (13) 

  ВviВ MiF ,
*
, /             (14) 

  **
mm FF  - s.f.d. The greatest divergence between s.f.d. FDS  *

F  and modeled on  *
F  s.f.d. Samples 

 *
,mВF . 

    jmm FxamF  **       (15) 

where: vMj ,1 , and  

     jmВjmjm FFF  *
,

*
,

*                          (16) 

   NiFF imim /*
,

*
,         (17) 

where: N  - number of modeled realizations of the greatest divergence between  *
F  and  *

,mВF .  

  ***
mm FF   - s.f.d. The greatest divergence between s.f.d. FDS  *

F  and modeled on  *
ВF  s.f.d. Samples 
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 **
,mВF . 

    jmm FxamF  ****            (18) 

where: vMj ,1 , and  

     jmВmjm FFF  **
,

**
,

**                (19) 

   NiFF imim /**
,

*
,                       (20) 

  
To check of a condition (10) precede: 

1.  Formation of sample of measurements for each variety of considered attributes; 
2.  Under formulas (11÷14) the greatest empirical divergence of all versions i -th an attribute is calculated with 

ni ,1 ; 

3.   The greatest divergence among  *
,iЭF  Is calculated with ni ,1 . Designate its  *

,mЭF . 

4.  The hypothesis about imposing appearance of the sample corresponding size  *
,mЭF . Is checked. if sample is 

representative, according to an axiom other samples for set VP are representative also all. In other words, FDS it is 
homogeneous, and it is non-uniform - otherwise. 

 
III. METHOD OF CHECK OF THE ASSUMPTION OF CONSTANT SPEED OF DETERIORATION 

 
Casual character of speed of change DP essential influence on this size of operational factors cause difficulties 

of recognition on retrospective data of law of change in time. Construction of confidential area with the set factor of 
trust does not allow to solving a task in view since so as speed of deterioration on an interval slT  is constant, appear 
assumptions of nonlinear laws of its change are fair. 
 Below the method of check of the assumption of constant speed of change DP, based, as well as a method of 
classification of data, on statistical modeling units and theories of check statistical hypotheses is resulted. The integrated 
block diagram of algorithm promoting representation about a method is resulted on fig.2. We shall consider some 
features of program realization of algorithm. 
Block 1. FDS is formed of realizations   tПIz ,  ET   . Designate this FDS as        tПIz , ; 

Block 2. S.f.d.  *
F  Pays off under the formula: 

    MiF i /*
,                                                 (21) 

where: M  - number of lines ET   . 

Block 3. Sample  В  is formed from   , which realizations satisfy to a condition: 

sljsl TtT 75,0                  (22) 

with ВMj ,1 , where: ВM  - number of sample units ( В ). 

Block 4. S.f.d.  *
ВF  Pays off under the formula: 

  ВiВ MiF /*
,                (23) 

Block 5. The greatest empirical divergence s.f.d.  *
F  also  *

ВF  calculated under the formula: 

       jВjЭ FFxamF  **                   (24) 

Block 6. Average values of speed of change DP FDS and samples under formulas pay off: 

      











 


MtПIzM
M

j
j

1

* ,                       (25) 

     В

M

j
jВ MtПIzM

В









 
1

* ,                      (26) 

Further management is transferred to modeling ( m ) s.f.d. The greatest divergence N  of realizations  *
,mF  

and  *
,mВF  (block 7). It is originally modeled s.f.d.  *

,mВF  A method of "inverse functions" on the basis of ВM  

random numbers with uniform distribution in an interval [0,1] and s.f.d.  *
F , accommodations of sample of ВM  

realizations of speed of change DP in ascending order and calculation of probability of display of these realizations 
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under the formula (23). It is formed FDS and s.f.d.  *
,mF , under the formula (16) the greatest divergence  jmF *  

is calculated. These calculations repeat N  time, is under construction s.f.d.      RFF mm  **  and at last is 

calculated s.f.d.     R1  (block 8). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig.2 Integrated block diagram of algorithm of the statistical analysis of speed of change DP in current Tsl. 

 
If it will appear, that    kЭF   , where k - critical value of a significance value it means, that on an 

interval [0,75 slT ; slT ] relative speed of change DP not casually differs from the average characteristic for FDS. 
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Moreover, the parity corresponds to decreasing speed of change DP (block 14), and a parity - to increasing speed of 
change DP (block 15). 
 If had data do not contradict a hypothesis oH  of constant speed of deterioration, i.e.    kЭF   * , 

where k - critical size of a significance value management transferred the block 10 which is similar to the block 7 with 

that difference, that modeling of sample is carried out on distribution  *
ВF . In other words, the hypothesis 2H  

about constant speed of deterioration on an interval normalized service life is checked.  
If a mistake of the second sort for an empirical greatest divergence s.f.d.  *

F  Also  *
ВF  it appears it is 

less, than a mistake of the first sort it is possible to accept a hypothesis 1H  with the certain degree of confidence. If the 

return parity (the hypothesis 2H  is fair) takes place, management is transferred to the block 11 for an estimation of 
character of change of speed of deterioration. 

 
CONCLUSION. 

 
1. Operating experience, literary data testify to necessity to show care at use of criterion not excess of speed of 

deterioration of preceded value, and a diagnostic parameter - maximum permissible size. A principal cause to that is not 
the account of stochastic character of process of deterioration TR. 

2. Methods of classification of retrospective data on independent groups of homogeneous data and estimations 
of reliability of the assumption of constant speed of deterioration during normative service life are developed. 
Consistency of data about constant speed of deterioration allows raise objectivity of the forecast of technical condition 
TR on the basis the guaranteed estimations. 
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ABSTRACT 
 

The environment in which the project schedule will be executed is far from being static. Projects are 
subject to various uncertainties that have negative effect on activity durations. This is most apparent in the case 
of construction projects. The frequency and impact of risks depend on project-specific, contractor-specific and 
location-specific conditions. Identifying critical sources of risk is crucial to minimize disturbance in project 
development and assure success. The paper presents risk analysis and assessment framework. For the risk 
evaluation, the AHP was adopted in the paper. The proposed risk model is based on evaluating and weighting 
the particular project’s characteristics and expected conditions. The method to assist planners in determining 
activity duration distribution parameters according to risk level is presented. This approach, combined with 
simulation technique, is argued to improve project planning and evaluation of risk mitigation alternatives.  

 
 
 

1  INTRODUCTION 
 

Construction projects are influenced by a variety of risk factors, e.g. weather, soil conditions, 
qualifications and productivity of the staff, crew and subcontractors, accidents, resource shortages, 
unreliable deliveries, defects. A schedule that is optimal with respect to project duration or cost may 
largely be affected by disruptions and uncontrollable factors. The available statistical knowledge of 
the uncertainties should be used while building the project schedule.  

Risk in construction and engineering has been defined in various ways: the chance of injury, 
damage, or loss (Mehr & Cammack 1966), any exposure to the possibility of loss or damage 
(Papageorge 1988), the uncertainty and the result of uncertainty (Hertz & Thomas 1983), or the 
variation in the possible outcomes, a property of an entire probability distribution, whereas there is 
a separate probability for each outcome (Williams & Heins 1971). The risk factors have 
a significant impact on the outcome of a project especially in terms of duration and cause schedule 
delays.  

To control the level of risk and mitigate its effects, risk management should be applied. The 
project risk management process requires risk identification, analysis and assessment, as the first 
steps for planning and implementing risk handling (response) strategies.   

As a result of disturbances caused by risk factors, the activities’ duration is a random variable. 
To determine a construction process’ duration distribution types and parameters, a considerable 
number of time measurements would be necessary to make the results statistically sound. This 
might be too costly, time consuming and in some cases unjustified as, due to the unique character of 
construction projects and processes, statistical data from the past may be of little use in the future. 

Many models have been proposed to describe and predict activity and project durations or 
work productivity on the basis of risk analysis: simple analytical, neural network based (e.g. Kog et 
al. 1999, Chua et al. 1997, Zayed & Halpin 2005, Shi 1999, AbouRizk et al. 2001, Sonmez & 
Rowings 1998), Bayesian belief network based (Nasir et al. 2003), fuzzy set besed (e.g. Lee & 
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Halpin 2003), regression (e.g. Hanna & Gunduz 2005, Jaselskis & Ashley 1991) and simulation 
models (e.g. Dawood 1997, Schatteman et al. 2008).  

Most of the quantitative models assume that particular factors affect the processes 
independently. No model is considered to be superior as providing more reliable solutions than the 
other models. However, there is little evidence of extended practical use of the models developed to 
date. 

 
2 PROJECT RISK ASSESSMENT FRAMEWORK 
 
2.1 The proposed concept of project risk assessment  
 

As a result of uncertainties, the project duration is a random variable. The probability density 
function of project duration reflects the project risk and enables to assess the probability of not 
meeting the contractual project due date. The proposed procedure for generate the pdf and predict 
the project risk consists of three main steps showed on Figure 1 and explained in the next 
paragraphs. 

 

 
 

Figure 1. The proposed procedure of project risk assessment 
 
2.2 Evaluating the activities’ risk level  
 

The precedence relationships between schedule activities, i.e. construction processes, are 
modeled by a unigraph directed, acyclic, in activity-on-node representation with single start and end 
nodes.  

The frequency and impact of risk factors on a particular construction process depend on the 
project-specific, contractor-specific and location-specific conditions.  

Table 1 lists ten construction project conditions considered to be of the greatest impact on risk 
and deviation in activities duration, identified on the basis of a survey among chartered engineers 
employed by construction companies in Poland.  

 

Step 1 
Evaluating the activities’ risk level 

Step 2 
Estimating distribution parameters of 

activities’ durations 

Step 3 
Project network simulation experiments 

Result 
Project duration distribution 
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Table 1. Construction project conditions affecting project risk level   

No. Condition 
1 Season of the year  
2 Human resources: skill and availability (concerns also 

subcontractors) 
3 Quality and completeness of design documents  
4 Quality of project and construction management systems  
5 Labour conditions 
6 Financial standing of project participants, project’s finance 

conditions 
7 Quality of the supply system  
8 Site layout, site location 
9 Project environment (economic, political, legal, geographic, 

labour market, suppliers etc.)  
10 Equipment – quality and availability 

 
The state of each condition was assumed to be scored using a five-point scale 0, 0.25, 0.5, 

0.75, 1, where score 0 stands for ideal conditions, 0,5 – average conditions, and 1 – most adverse 
conditions. In the process of assigning scores, knowledge and experience of experts should be used. 
Group decision making involves aggregation of diverse individual preferences to obtain a single 
collective preference. To achieve consensus of the expert judgements, the authors propose the 
Delphi method.  

The aggregated score for a project condition state is calculated according to the following 
formula:  

 



n

j
jj wpcPC

1
, (1) 

where: pcj = evaluation of condition j state, wj = weight of condition j, n = number of evaluated 
conditions (here, n=10). 

The weights of particular project conditions should reflect their impact on extension of 
activities’ duration (risk level). They can be found by means of Analytical Hierarchy Process. Let 
us consider a group of K experts involved in a decision making process. They compare, pairwisely, 
n criteria (project conditions) with respect to the project risk level. Each expert provides a set of 
m = n(n-1)/2 comparison judgments – assigns a numerical value of an importance ratio – using 
a fundamental scale: 1/9,1/7, 1/5, 1/3, 1, 3, 5, 7, 9. The scale may be extended by some intermediate 
values: 1/8, 1/6, 1/4, 1/2, 2, 4, 6, 8 if necessary.  

As a result of the pairwise comparison that uses the above crisp ratios, a set of K matrices is 
created Ak = {aijk}, i = 1, 2, ..., n-1,  j = 2, 3, ..., n,  j > i,  k = 1, 2, ..., K, where aijk  stands for 
a relative preference of criterion i to j, as assessed by the expert k. 

In the classical AHP method, Saaty proposed the geometric mean method of aggregating ratio 
judgments (Saaty & Vergas 2007). This is to assure satisfying the Pareto optimality axiom: 
the variant preferred by each expert or decision maker should be preferred by the whole group (Van 
Den Honert & Lootsma 1996).  

Scoring the state of each project condition and determining each condition’s weight for each 
particular construction process is not necessary, as construction processes can be divided into 
groups that are similarly affected by certain risk factors. For instance, in the case of housing 
projects, six activities groups were identified by authors to represent all the types of activities in 
project schedule. These groups are Mobilization, Foundations, Structural works, Internal and 
External finishing, and Services. 
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2.3 Estimating distributions parameters of activities’ durations  
 

As a result of disturbances caused by risk factors, the duration of a activity j is a random 
variable. Its actual distribution is unknown. If there is only a limited number of sample data, the 
continuous triangular distribution (with lower limit aj, mode mi and upper limit bi) is often used for 
a proxy of actual distribution (Johnson 1997). Similarly to PERT, the lower and upper limits can be 
evaluated properly as optimistic and pessimistic (or 5% and 10% fractiles) estimates of activity j 
duration. Instead, they could be derived from the planner’s database of past experience, if such was 
available.  

The duration’s mode mi can be calculated on the basis of median duration estimate based on 
a unit production time. As unit production times are established for average states of project 
conditions, the distribution function formulated this way would reflect the variability of activity 
duration only in the case of PC=0.5. 

To construct a project schedule, one needs to assume fixed activities’ duration estimates tj. 
The risk connected with these decisions can be described using following formula: 

       

PC
j

j

b

t

PC
jjj

PC dxxftxtr , (2) 

where: 
 i

PC tr  = risk associated with expressing the duration of activity j, as a fixed value tj, when the state 
of project conditions is assessed as PC; it is the expected value of extension of duration over the 
estimate tj, 

 xf PC
j  = activity j duration’s distribution function when the state of project conditions is assessed 

as PC (with parameters PC
j

PC
j

PC
j bma ,, ). 

The analytical formula to calculate the approximate risk value that bases on the assumption of 
a triangular distribution takes the following form: 
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 (3) 

Figure 2 presents the results of using this formula: the risk curve of fixed activity duration 
estimate for a activity of the following parameters of triangular distribution function: 

1,3,0,0 5,05,05,0  jjj bma  and PC=0.5. 
To find the parameters of the distribution function for other states of project conditions (

5.0PC ), the authors propose using the least squares technique and fitting the risk curve under the 
following assumptions: 
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Figure 2. Risk curve of fixed activity duration estimate (example) 
 

1. The risk associated with fixed duration estimate tj of activity j is linearly dependent on the 
state of the project conditions: 

     PC
j

PC
jjjj

PC bat
PC

trtr ,,
5,0

5,0  . 

2. If PC>0.5 then lower limit and the mode of the distribution function can be increased. 
3. If PC<0.5 then the upper limit and the mode of the distribution function can be reduced. 
 

 
 

Figure 3. Effect of the state of project conditions on the asj
PC parameter 
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Figure 4. Effect of the state of project conditions on the bsj
PC  parameter 

 

 
 

Figure 4. Effect of the state of project conditions on the msj
PC  parameter 

 
The sum of the squares of the errors was minimised for limited number of tj values. Figures 

3–5 present the relationship between the state of project conditions PC and the parameters of the 
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standardized triangular distribution function for the activity j with original standardized parameters 
asj=0, msj=mode, bsj=1 for PC=0.5; coefficient of determination R2 takes values 0.77–0.96. 

Parameters of the distribution function can be determined using graphs on Figures 3–5 and the 
following equations: 

  5,05,05,0
jj

PC
sjj

PC
j abaaa  , (4) 

  5,05,05,0
jj

PC
sjj

PC
j abmam  , (5) 

  5,05,05,0
jj

PC
sjj

PC
j abbab  . (6) 

 
2.4 Project network simulation experiments 
 

There are a number of methods that allow the planner to consider the effect of random 
occurrences on the project performance and to assess the chances of meeting the deadlines defined 
by the contract. The first attempt to allow for risks in project planning was made by the inventors of 
PERT (Program Evaluation and Review Technique).  

The assumptions of PERT made it possible to reduce the complexity of network model 
analyses but, at the same time, affected the accuracy of time estimates of individual project events 
and the project as a whole (Biruk & Jaskowski 2010). Therefore, project networks are often 
analysed by means of the Monte Carlo simulation.  

The Monte Carlo method simulates the project network many times, each time randomly 
choosing a value for activities’ duration from their probability distribution. The outcome is 
a probability distribution of the project duration, evaluated on the basis of project durations 
calculated in consecutive iterations of the network. Monte Carlo simulation may be applied to 
quantify the confidence in the target project completion date or total project duration. The project 
manager is able to report the probability of completing the project at any particular date, which 
allows him to set a schedule reserve for the project.  

The simulation experiments can be conducted using standard project management software, 
such as Microsoft Project or Primavera, along with Monte Carlo simulation add-ins, such as @Risk 
or Risk + (Kwak & Ingall 2007). 
 To illustrate the impact of project conditions on its duration, the following example is 
introduced. Figure 5 presents a simple construction project network model. The estimates of process 
durations (random variables of triangular distribution) are presented in Table 2. The Monte Carlo 
simulation was conducted using Minuteman GPSS World software.  

The cumulative distributions of project duration for three PC scores (0.5 – for average and 
0.7 – expected conditions also 0.4 – for project risk level after planned mitigation actions) and are 
shown in Figure 6. Let us assume that the project manager determines the reliability of the 
contractual project due date at the level of 0.6. The planned risk mitigation actions allow to reduce 
the project duration in this simple example from about 20 to 18 days (c.a. 10 %). 

 
 

Figure 5. Precedence relationships among processes of the example 

Start 1 2 4 Finish 

3 
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Table 2. Estimates of processes durations (example) [days] 
  

Activity 
j 

PC = 0.4 PC = 0.5 PC = 0.7 
aj bj mj aj bj mj aj bj mj 

Start 0 0 0 0 0 0 0 0 0 
1 5 10 5.95 5 10 7 6.85 10 7 
2 4 8.99 5 4 9 5 5.20 9 5.50 
3 8 14 9.68 8 14 11 10.29 14 11 
4 3 7 4.12 3 7 5 4.53 7 5 

Finish 0 0 0 0 0 0 0 0 0 

 
 

Figure 6. Cumulative distribution function of project duration realized for different conditions scores 
  
3 CONCLUSIONS 
 
The paper presents the framework for construction project risk assessment. The approach 

enables the planner to estimate the probability distribution of project duration on the basis of the 
project conditions’ evaluation and Monte Carlo simulation technique. The input needed for the 
analysis should be stored in a contractor database (i.a. the weights of particular project conditions 
for groups of processes, upper and lower limits per unit, unit production times). A considerable 
advantage of this approach is seen in the possibility of automated assessment of the impact of risk 
mitigation actions on the duration of the project. 
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ABSTRACT 
 

In this paper a problem of accuracy and approximate calculations of connectivity characteristics in recursively 
defined random graphs is considered. This problem is solved using low and upper bounds for numbers of connectivity 
components in graphs and limit theorems of probability theory: law of large numbers and central limit theorem. 

 
1. INTRODUCTION 
 

In this paper a problem of an accuracy and approximate calculations of connectivity 
characteristics in recursively defined random graphs is considered. This problem is analyzed in 
papers [1] – [6] and many other ones. But when a graph becomes more complicated a complexity of 
this solution increases significantly. So it is necessary to introduce additional characteristics of 
connectivity like numbers of connectivity components. It allows to widen a set of analyzed random 
graphs essentially. 

Analogously to [6, Figure 4] connectivity probability and mean number of connectivity 
components for parallel aggregation of chains with identical arcs is calculated accurately. But 
accuracy formulas do not allow to consider manifold practically interesting random graphs. So first 
step to obtain estimates of the connectivity is to analyze completely connective random graph 
(where each pair of nodes is connected by single arc). Sufficient conditions of tendency of 
connectivity probability of this graphs to one are obtained. 

Then we transit from accuracy formulas to upper and low bounds. Analogously to [7] upper 
and low bounds of numbers of connectivity components are constructed for recursively defined 
graphs which are obtained by a gluing of defined graphs in few nodes. The gluing in single node 
creates graphs of treelike structure with a bridge or radial-circle generating graphs. But it is not 
enough and a step to the gluing  in a few nodes is made. 

In this case upper and low bounds of numbers of connectivity components are obtained by 
numbers of failed arcs and some deterministic summands. Applying to these bounds law of large 
numbers and central limit theorem it is possible to remove deterministic summands and to obtain 
variants of limit theorems. These results are used to parallel aggregations of chains with equal 
lengths. 
 

2.  CONNECTIVITY PROBABILITY IN PARALLEL AGGREGATIONS OF CHAINS OF 
IDENTICAL ARCS 

  
Consider parallel aggregation of m  chains with lengths 1 0,..., 0mn n  . Each chain consists 

of independently working arcs with the failure probability 1q p  , 0 1p  . Our problem is to 
calculate the probability Q  of the event C , that this aggregation is not connective.  
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Define the event A  that there is a chain with more than one failed arc and the event B , that 
there is single failed arc in each chain. It is obvious that the events ,A B  are inconsistent and A C

, B C ,C A B , consequently, C A B  ,      Q P C P A P B   , where 

    1

1

1 i i

m
n n

i
i

P A p n p q



   ,   1

1

i

m
nm

i
i

P B q n p 



   . (1) 

If the chain i consists of arcs which work with the probability ip  and fail with the probability 
1i iq p  , then the formulas (1) transforms as follows 

    1

1

1 i i

m
n n
i i i i

i

P A p n p q



   ,   1

1

i

m
nm

i i i
i

P B q n p q



   . (2) 

If the graph 1 2G G G    is constructed by a gluing of the graphs 1 2,G G  in a single node 
then the connectivity probability of the graph G  equals a product of the connectivity probabilities 
of the graphs 1 2,G G . 

 
3. NETWORKS WITH LARGE NUMBERS OF NODES AND ARCS 

 

E.A. Nurminsky (oral information) using numerical experiments formulated a hypothesis that 
if a number of graph nodes and a number of arcs is large also then this graph connectivity 
probability is close with one. In this section a model of a graph which satisfies this hypothesis is 
constructed and its sufficient conditions are formulated. 

Consider non oriented connective graph nG  with the arcs set nW and the nodes set 

 1,...,n nU u u . Suppose that each pair of nodes may be connected no more than by a single arc. 

Denote  ,n i j  a number of nodes k nu U  so that the arcs  ,ik i k nw u u W  ,  ,kj k j nw u u W   
and put  

 
1
min ,n ni j n

i j 
  

 ,  
1
min ,n ni j n

i j 
  

 , 

      , min : , ,n ik kj k ni j p w p w u U k i k j     . 

Theorem 1.  Suppose that the graph nG  arcs work independently with probabilities  p w , nw W  
and  

2lnn n n     , n  . 
Then the connectivity probability of the graph nG  satisfies the relation 
  lim 1nn

P G


  . (3) 

Proof.  Denote  ,n i jP u u  the probability that the nodes ,i j nu u U  are connected in the graph nG . 

It is obvious that    , 1 ,n i j n i jP u u P u u   does not exceed failure probability of all ways ( , )ik kjw w

, which pass through some nodes k nu U , k i . Consequently from the inequality  1 expx x   , 
0,x   we obtain that 

     , 1 expn
n i j n n nP u u       . 

As the number of the graph nG  arcs does not exceed  1 / 2n n  then 
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         
1

1 10 1 , exp exp 2 ln
2 2

nn i j n n n n
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n n
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
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From this inequality we obtain the limit relation (3). 
Corollary1. If the graphs nG  are completely connective, 1n  , and for some 0c   the inequalities 

 2 lnc n
p w

n

 
 
 
 

, nw W , 

are true then the formula (3) takes place. 
Corollary2.  If in the graphs nG  , 1n  , the conditions lnn n   , ,n   are true and for some 

0p   the inequalities  p w p , nw W  take place then the formula (3) is true also. 
 
 
4. MEAN NUMBER OF CONNECTIVITY COMPONENTS IN PARALLEL 

AGGREGATION OF CHAINS 
 
Calculate now the mean number S  of connectivity components in parallel aggregation of m  

chains with 1 ... mn n n    arcs. 
Theorem 2.  The following formula is true: 
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Proof.  Define auxiliary expressions  1,...,n mP k k - the probability of  ik  failures in the chain 
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     
1

1 1
0,..., 0

... 2 ...
m

m n n m
k k

k k m p k p k
 

         

    1
1 2 1

m mn nmnq p m p


     , 

      1

2
1

1 1 1
m m r m rr nr n n

m
r

S C p m r nq p m r p
  



          , 1 2S S S  . 

Here 1S  - is mean number of connectivity components if there are failures in all chains, 2S  is mean 
number of connectivity components if there is positive number of chains without failures. Denote 
 

     
1

2
1

1
m m rr nr n

m
r

S C p m r nq p t m r
 



         

     
11

1
1 1

m tn m tn t n
m

t
p nq C p t p

 



     

           
11 1 1

0
1 1 1 1 1

m t mn m tn t n n n n
m

t
p nq C p t p p nq m p m p

  



             

  1
1 1

mnmnq p
     

, 

     
0

2
1 0 0

1 1 1 1
m mm r m rr nr n r nr n

m m
r r r

S C p m r p C p m r p
 

  

            
 

    
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           
0

1 1 1 1 1 1 1
mm m r mn r nr n n n

m
r

m p C p r p m p mp




           . 

Consequently 

      1

2 2 2 1 1 1 1 1
m mn n nS S S mnq p m p mp
             

, 

and so 

      1 1
1 2 1 1 1

m m mn n nS mnq p m p mnq p
            

 

            1 1 1 2 1 1 1 1
m m mn n n n nm p mp mnq m p m p mp                

   1 1
mn nmnq p m mp      . 

 
5.   DISNRIBUTION OF NUMBER OF CONNECTIVITY COMPONENTS IN 

RECURSIVELY DEFINED GRAPHS 
 

Recursively defined class of graphs. Consider recursively defined class A  of graphs with 
identical arcs. Suppose that A - is enumerable set of arcs called a system of generating arcs. Each 
graph g A   characterizes by numbers   1n g  ,   0im g  , 1i  . The class A  is defined 
by rolls: A A , if , 1g  A ,  2g  A  and the sets of these graphs arcs do not intersect, then the 

aggregation 
 

1 2

i

g g  constructed by a gluing of the graphs 1 2,g g  in 1i   nodes belongs to the class 
A .also and  

 
   1 2 1 2

i

n g g n g n g 
   

 
, 

 
   1 2 1 2

i

j j j ijm g g m g m g 
 

    
 

, 1 i , 1 j . 

Here ij  - is Kroneker symbol,  n g - is a number of arcs and  im g  - is a number of “
 i


”connections in a graph g A .  
Example 1. The class of parallel-sequential graphs is an example of recursively defined class A  
which is widely used in reliability theory [1].  
Inequalities for numbers of connectivity components in random realizations of graphs. 
Assume that arcs of a graph g A  work independently with the probability , 0 1p p   and fail 
with the probability 1q p  . For each realization of the graph g A  arcs it is possible to define 
random number  l g  of failed arcs and random number  k g  of connectivity components. 

Assume that edges of failed arcs belong to this graph realization. Designate      
1

1 i
i

m g i m g


 
. 
Lemma 1. For each random realization g of the graph g A  the following inequalities take 
place: 
        2 1 1l g m g k g l g        . (5) 

Proof. Using recursive definition of the class A  it is easy to prove that almost surely the following 
formulas are true: for realizations 1 2,g g   of graphs 1g A , 2g A  and for a realization g  of a 
graph g A  
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   

 
   

   
 

   

1 2 1 2 1 2

1 2 1 2

2 1 1,

1, , 1.

i

i

k g k g i k g g k g k g

k g l g l g g l g l g i

 
             

 
            
 

  (6) 

Indeed for g A  the inequalities (5) are true as     1k g l g   . Assume that these inequalities 
take place for random realizations 1 2,g g   of the graphs 1g A , 2g A . Then  

 
       

 

1 2 1 2 1 2 1 21 1 1 1 1
i i

k g g k g k g l g l g l g g                        
   

, 

 
           1 2 1 2 1 1 2 22 1 2 1 2 1 2 1

i

k g g k g k g i l g m g l g m g i                    
 

 

   

1 2 1 2 1
i i

l g g m g g           
   

. 

Limit theorems for numbers of connectivity components in recursively defined graphs. 

Remark that random quantity  l g  may be represented as a sum 
 

1

n g

i
i



  of independent random 

variables i ,  1iP q   ,  0iP p   ,  1,...,i l g . 

Theorem 3.  Suppose that    / 0m g n g  ,  n g  . Then almost surely 

  
 

1
k g
qn g


  ,  n g   . (7) 

Proof.  Rewrite the inequalities (4) as follows 

  
 

 
 

 
 

 
   

1 2 1l g m g k g l g
qn g qn g qn g qn g qn g

  
    . (8) 

Theorem 3 statement is a corollary of the inequalities (7) and enforced law of large numbers [8, 
chapter IV, §3]. 
Theorem 4. Suppose that    / 0m g n g  ,  n g  , then random variable 

      /k g qn g pqn g   distribution tends to normal distribution with zero mean and single 
variation. 
Proof.  Rewrite the inequality (5) as follows  

    
 

 
 

   
 

   
   

1 2 1l g qn g m g k g qn g l g qn g
pqn g pqn g pqn g pqn g pqn g

     
     , (9) 

Then Theorem 4 is a corollary of the inequalities (9) and integral Muavre-Laplas theorem [8, 
chapter I, §6]. 
 
Limit theorems for numbers of connectivity components in parallel aggregation of chains. 
Consider important partial case of the graph mg  which is an aggregation of m parallel chains with 
the length n . Using Theorems 3, 4 it is possible to prove that for n   random sequence 
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  /mk g qnm  almost surely tends to 1, n  for m  which may depend on n arbitrarily. More over 

if / 0m n , n  , then distribution of random variable    /k g qnm pqnm    for n   
tends to normal distribution with zero mean and single variation. But there is a question connected 
with a behavior of this sequence when m if for example there is N   so that 1 n N    . 
This problem may be solved as follows. 

It is easy to prove the recurrent formula 
           1 1 1 1 11 0 0 0,..., 0m m m m m mk g k g                     , 1m  , (10) 

and the initial condition 
  1 1 1k g    . (11) 

Here m  is a number of failed arcs in m  - th chain,  .  is an indicator function of an event ".". 
Using the formulas (10), (11) it is easy to obtain that 

        1 1 1
2 2

1 1 0 0 0,..., 0
m m

m i i i i
i i

k g          
 

            , 1m  . 

Consequently we have that 

         1 1
1 1

2 1 0 0 0,..., 0
m m

m i i i i
i i

k g         
 

           , 1m  . (12) 

and  

        
1 1

1 1 0 2 1 0
m m

i i m i i
i i

k g     
 

           . (13) 

Calculate now a mean and a variation of the random variable   1 0i i     : 

    1 0 1 n
i iM nq p        , (14) 

        2 21 0 1 0 2 2 0 2 0i i i i i i i iM M                           

2 2 2 21 2 2 1 2n n nnpq n q p nq p npq n q nq p           , 

    22 21 0 1 2 1n n
i iD npq n q nq p nq p               

 2 2 2 2 2 21 2 1 2 2 2 2n n n n n n nnpq n q nq p n q p nq p nqp npq p p nqp               . (15) 

From the formulas (13) - (15) and enforced law of large numbers we obtain that almost surely 
  / 1 n

mk g m nq p    , m .  And from central limit theorem the distribution of random 
variable  

   
 2

1

2

n
m

n n n

k g m nq p

m npq p p nqp

   

  
 

tends to normal distribution with zero mean and single variation. 
 

5. CONCLUSION 
 
In this paper a static model of a graph with unreliable arcs is considered and a connectivity 
probability and a distribution of connectivity components are considered. But all obtained results 
may be spread onto a graph in which an arc w  has failure intensity w  и and renewal intensity w  
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so that  /w w w p    . In this case limit connectivity probability of the graph G  and limit 
distribution of connectivity components are analogous to the same characteristics of static model. 
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ABSTRACT 

 
It is suggested the analytical model permitting to get expression for determination of mean 

time to failure of a network consisting of identical non-repairable elements that fail independently 
of one another and have exponential distribution of time to failure. To determine values of 
obtained expressions it is necessary to determine probability of network failure in failure of 
defined quantity of its elements. This factor may be determined exactly with analysis of all 
possible combinations of failed elements or approximately with Monte-Carlo method. 

 

1. INTRODUCTION 
 

In assessment of reliability of networks consisting of non-repairable elements, determination 
of mean time to failure is of great interest. 

In suggested work it is considered Markov process, states of which are characterized with 
quantity of failed elements and the state of network. The analysis of this process permits obtaining 
of analytical expression for mean time to failure of networks consisting of identical non-repairable 
elements. It is supposed that network elements fail independently one on another and have 
exponential distribution of time to failure. 

In considered examples we will use connectivity of a network as criterion of its operability,  
however, obtained expressions are true for other criterion of its operability. 

 
2. RELIABILITY MODEL OF NETWORK CONSISTING OF IDENTICAL  

NON-REPAIPABLE ELEMENTS 
 

We supposed that network nods are absolutely reliable, and edges are identical in reliability, 
fail independently of one another and have exponential distribution of time to failure. 

We will use probability of network failure due to i elements failure as main network 
parameter permitting us to determine values of network reliability factor under consideration. We 
will denote this factor as - Zi. 

Value of Zi is equal to ratio quantity of non-operable states of the network in case  failure of 
i elements (Yi) to the total quantity of possible combinations of i elements of n, where n is the 
quantity of network elements. 

 









i
n
YZ i

i =  (1) 

Let us determine values Yi for network presented in Figure 1. Since considered network is 
biconnected, therefore one edge moving off cannot break its connectivity. Hence Y1=0. For 
definition of Y2 and Y3 we consider all possible states of the network when 2 and 3 edges are 
moved off respectively.  It is possible to define that 2 cutsetss of capacity 2, and 14 cutsetss of 
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capacity 3 are within the considered network, hence Y2=2, Y3=14. Any combination of i edges at i  

> 3 is a cutsets, hence 







i
n

Yi =  for i>3. 

Values Zi for this network: Z1=0, Z2=2/21, Z3=14/35, Z4=Z5=Z6=Z7=1. More detailed 
analysis of this network is described in article Tkachev (2011). 

For small n the values of Yi can be determined by means of enumeration of all possible 
network states. For great values of n it is necessary to use Monte-Carlo method. 

 
 Figure1: Example of a network 

 
Let us denote with Z*

i the probability of network failure in failure of i element, if the 
network was operable for i-1 failed elements. Correlation of values Z*

i  и Zi was established in 
article Tkachev (1983). 

Let us consider Markov chain describing change of network states at the moments of its 
elements failure. 

If for state of i-1 failed elements the network is operable, then for failure of i-element it 
transforms with probability Z*

i to non-operable state, or with probability 1- Z*
i it will remain in 

operable state. 
If in presence of i-1 failed elements the network was non- operable, than for the failure of 

i-element it will remain with probability of 1 in non-operable state. 
Transition diagram of considered process is shown in Figure 2. States i' correspond to 

network operable states, and states i" correspond to non-operable states of network for failure of 
i elements. 

 

Figure 2: Network state transition diagram 
 
Let us denote Pi' – probability of operable state, and Pi" –probability of non-operable state 

of network in the case of failure of i elements. From definition of Zi it follows 

 ii ZP 1'  (2) 

 ii ZP "  (3) 
In accordance with diagram (Figure 2), the network state transition can be written as 

 )1( *
)'1(' iii ZPP    (4) 

wherefrom 

0 1' 2' i-1' n-1' i' 

1" 2" i-1" i"   n" n-1" 

z*
1 z*

2 z*
i 

1-z*
1 1-z*

2 1-z*
i 

1 1 1 



O.A. Tkachev – DETERMINATION OF MEAN TIME TO FAILURE OF A NETWORK CONSISTING OF IDENTICAL NON-REPAIRABLE ELEMENTS 

 
RT&A # 03 (22)  

(Vol.2) 2011, September 
 

 

45 

 
)'1(

)'()'1(*



 


i

ii
i

P
PP

Z  (5) 

Substituting in (5) values Pi' и Pi" from (2) and (3) we obtain 

 
1

1*

1 







i

ii
i

Z
ZZZ  (6) 

Besides, from expression (4) it follows 

 i

i

j
ji ZZP 



11
1

*
'  (7) 

For determination of mean time to failure we will consider continuous Markov process, 
describing system behavior in time. Process states are preset with quantity of failed elements and 
states of network. State transition diagram of this process is shown in Figure 3. 

Figure 3: The Markov process of network state transition. 
 
Let us denote elements failure rate as λ. Let in some moment of time to be i failed 

elements and the network to be operable. In infinitely small time interval Δt it can occur one of 
the following events: 

- network will remain in operable state. 
Probability of this event (1-(n-i)λ Δt); 
- One more element will fail and the network will transit to non-operable state. 
Probability of this event (1-(n-i)λ Z*i+1 Δt); 
- One more element will fail but the network will remain in operable state. 
Probability of this event (1-(n-i)λ (1-Z*i+1) Δt). 
 
To simplify analytic calculations we will substitute a set of non-operable states with one 

absorbing state Figure 4. 

Figure 4: The Markov process of network state transition with absorbing state 
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Probabilities of process being in different states in arbitrary moment of time Pi(t) can be 
found by means of solving the following differential equation system: 
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Here 
λi=(n-i)λ 
λ'i=(1- Z*i+1) λi 
λ"i=Z*i+1 λi 
k – is the maximum quantity of elements, after the failure of which the network can be 

operable. 
Let us solve differential equation system (8) using Laplace transformation under initial 

conditions P0 (0)=1, Pi(0)=0 0i . 
Let us designate 

tetPsF st 




0

)()(  

Then differential equation system (8) is deduced into algebraic equation system relatively 
to F(s). 
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This solution permits obtaining of expression for mean time to failure. According to 
definition Kozlov&Ushakov (1975). 
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Expanding (10) we obtain 
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Using (7) the expression (13) may be simplified 
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Then from (11) it follows 
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Expression (15) permits determine the value of mean time to failure for known values Zi 
and λ. 

Let us determine value T for network, shown in Figure 1, for λ=0,01 (1/hour) 
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3. COMPARISON WITH KNOWN RESULTS 
 

To check obtained expression let us determine mean time to failure of a system, for which 
there are known analytical assessments Figure 5. 

 

 
Figure  5: Series-parallel  system 

 
In Gnedenko&Belyayev&Solovyov (1965) there can be found following expressions. 

Probability of failure-safe operation of system consisting of 2 parallel identical elements. 
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Probability of failure-safe operation of system consisting of 3 parallel identical, series-connected 
subsystems. 
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Mean time to failure is equal to 
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For determination of mean time to failure with use of expression (15), it is necessary to 
determine values Zi. For considered system they are equal to: Z1=0,0; Z2=3/15; Z3=12/20; Z4 = Z5 = 
Z6=1. 

Substituting these values into expression (15), we obtain: 
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This example also shows that suggested method can be used for determination of mean time 

to failure of complicated series-parallel and parallel-series  systems consisting of identical non-
repairable elements. 

 
4. EXAMPLE OF NETWORKS RELIABILITY ANALYSIS 

 
Let us denote the number of nodes by m and the number of edges by n. Let us consider 

network with parameters m=20, n=24, Figure 6. Values Zi of this network can be determined by 
means of enumeration of all possible network states. Calculation results are shown in table 5. 

 
Figure  6: Network with parameters m=20, n=24. 

 
Table 5. Values Yi and  Zi for network on Figure 6. 

 
i 1 2 3 4 5 i>=6 

Yi 0 12 328 4082 29960  
Zi 0 0,043478 0,162055 0,384252 0,704875 1 

 
Suggested method can be used for other criteria of a network operability. For example: the 

network is operable, if number of connected nodes >= m-k. 
Obtained results can also be used in this case, but it is necessary to make some 

corresponding corrections in determination algorithm of values Zi. In table 6 there are listed values 
Zi for different values of k for network shown in Figure 6. Determination of values Zi for k>0 was 
carried out with Monte-Carlo method. Number of tests amounted 106. 
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Table 6. Values of Zi for different values of k for network on Figure 6. 
i / k 0 2 4 6 8 10 

1 0,0000000 0,00000 0,00000 0,00000 0,00000 0,00000 
2 0,0434783 0,00000 0,00000 0,00000 0,00000 0,00000 
3 0,1620553 0,01581 0,00000 0,00000 0,00000 0,00000 
4 0,3841521 0,07980 0,01498 0,00435 0,00296 0,00000 
5 0,7048748 0,25247 0,08813 0,03329 0,01644 0,00000 
6 1,0000000 0,56194 0,27850 0,13070 0,05976 0,00324 
7 1,0000000 0,86648 0,56942 0,33252 0,17912 0,04445 
8 1,0000000 1,00000 0,82642 0,58123 0,36764 0,16783 
9 1,0000000 1,00000 0,96544 0,79849 0,57894 0,34029 

10 1,0000000 1,00000 1,00000 0,93211 0,76173 0,52593 
11 1,0000000 1,00000 1,00000 0,98807 0,89262 0,69336 
12 1,0000000 1,00000 1,00000 1,00000 0,96470 0,82566 
13 1,0000000 1,00000 1,00000 1,00000 0,99360 0,91743 
14 1,0000000 1,00000 1,00000 1,00000 1,00000 0,97046 
15 1,0000000 1,00000 1,00000 1,00000 1,00000 0,99403 

       
 0,214850615 0,29501 0,354027 0,411813 0,476755 0,571528 
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T= *λ 
 

It should be noticed that obtained results can be used in the case when nods failed, though 
edges are absolutely reliable. Node failure can be modeled by removal of all edges coming from 
this node. 

 
5. CONCLUSION 

 
It was obtained the analytical expression for determination of mean time to failure of 

networks consisting of identical non-repairable elements that fail independently of one another and 
have exponential distribution of time to failure. And as the nods, so the edges can be assumed as 
absolutely reliable. 

Suggested method can also be used for reliability assessment of complicated series-parallel 
systems. 
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ABSTRACT 
 

This paper presents an innovative approach to solve probability distributions of a closed feed 
back loop type queuing system with general service time distribution. This model is applied to a 
multi-processors system where some of its nodes are performed a repair procedure during a node’s 
malfunction condition. Our model is appropriate for a multiprocessor system that employs a common 
bus or for a multi-node system in computer network. A meticulous analysis of the system’s model has 
been conducted and numerical results have been obtained to scrutinize the proposed model.  

 

1  INTRODUCTION  
 

The queuing system is widely classified into an open-type system and a closed-type system 
model which are described by Baskett et al. (1975). The open-type system model customers arrive 
from outside and depart to the outside of the system while in the closed system, the customers 
operate internally where no customers arrive from outside or depart to outside of the system. 
Numerous research works have been extensively dedicated to investigate the open system model 
(classical model) which is widely used in computer systems and computer networks. However, the 
closed system model has not been paid much attention in spite of its paramount importance to 
computer systems. Some research works have devoted to find an optimal solution to the closed 
queuing behaviour at a group of systems that form networks (See Benson & Gregory 1961, Jeffrey 
& Buzen 1973, Kakubava 2010, Denning & Buzen1978, Lavenberg & Reiser1980, Reiser & 
Lavenberg 1980), or at a particular system such as cyclic systems (See Koenigsberg, 1958, Gordon 
et al. 1967, Lipsky 1985, Lavenberg 1989). The reliability and flexibility of closed queuing systems 
with repairable elements has been investigated by Chinho et al. (1994) & Kakubava (2010), both of 
these works are considered two types of service operations where in Chinho (1994) examined the 
flexibility and the capacity of the repair station, while Kakubava (2010) scrutinized the closed 
queuing system for replacements and renewals.  

This paper has made very punctilious efforts to formulate the closed system’s behaviour for 
maintenance operation at a maintenance repair center in the course of malfunctions which might 
develop in the system during repairing procedures. A failed element is removed from the system 
while keeping the system operates normally. Our proposed a closed queuing system consists of only 
one type of service operation with a closed feed back loop type queuing system CFBLTQ model. 
We study the reliability and the limitation of the system in case of failed elements increased, also 
we will investigate of how far faults tolerance that the system can offer.  

2 MODEL OF A CLOSED LOOP TYPE QUEUING SYSTEM  
 

The proposed system consists of multi elements or processors which are autonomously 
operated. When any of the system’s elements malfunction is reported, this element is required for 
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repair operation (or service) at the service repair center (server). The repaired element is 
subsequently put to work in the system again.  

This kind of element’s failure and repair procedure is called Closed Feed Back Loop Type 
CFBLTQ queuing system, an example of this model is illustrated in Figure 1. The CFBLTQ model 
has fault tolerance, with respect to a single or a multi-element failure. To formulate the system’s 
model, we define λ as elements’ failure rate per unit time and μ as the rate of completions’ repairing 
per unit time when the system is busy. Meanwhile, the exponential distributions for both arrival 
time and service time have been considered. The system has also self configuration feature that can 
tolerant temporary failures while distributing tasks which have been assigned to the failure element 
to other active elements. The system can tolerant up to m of N elements (m  N) while the system 
operation will be in a normal operation condition if the number of faulty elements are less than or 
equal to m. The fault tolerant is defined by probability of working elements in the system which the 
probability of a minimum number of elements m in the system while keeping the system operates 
normally. The following sub-section will present a mathematical procedure of how to obtain the 
probability of working elements.  

As mentioned above, the proposed system’s model is applicable for numerous systems’ 
applications in computer systems and we will focus on a maintenance operation at a maintenance 
repair station.  

 

 
Figure 1. An example model of a closed feed back loop type queuing system model. 
 

3 AN ANALYSIS OF THE CLOSED QUEUING SYSTEM  
 
A systematic approach is given in this section for proper analysis of CFBLTQ model, an 

example of this model is shown in Figure 1. The CFBLTQ model is described below and the 
properties of the model is given by 
(1) We consider the system is in a steady state, and the queue is first in and first service (FIFS) 

model’s discipline.  
(2) Let the number of elements in the system be N (N >1). The request arrivals for service due to 

elements’ malfunctions follow an exponential distribution with elements’ failure rate of λ. 
(3) Let the service time distribution be a general distribution. Suppose the probability that a service 

is started between arbitrary time t and time t+ is equal to μ(x)+o(2) on service time x, and 
the density function f(x) of service time distribution is given by 
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The full derivation of above equation is given in the Appendix of this paper.  
(4) Let the probability density function of the service time x with n queue length be wn(x). The state 

probabilities pn are given by 

),,2,1()(
0 1 Nndxxwp nn  


           　                                         (2) 

 

 
Figure 2. The relationship among n states wn(x) at arbitrary time t and t+,  

when the service continues.  
 
 

  From above notations and since the service is continued, as shown in Figure 2, the 
relationship between wn(x) in arbitrary time t and wn(x+) in time (t+) is given as follows 
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For 0 , we can differentiate the above equations with respect to x to obtain 
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In order to solve the above differential equations, the differential Equations wn(x) of (5) and 
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where Cn (n= 0, 1, 2, . . ., N-1) is a constant value given by the boundary conditions at the start 
point or at the end point of service.  Moreover, from (2), the state probabilities are 
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where f*(iλ) is the Laplace transform of the function f(x) that was given in (1) and is given by 
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   Figure 3. The states exchange between arbitrary time t and t+ at the start 

point and/or at the end point of the service.   (a) when n=0 at 
arbitrary time t   (b) when n>0 at arbitrary time t  

 
 
On the other hand, the boundary conditions at the start point or at the end point of the service, 

as shown in Fig.3, are given by the following formulas 
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If  0, the above equations become as follows 

time   Start of service   

End of service   

Request for service 

t+t

p0 w0(0)


time   Start of service   

End of service   

Request for service 

t+t

p0 w0(0)


time   

Start of service   

End of service   

Service time x

End of service   

Start of service   

t+t



wn(x) wn-1(0)

time   

Start of service   

End of service   

Service time x

End of service   

Start of service   

t+t



wn(x) wn-1(0)



Y. Yoshioka, T. Nagase – CFBLTQ: A CLOSED FEED BACK LOOP TYPE QUEUING SYSTEM; MODELING AND ANALYSIS 

 
RT&A # 03 (22)  

(Vol.2) 2011, September 
 

 

54 





0 00  )( )( dxxwxpN                                                       (15) 

00 10   )( )()0( pNdxxwxw  


                                                (16) 




 
01  )( )()0( dxxwxw nn                  )1,,3,2(  Nn                         (17) 

By substituting the values of w0 and wn in Equations (7) and (8), respectively, into (15), (16) 
and (17) to obtain the constant values C0, C1and Cn which are given as follows  
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Insert the above constant values into the Equations (9) into (10), then we have the state 
probabilities pn (n=0, 1, 2, . . ., N-1). The empty state probability p0 is given by 





N

n
np

0
1                                                                    (21) 

To calculate the average waiting time, we need to define another parameter which is average 
service time TS, this parameter is given by 

dxxfxTS  )( 
0

 


                                                           (22) 

If the state probabilities pn (n=0, 1, 2, . . ., N) are solved by above (9) to (10) and (19) to (22) 
then the average queue length Lq and the average waiting time Wq are given respectively by 
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Suppose Pw is working probability which it means that the probability of a minimum number 

of elements m in the system while keeping the system operates normally and it’s given by 

)0(10   mNpppP mNw                                         (25) 

The above (25) means that the system is able to operate normally with minimum elements in 
operations. Therefore, our model has fault tolerance and has the ability to respond properly to an 
unexpected failure, and we can realize that the system’s operation works normally even the system 
has some faulty elements. 
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4 NUMERICAL RESULTS AND DISCUSSIONS  
 
In previous section, we assumed in our previous calculations that the service time was general 

service distribution, however, if we consider that the service time is Erlang type k distributed then 
Equation (11) will be 

k
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Figure 4. The state probabilities pn versus the arrival rate λ on condition 
of N=5, k=10, TS=1 (unit time) 

 
Equation (33) is Laplace transformation of f(x), where μ is any arbitrary positive service rate. 

We analyze the initial system performance by evaluating (9) to (21) and (22) for N=5, Ts=1 with 
different k phase and is plotted in Figure 4. As shown in figures, the state probability of all elements 
in operations p0, where no defective elements in the system or n=0 is reported, is sharply decreased 
while the state probability pn for (n=N) is increased as arrival rate λ expanded. However, for each 
state probabilities pn (0< n <N) has a maximum value at a specific rate of λ. This maximum value 
becomes higher as k increased. As we mentioned above, the number of faulty elements should be 
less than or equal to m (m  N), for keeping the system operates normally. 

Figure 5 shows the probability of the system operates normally Pw versus arrival rate of the 
defective elements with various k phases. However, if the system has not fault tolerance capability 
then any defective element in the system will cause a system’s termination. For example, if the 
system has 5 elements then the probability Pw = p0 =0.269 at λ=0.2 with k=1. However, in case of 
the system has fault tolerance capability, suppose that the system has 3 of 5 elements are out of 
services, then the probability Pw=0.798 at λ=0.2 with k=1. Therefore, our model has fault tolerance 
and has the ability to respond reasonably to an unexpected failure, and we can realize that system’s 
operation works normally even the system has some faulty elements.  
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Figure 5. The probability Pw of the 3 out of 5 system versus the arrival rate λ 

on conditions of N=5, TS=1 (unit time). 
 

 

5 CONCLUSIONS 
 
A study of a closed system’s behavior is very important because is widely used in recent 

computer systems and in factories. In this paper, we presented an analytical method for a closed 
feed back loop type queuing CFBLTQ model, which is appropriated for failure and repair processes 
in the maintenance station. Numerical examples were given to gain a better understanding of the 
system’s behavior. The system model has fault tolerance capabilities by considering the system has 
a self configuration feature that can tolerant temporary failures while operation’s tasks which have 
been assigned to failure elements are distributed to other active elements. 
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APPENDIX 

 
In this Appendix, we will derive (1) which is the density function f(x) of service time distribution 

(See Yoshioka 1988, Yoshioka 2004). Suppose the probability that service is completed on arbitrary 
service time x to x+Δ is the conditional probability and is defined by  

)()()(
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xFxF                               (A1) 

where F(x) and f(x) are the probability distribution function and the probability density function, 
respectively. From (A1), we can obtain the following function 

)(
)(1

)( x
xF

xf 


                                                             (A2) 

By taking limit integration for both sides of (A2) with respect to t, where (0 ≤ t ≤ x) 

dttxFdt
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tf xx
)()(1log

)(1
)(

00
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
                                        (A3) 

The function F(x) in (A3) can be expressed as  
dttx

exF )(01)(                                                             (A4) 

Finally, the probability density function f(x) can be obtained, as well  
dttx

exxF
dx
dxf )(0)()()(                                                      (A5) 
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ABSTRACT 
An analysis of the limit APnn




lim  of connectivity probability (CP) nP  of complete graph with 

n  nodes and independent arcs which have working probability an  is made. It is proved that for 
10  a  we have the equality 1A  and for a1  the equality 0A . 

 

1. INTRODUCTION 
 

An analysis of the limit APnn



lim  of connectivity probability (CP) nP  of complete graph with  

n  nodes and independent arcs which have working probability an  is made. In the complete graph 
each pair of nodes is connected by single arc. It is proved that for 10  a  we have the equality 

1A  and for a1  the equality 0A . 
Analogously with [1] this zero-one low may be interpreted as a transition from chaos to order 

in a structure with all possible connections between nodes. The parameter a  may be called order 
parameter with critical meaning 1a . Such model may be applied to an analysis of connection 
structure in the internet for example in social networks. Another field of applications may be a 
modeling of self organizing systems.  

A calculation of CP for graphs with unreliable arcs is considered in a lot of monographs [2] – 
[5] which become classical. This list may be added by articles on upper and low bounds of CP [6] – 
[11], on transfer matrices [12], [13], on an application of groups of disjoint events [14] for accuracy 
CP calculation of two nodes in a graph, on accelerated algorithms [15] of accuracy CP calculation 
and on an application of Monte-Carlo simulations with some combinatory formulas for CP 
estimates [16]. There is a large number of other articles and monographs devoted to this very 
important problem of applied mathematics and applied probability. 

But a consideration of complete graph with large number of nodes demand to construct 
special upper and low bounds of the probability nP  and its asymptotic analysis for n . These 
approaches look like proofs of limit theorems in combinatory probability theory [17].  

A formulation of considered problem appears from oral communication of E.A. Nurminsky. It 
is based on numerical experiment showed a fact of a transition from "chaos to order" in a graph 
with large number of connections between nodes. Our researches are accompanied by a lot of 
sufficiently long Monte-Carlo simulations which helped to define main properties of random graphs 
with large number of arcs and nodes. 
 

2. FORMULATION OF MAIN RESULTS 
  

Consider complete graph nG  with nodes n,...,1  and with independently working arcs. Denote 
p , 10  p , working probability of an arc and put  jiPn ,  CP of the nodes ji,  in the graph nG , 
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   jiPjiP nn ,1,  . It is obvious that    skPjiP nn ,,   for all pairs of nodes ji  , sk  . Denote 

nP  the CP of random realization of the whole graph, nn PP 1 . 
Theorem 1.  Suppose that a

n npp  , 0a , then 
 1lim 

 nn
P , 10  a  . (1) 

 0lim 
 nn

P , 1a   . (2) 

Denote  bQn  the probability that in random realization of the graph nG  there is more than 
 bn  connectivity components, 10  b . Here  r  is integer part of real number r. 
Theorem 2. Assume that a

n npp  , 0a  , 10  b . Then 
   1lim 


bQnn

, 21  ab , . (3) 

   11lim 
 nn

Q , 2a   . (4) 

Remark 1. The condition anp   may be replaced in Theorems 1, 2 by more general condition 
 acnp  ,1min , where c  is arbitrary positive number. 

Remark 2. The condition of the graphs nG , 1n , completeness may be replaced by the suggestion 
that there is 12/1,  CC , so that each node of the graph nG is connected with more than   1Сn   
other nodes.  
 

3. PROOFS OF MAIN RESULTS 
 
Theorem 1. Suppose that 10  a  then it is possible to use obvious statement that the probability 
of the graph nG  random realization disconnection equals with the probability that there are 

 , 0 / 2 ,k k n   nodes which are not connected with rest kn   nodes of the graph nG . 
Consequently the inequality 

 
 

 

0 / 2

k n kk
n n

k n

P T C q 

 

    , (5) 

is true with pq  1 . Remark that the functions  , k n kk
nС q   of the discrete argument k  for 

 2/0 nk   do not decrease.  
Choose 0  and integer K  from the conditions 
 a 10  ,   K10  . (6) 

and so 

 aK  . (7) 

Choose N so that for Nn   the inequality 2/nnK   is true and put then Nn  . Represent the 
sum T as follows 

 0
1

K

i
i

T T T


  , 
 

 

1i i

k n kk
i n

n k n

T C q
 



        

  , Ki 1 , 
 

 
0

/ 2K

k n kk
n

n k n

T C q




   

  . (8) 

As the functions k
nC ,  knk  ,  2/0 nk  , do not decrease then 
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    1 1i i in n n ni

i nT n q C
  


         ,     / 2

0 .
2

K Kn n n n
n

nT q C
        

   

From the formula anq 1 and monotone increasing of the sequence  nn 11  , 1n , to the limit 
 1exp   it is easy to obtain the inequalities 

           in
n

iiai
i CnnnnnT 11exp   , (9) 

      / 2
0 exp

2
na K K

n
nT n n n n C       . (10) 

From the Sterling formula [18, chapter II, paragraph 9, formula (9.15)] we obtain for 
10   : 
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,   (11) 

Denote  2
1 2R





   then for 1n   

        


 

Rnnn nnn 111 
 , (12) 

           


 nnnnnnnnnnn Rnnnnnnn 


 1

11 . (13) 

From the formulas (11) - (13) for 10    we obtain 
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Analogously we have 
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. (15) 

As     2/2/2/1 nnn   so  

          
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From the formulas (15) - (17) we obtain 

   
 n

n
n
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
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Consequently from the formulas (9), (14) and from the condition (6) and from the existence of the 
number f  so that 

01  fRi ,  01
1  
 fR i , Ki 1 , 
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we have 

       
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exp 0
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,  n . (19) 

Analogously the formulas (10), (18) and the conditions (6), (7) lead to 

    
3
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0

127 exp 2 0
12 1 2 /
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
           

 , n .  (20) 

Unite the formulas (8), (19), (20) we obtain that 0T , n . Consequently from the formula (5) 
we have (1). 

Assume now that 1a  . If all arcs connected with the node 1 do not work then the nodes 1; 2 
are disconnected and so 

        
1

111, 2 1 1 1
a a
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n n nn a a

n nP P p n n


          
 

. (21) 

As    1exp1   anan , n , and 1a  , then 1nP , n . The formula (2) is proved. 
 
Theorem 2. It is obvious that  bQn is not smaller than the probability that the nodes  bn,...2,1  are 
isolated in random realization of the graph nG . That is 
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ab nn
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



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11 . (22) 

Suppose that 21  ab , then from the formula    1exp1  
anan , n ,  the condition 

ba 1  and the formula (22) we obtain the inequality (3). 
Assume that 2a  then 
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. (23) 

Consequently from the condition 2a  the formula    1exp1  
anan , n , and the formula 

(23) we obtain the equality (4). 
 
Remarks 1, 2. Remark 1 proof almost word by word repeats Theorems 1, 2 proofs. To prove 
Remark 2 it is enough to replace the inequality (5) by 
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the inequality (21) by 
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the inequality (22) by 
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the inequality (23) by 
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4. CONCLUSION 
 
This paper is written using complicated numerical calculations. It is obvious that further for a 

realization of these calculations it is necessary to use supercomputers. 
The author thanks A. Losev and G. Grenkin for large help in a realization of auxiliary 

numerical experiments. 
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Good memory of Academician 
Boris Vladimirovich Gnedenko 

                                                                                               
DUBBED THE REPLACEMENT SYSTEM WITH CONTROL 

 
Smagin V.A. 

 

1. Model  B.V.Gnedenko. The system consists of two elements, one of which is in 
working condition, and another - in the unloaded reserve. After the failure of the main item, 
it goes to recovery, back-up substitutes for the failed primary element. If refuses to 
work element, and the backup does not have time to recover, it is a system failure. If a back-up time 
to recover during the time of the main element, it becomes redundant and the process then repeats. 
A mathematical model of system uptime is represented by two equations [1]:   
  









t

t

dzzaztWzGtPtW

dzzaztWtPtP

0

0
2

.)()()()()(

,)()()()(
                                  (1) 

In (3) )(),(2 tPtP  probability of failure of the system and a basic element, )(ta  probability 
density of time to failure of the element,  )(tW  conditional probability of failure of the system, 
provided that the initial time a back-up involved in the work, and the principal immediately began 
to recover. Control of the state elements continuous and perfect. 
Using Laplace transform, we write (1) as: 

),()()()(

),()()()(2

sbsWsPsW

sasWsPsP







                                                 (2) 

Where 






0

)()()( dzzazGesb sz . The system of equations (2) has the form: 

))(1(

))()(1))((1()(2

sbs

sasbsasP 







  .                                       (3) 

From (3) we find, for example, mean time to failure of the system: 

   
))0(1(

))0()0(1(
2 








b

abTT .                                                   (4) 

In particular, the exponential distribution of time to failure tetP )(  and recovery time 
tetG  1)(   we get:  

22
2


 T .                                                        (5) 

2. Accounting for non-ideality of control system elements. In [2] proposed to take into 
account no ideality of the control system to be restored by introducing  the  
probability at this value is multiplied by "resource recovery", namely:  

),(1)(,1)( 0

)(

tGtRetG qq

dzzq
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where  





t

dzzq

q etR 0

)(

)(


- probability of unrecovered elements of time, 
provided that his failure wasdetected with a probability q .  

Value of the integral 
t

dzzqt
0

)()(   by analogy with 

the "resource security" professor  N.M. Sedyakin 
t

dzztr
0

)()(  , where )(t failure intensity 

of an element is called a "resource recovery". Taking into account the probability of 
introducing it in the future will be denoted as the probability ),(),( tRtG qq and the value of the 
resource – )(tq .  

In the above expressions (1) - (5) with a probability q  must be directly related )(tG , )(sb


, 
so finally we can write:  
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                                                   (6) 
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b

abTT .                                                          (7) 

In the special case for exponential distributions, will have the formula: 

22
2


 qT q


 .                                                                   (8) 

 
Thus, the average uptime of the system duplicated in this case is directly proportional to the 

reliability of monitoring the state of the failed element. 
 
Example 1. Let 11 1,0,01,0   чч  . Then чT q 2002   at  ,0q  чT q 7002   at

чTq q 1200,5,0 2   at 1q .  
Example 2. Let the law of distribution of time to failure is normal. Density distribution  is 

2

2

32
)25(

32
1)( 





t

eta


. Distribution law for the recovery time Weibull. The distribution function of 

recovery time is 
22,01)( tetG  . Then dzeeb

z
zq

q
2

2

2
32

)25(

0

2,0

32
1)1()0( 







 


. So, 

ччT 267,6.,25  . Figure 1 shows plots ),(),( 2 qTqb qq



 plotted for different values of 
probability q . They imply that an increase in the reliability of control system elements to refuse the 

value of conditional probability )(qbq


 increases. With the increase of this probability as the 
probability q , value of the mean time to failure of the duplicated )(2 qT q  increases, and increase is 
nonlinear. This demonstrates the importance of the value of reliability control in 
the duplicated system. 
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 Fig. 1.                                                                                  
 

3. Willingness duplicated system with control. Obtain equations for the study of 
readiness duplicated system with arbitrary distributions directly, as was done to determine the 
probability (1), rather difficult.  

Simply use the expression (6) and find a picture of him Laplace distribution density of time 
to failure duplicated system, using the formula: 
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sa

sP q
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                                                            (9) 

When 


)(2 sa q  image of the desired density. Performing the necessary transformations, we obtain:
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Next, use the formula for the image of the function of readiness in the form:   
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





                                                  (11) 

in which 


)(2 sg q  the image probability density recovery duplicated system  after its failure.  
Pay attention to the fact that this density can take different forms depending on the 

discipline system recovery, namely the recovery of both elements can be performed by one 
or two brigades. Consider this further in the analysis of readiness.  
         Expression(11) after substituting in it (10) reduces to:        
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Recall that )()(
0

sKsimlKK Г
sГГ




 . Performing the limit, we find the coefficient 

of readiness:    
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22 )( dzzg qq  average recovery time of one or two brigades. 
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        Example 3. Assume that the distributions of time to failure and recovery of 
elements exponential. Failure rate and recovery elements are equal , . If System             
Restore is one team, then by (13) we obtain:  
 

222 22
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
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qq
qqK Гq .                                                       (14) 

If system restore is performed by two teams, then the coefficient of readiness will be: 
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Correctness (14) and (15) can be checked by applying a system of differential equations. 
       Example 4. Determine the availability of the system if the probability density of 

time to failure of the element 2
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Maintenance of two failed  elements is one brigade. The average recovery time of 

both elements is equal to:  
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Substituting these values into the formula 
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obtain the dependence of the system from the parameter control. It is shown in Picture 2. It can be 
seen that even for relatively small values of control availability becomes sufficiently close to unity. 

 When servicing two teams of recovery, this effect will increase. 
  

 
Fig. 2. 
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Conclusion. An expression for the function of readiness duplicated system in the Laplace 
transform and its significance is the steady state for arbitrary distributions of 
time to failure and recovery of constituent elements. 

In these expressions have introduced the parameter reliability monitoring the state of the 
elements after their refusal. The value of this option allows you to take into account the duration of 
the recovery elements after their refusal.  

Because of this, a generalization of the result  obtained  B.V.Gnedenko, ready for the 
duplicated system with control of the state elements. 

 
Literature 
 

1. B.V. Gnedenko, Belyaev Y.K., Solovyev A.D .Mathematical methods in reliability theory. –
 M.: Science. - 1965 .- 524 sec. 

2. Smagin V.A. By a probabilistic model of control - ABT. -2010. - № 6.-S.25-33.  
 
 



M. A. El-Damcese  and N. S. Temraz – AVAILABILITY AND RELIABILITY MEASURES FOR MULTISTATE SYSTEM BY USING MARKOV REWARD MODEL 

 
RT&A # 03 (22)  

(Vol.2) 2011, September 
 

 

68 

AVAILABILITY AND RELIABILITY MEASURES FOR MULTISTATE 
SYSTEM BY USING MARKOV REWARD MODEL 

 
M. A. El-Damcese  and N. S. Temraz 

 
Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt  

 
 

ABSTRACT 
 

This paper describes some  models and measures of reliability for multistate systems. The expected cumulative 
reward for the continuous time Markov  reward models are used for deriving the structure function for a multistate 
system where the system and its components can have different performance levels ranging from perfect functioning 
to complete failure. The suggested approach presents with respect to the non-homogeneous and homogeneous 
Markov reward model of two stochastic process for computation of these availability and reliability measures. A 
particular case for three  levels is analyzed numerically by assuming Weibull and exponential distributions for failure 
and repair times.            
 
Keywords: Markov reward model, demand, multistate system, availability and reliability measures. 
 
 
 

1. INTRODUCTION  
 
         Traditional binary-state reliability models allow for a system and its components only two 
possible states: perfect functioning (up) and complete failure (down). However, a system can have a 
finite number of performance rates. And, many real-world systems are composed of components 
that in their turn can have different performance levels and for which one cannot formulate an “all 
or nothing” type of failure criterion. Failures of some system elements lead, in these cases, only to 
performance degradation. Such systems are called multi-state systems (MSS) [11]. Traditional 
reliability theory, which is based on a binary approach, has recently been extended by allowing 
components and systems to have an arbitrary finite number of states.  
 
         According to the generic multi-state system  model [8], any system element }n,,2,1{j 
can have k different states corresponding to the performance rates, represented by the set 

},g,,g,g{g jk2j1jj   where jig  is the performance rate of element j in the state 
}.k,,2,1{i,i   The performance rate )t(G j  of element j at any instant 0t    is a discrete-state 

continuous-time stochastic process that takes its values from .g)t(G:g jjj  The system structure 
function ))t(G,),t(G()t(G n1   produces the stochastic process corresponding to the output 
performance of the entire MSS. In practice, a desired level of system performance (demand) also 
can be represented by a discrete-state continuous-time stochastic process ).t(W  The relation 
between the MSS output performance and the demand represented by two corresponding stochastic 
processes should be studied in order to define reliability measures for the entire MSS. For reliability 
assessment, MSS output performance and the desired performance level (demand) are often 
assumed to be independent stochastic processes. In practice, the most commonly used MSS 
reliability measures are probability of failure-free operation during time interval ]t,0[  or MSS 
reliability function ),t(R  MSS availability, mean time to MSS failure, mean accumulated 
performance deficiency for a fixed time interval ],t,0[  and so on. 
 
         Many technical systems are subjected during their lifetime to aging and degradation. After any 
failure, maintenance is performed by a repair team. Maintenance and repair problems have been 
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widely investigated in the literature. [1], [4], [16] survey and summarize theoretical developments 
and practical applications of maintenance models. Aging is usually considered as a process which 
results in an age-related increase of the failure rate. The most common shapes of failure rates have 
been observed in [12], [18]. An interesting approach was introduced in [7], where it was shown that 
aging is not always manifested by the increasing failure rate. 
 
         After each corrective maintenance action or repair, the aging system’s failure rate )t(  can be 
expressed as: 

),t()q1()0(q)t( *  
where q is an improvement factor that characterizes the quality of the overhauls )1q0(   and 

)t(* is the aging system’s failure rate before repair [20]. If ,1q   it means that the maintenance 
action is perfect (system becomes “as good as new” after repair). If ,0q   it means that the failed 
system is returned back to a working state by minimal repair (system stays “as bad as old” after 
repair), in which failure rate of the system is nearly the same as before. The minimal repair is 
usually appropriate for multi-state systems. In such situation, the failure pattern can be described by 
non-homogeneous Poisson process (NHPP). Incorporating the time-varying failure intensity into 
existing Markov model was suggested in [17] for reliability modeling of hardware/software 
systems. More details and interesting examples one can find in [19]. Based on this, the extended 
approach is suggested, which incorporates the time-varying failure intensity of aging component 
into Markov reward model that is using for general reliability measures evaluation of non-aging 
MSS [7]. Such unified model will be called as a non-homogeneous Markov reward model.  
 
         This paper considers measures of availability and reliability for a multi-state system where the 
system and its components can have different performance levels ranging from perfect functioning 
to complete failure. In section 2 a general approach is presented for the computation of main MSS 
reliability measures. This approach is based on the application of the Markov reward model. The 
main MSS reliability measures can be found by corresponding reward matrix definitions for this 
model and then by using a standard procedure for finding expected accumulated rewards during a 
time interval ]t,0[  as a solution of a system of differential equations.  In section 3 a general 
approach is presented for computing reliability measures for aging MSS under corrective 
maintenance with minimal repair. This approach is based on non-homogeneous Markov reward 
model, where specific reward matrix is determined for finding any reliability measure. This chapter 
is based on [9], [11], and presents a model representing demand as a continuous-time Markov chain 
with three logic levels. In section 4 we introduce illustrative example in order to illustrate the 
approaches. 
 
 
 
2. MARKOV REWARD MODEL FOR MULTI-STATE SYSTEM 
 
2.1. Generalized MSS Reliability Measures 
 
         The MSS behavior is characterized by its evolution in the space of states. The entire set of 
possible system states can be divided into two disjoint subsets corresponding to acceptable and 
unacceptable system functioning. MSS entrance into the subset of unacceptable states constitutes a 
failure. The MSS reliability can be defined as its ability to remain in the acceptable states during the 
operation period. The system state acceptability depends on the relation between the MSS output 
performance and the desired level of this performance (demand ))t(W  that is determined outside the 
system. Often the demand )t(W  is also a random process that can take discrete values from the set 
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}.w,,w{w M1   The desired relation between the system performance and the demand at any 
time instant t can be expressed by the acceptability function )).t(W),t(G(  In many practical 
cases, the MSS performance should be equal to or exceed the demand. So, in such cases, the 
acceptability function takes the following form:  

              
                )()())(),(( tWtGtWtG                                 (1) 

 
and the criterion of state acceptability can be expressed as: .0))t(W),t(G(    
A general expression defining MSS reliability measures can be written in the following form: 
 

                    ,))(),(( tWtGFER                             (2) 
 
where E expectation symbol, F functional that determines corresponding type of reliability 
measure, and  acceptability function. Many important MSS reliability measures can be derived 
from the expression (2) depending on the functional F that may be determined in different ways. 
For example, it may be a probability  0))t(W),t(G(Pr   throughout a specified time interval 

]t,0[  and the acceptability function (1) will be nonnegative. In this case, this probability 
characterizes MSS availability. It may be also an expectation of an appropriate function up to the 
time of the MSS,s initial entrance into the set of unacceptable states, where 0))t(W),t(G(   is 
the number of such entrances within time interval ]t,0[  and so on. For a power system where the 
available generating capacity at time instant t is )t(G and the corresponding load demand is ),t(W if 
the acceptability function is defined as: 
                     









)t(G)t(Wif,0
)t(G)t(Wif),t(G)t(W

))t(W),t(G(  

 
A function, 

  ,dt))t(W),t(G())t(W),t(G(F
T

0
  

 
will characterize an accumulated performance deficiency during time interval [0, T]. 
 
 
2.2. Markov Reward Model: General Description 
 
         The general Markov reward model was introduced in [6]. It considers the continuous-time 
Markov chain }0t|)t(X{  with a set of states }k,,1{  and a transition intensity matrix 

.k,,1j,i],a[A ij   It is assumed that while the process is in any state i during any time unit, 
some money iir  should be paid. It is also assumed that if there is a transition from state i to state j 
the amount ijr  will be paid. The amounts iir  and ijr  are called rewards. Rewards can be negative 
while representing a loss or penalty. Such a reward process associated with its states or/and 
transitions is called a Markov process with rewards. For such processes, in addition to the transition 
intensity matrix, a reward matrix k,,1j,i],r[r ij   should be determined. The main problem is 
to find the total expected reward accumulated up to time instant t under specified initial conditions.  
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         Let )t(Vi  denotes the total expected reward accumulated up to time t at state i. The following 
system of differential equations must be solved under the initial conditions: k,,1i,0)0(Vi   in 
order to find the total expected reward. 
 

kitVarar
dt

tdV
j

k

j
ij

k

ij
j

ijijii
i ,,1),(

)(
1,1

 





                                    (3) 

 
         Markov reward models are widely used in financial calculations and operations research [5]. 
General Markov reward models for system dependability and performability analysis one can find 
in [2], [14], and [10]. Here the new approach is presented where the main MSS reliability measures 
can be found by determination of the corresponding reward matrix. Such an idea was primarily 
introduced for a binary-state system and constant demand in [15]. In this chapter, the approach is 
extended for multi-state systems and variable demand. 

 
 
2.3. Rewards Determination for MSS Reliability Computation 
 
         MSS instantaneous (point) availability )t(A  is the probability that the MSS at instant 0t   is 
in one of the acceptable states:  .0))t(W),t(G(Pr)t(A   
 
         The MSS average availability )t(A  is defined in [13] as a mean fraction of time when the 

system resides in the set of acceptable states during the time interval [0, t], 
t

0

.dt)t(A
t
1)t(A  

         In order to assess  for MSS the rewards in matrix r for the MSS model should be 
determined in the following manner: 
 

 The rewards associated with all acceptable states should be defined as one. 
 The rewards associated with all unacceptable states should be zeroed as well as all rewards 

associated with all transitions. 
 
         The mean reward )t(Vi  accumulated during interval ]t,0[  will define a time that MSS will be 
in the set of acceptable states in the case when the state i is the initial state. This reward should be 
found as a solution of the system (3). After solving (3) and finding ),t(Vi  MSS average availability 
can be obtained for every initial state ,k,,1i  .t))t(V()t(A ii   
 
         Usually, the initial state is assumed as the best state. 
 
         Mean number )t(N f of MSS failures during time interval [0, t] measure can be treated as the 
mean number of MSS entrances to the set of unacceptable states during time interval [0, t]. For its 
computation the rewards associated with each transition from the set of acceptable states to the set 
of unacceptable states should be defined as one. All other rewards should be zeroed. In this case 
mean accumulated reward )t(Vi  will define the mean number of entrances in the unacceptable area 
during time interval [0, t]: ).t(V)t(N if   
 

)t(A
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         Mean time to failure (MTTF) is the mean time up to the instant when the MSS enters the 
subset of unacceptable states for the first time. For its computation the combined performance-
demand model should be transformed; all transitions that return MSS from unacceptable states 
should be forbidden, because for this case all unacceptable states should be treated as absorbing 
states. In order to assess MTTF for MSS the rewards in matrix r for the transformed performance-
demand model should be determined in the following manner: 
 

 The rewards associated with all acceptable states should be defined as one. 
 The rewards associated with unacceptable (absorbing) states should be zeroed as well as 

rewards associated with transitions. 
 
In this case mean accumulated reward )t(Vi will define the mean time accumulated up to the first 
entrance into the subset of unacceptable states or MTTF. 
 
         Probability of MSS failure during time interval [0, t]: The model should be transformed as in 
the previous case; all unacceptable states should be treated as absorbing states, and therefore all 
transitions that return MSS from unacceptable states should be forbidden. Rewards associated with 
all transitions to the absorbing states should be defined as one. All other rewards should be zeroed. 
Mean accumulated reward )t(Vi will define for this case the probability of MSS failure during time 
interval [0, t] if the state i is the initial state. Therefore, the MSS reliability function can be obtained 
as: ),t(V1)t(R ii   where .k,,1i    
 
3. NON-HOMOGENEOUS MARKOV REWARD MODEL FOR AGING MULTI-STATE 
SYSTEM UNDER MINIMAL REPAIR 
 
3.1. Model Description 
 
         The MSS output performance )t(G  at any instant 0t   is a continuous-time Markov chain 
that takes its values from the set ,g)t(G},g,,g{g k1    where ig  is the MSS output 
performance in state .k,,1i,i   For Markov MSS transition rates (intensities) ija  between states 
i and j are defined by the corresponding system failure ij  and repair ij  rates. The minimal repair 
is a corrective maintenance action that brings the aging equipment to the conditions it was in just 
before the failure occurrence. Aging MSS subject to minimal repairs experiences reliability 
deterioration with the operating time, i.e., there is a tendency toward more frequent failures. In such 
situations, the failure pattern can be described by a Poisson process whose intensity function 
monotonically increases with t. A Poisson process with a non-constant intensity is called non-
homogeneous, since it does not have stationary increments [4]. It was shown (see, for example, 
[20]) that NHPP model can be integrated into the Markov model with time-varying transition 
intensities ).t()t(a ijij   Therefore, for aging MSS transition intensities corresponding to failures 
of aging components will be functions of time ).t(a ij  
 
3.2. Non-Homogeneous Markov Reward Model 
 
         For non-homogeneous Markov model a system’s state at time t can be described by a 
continuous-time Markov chain with a set of states  k,,1   and a transition intensity matrix 

)],t(a[)t(A ij   ,k,,1j,i   where each transition intensity may be a function of time t. For such 
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model, in addition to the transition intensity matrix, a reward matrix k,,1j,i],r[r ij   should be 
determined [2].  
 
         Let )t(Vi be the expected total reward accumulated up to time t given the initial state of the 
process at time instant 0t   is state i. Howard differential equations [14] with time-varying 
transition intensities )t(a ij  should be solved under specified initial conditions in order to find the 
total expected rewards: 
 

kitVtartar
dt

tdV
j

k

j
ij

k

ij
j

ijijii
i ,,1),()()(

)(
1,1

 





                               (4) 

 
In the most common case, MSS begins to accumulate rewards after time instant ,0t   therefore, the 
initial conditions are: 
        

                kiVi ,,1,0)0(                             (5) 
 
 If for example the state k with the highest performance level is defined as the initial state, the value 

)t(Vk  should be found as a solution of the system (4). 
 
         It was shown in [7] and [11] that many important reliability measures for non-aging MSS can 
be found by determination of rewards in a corresponding reward matrix. Here this approach is 
extended for aging MSS under minimal repair. And, notice that the approach is applied only for 
minimal repair. 
 
3.3. Rewards Determination for Computation of Different Reliability Measures for Aging 
MSS 
 
         The reliability measures can be determined by the same manner as it was indicated in section 
2.3. 
 
4. ILLUSTRATIVE EXAMPLE 
 
         Consider the air-conditioning system used in a hospital. The system consists of three identical 
air conditioners which are connected in parallel. Demand is a continuous-time Markov chain with 
three levels: peak, middle, and low. The state-space diagram for this system is presented in figure 
(1). 
 
         There are 12 states. States from 1 to 4 associated with the low demand period, states from 5 to 
8 associated with the middle demand period, and states from 9 to 12 associated with the peak 
demand period. 
 
         States 12, 8, and 4 indicate all components work, the system performance is 

.3ggg 4812   States 11, 7, and 3 indicate two components work and the third component 
failed, the system performance is .2ggg 3711   States 10, 6, and 2 indicate that one 
component only works, the system performance is .1ggg 2610   States 9, 5, and 1 indicate 
full system failure, the system performance is .0ggg 159   If in the peak-demand period the 
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required demand level is w = 3, in the middle-demand  period the required demand level is w = 2, 
and in the low-demand period the required demand level is w = 1, then there are six acceptable 
states: 12, 8, 4, 7, 3, and 2. States: 11, 10, 6, 9, 5, and 1 are unacceptable. 
 

    
 

Figure (1): The state-space diagram for a system with three identical air conditioners 
 
         The transitions from state 12 to state 11, from state 8 to state7, and from state 4 to state 3 are 
associated with the failure of one of the three conditioners and have an intensity of  3λ(t). The 
transitions from state 11 to state 10, from state 7 to state 6, and from state 3 to state 2 are associated 
with the failure of the second conditioner and have intensity of 2λ(t). The transitions from state 10 
to state 9, from state 6 to state 5, and from state 2 to state 1 are associated with the failure of the 
third conditioner and have intensity of λ(t). 
 
         The transitions from state 1 to state 2, from state 5 to state 6, and from state 9 to state 10 are 
associated with repair of one of the three failed conditioners and have intensity of 3µ(t). The 
transitions from state 2 to state 3, from state 6 to state 7, and from state 10 to state 11 are associated 
with repair of one of the two failed conditioners and have intensity of 2µ(t). The transitions from 
state 3 to state 4, from state 7 to state 8, and from state 11 to state 12 are associated with repair of 
the failed conditioner and have intensity of µ(t). 
 
         The transitions from state 12 to state 8, from state 11 to state 7, from state 10 to state 6, and 
from state 9 to state 5 are associated with a variable demand and have intensity of λ1(t). The 
transitions from state 8 to state 4, from state 7 to state 3, from state 6 to state 2, and from state 5 to 
state 1 are associated with a variable demand and have intensity of λ2(t). The transitions from state 
12 to state 4, from state 11 to state 3, from state 10 to state 2, and from state 9 to state 1 are 
associated with a variable demand and have intensity of λ3(t). The transitions from state 8 to state 
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12, from state 7 to state 11, from state 6 to state 10, and from state 5 to state 9 are associated with a 
variable demand and have intensity of λ4(t). The transitions from state 4 to state 8, from state 3 to 
state 7, from state 2 to state 6, and from state 1 to state 5 are associated with a variable demand and 
have intensity of λ5(t). The transitions from state 4 to state 12, from state 3 to state 11, from state 2 
to state 10, and from state 1 to state 9 are associated with a variable demand and have intensity of 
λ6(t).                            
         In order to find the MSS average availability  we should present the reward matrix Ar  in 
the following form: 
 















































100000000000
000000000000
000000000000
000000000000
000010000000
000001000000
000000000000
000000000000
000000001000
000000000100
000000000010
000000000000

][ ijA rr
                       (6) 

 
         In this matrix, rewards associated with all acceptable states are defined as one and rewards 
associated with all unacceptable states are zeroed as well as all rewards associated with all 
transitions. 
 
         The system of differential equations (7) can be written in order to find the expected total 
rewards .12,,1i),t(Vi   The initial conditions are: .12,,1i,0)0(Vi   
After solving this system and finding ),t(Vi  MSS average availability can be obtained as follows: 

,t)t(V)t(A 12  where the 12-th state is the initial state. 

)t(A
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         In order to find the mean total number of system failures  we should present the reward 
matrix Nr  in the form (9). In this matrix the rewards associated with each transition from the set of 
acceptable states to the set of unacceptable states should be defined as one. All other rewards should 
be zeroed. 
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                           (9) 

 
         The following system of differential equations (10) can be written in order to find the 
expected total rewards .12,,1i),t(Vi   
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Here 121 C,,C   are calculated via formulas (8). 
The initial conditions are: .12,,1i,0)0(Vi   After solving this system and finding ),t(Vi  

the mean total number of system failures  can be obtained as follows: ),t(V)t(N 12f   where 
the 12-th state is the initial state. 
 
         In order to calculate the mean time to failure (MTTF), the initial model should be 
transformed; all transitions that return MSS from unacceptable states should be forbidden and all 
unacceptable states should be treated as absorbing states. The transformed model is shown in figure 
(2). 
 

 
Figure (2): The state-space diagram for the transformed system with three identical air conditioners 

with absorbing states 
 
 
 
         In order to assess MTTF for MSS, the rewards in matrix r for the transformed model should 
be determined in the following manner. The rewards associated with all acceptable states should be 
defined as one and the rewards associated with unacceptable (absorbing) states should be zeroed as 
well as all rewards associated with transitions. 
 
The reward matrix r for this system is as follows: 
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The following system of differential equations can be written in order to find the expected total 
rewards .12,11,8,7,6,4,3,2,1i),t(Vi   
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The initial conditions are: .12,11,8,7,6,4,3,2,1i,0)0(Vi   
After solving this system and finding ),t(Vi  the MTTF for MSS can be obtained as ),t(V12  

where the 12-th state is the initial state. 
          

         To calculate the probability of MSS failure during time interval [0, t] the model should be 
transformed as in the previous case: all unacceptable states should be treated as absorbing states 
and, therefore, all transitions that return MSS from unacceptable states should be forbidden. 
Rewards associated with all transitions to the absorbing state should be defined as one. All other 
rewards should be zeroed. 
 
The reward matrix r for this system is as follows: 
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Mean accumulated reward )t(Vi  will define the probability )t(Q  of MSS failure during time 
interval [0, t]. 
 
The following system of differential equations can be written in order to find the expected total 
rewards .12,11,8,7,6,4,3,2,1i),t(Vi   
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(15) 
Here 12,11,8,7,6,4,3,2,1i,Ci   are calculated via formulas (13). The initial conditions are:  

.12,11,8,7,6,4,3,2,1i,0)0(Vi   



M. A. El-Damcese  and N. S. Temraz – AVAILABILITY AND RELIABILITY MEASURES FOR MULTISTATE SYSTEM BY USING MARKOV REWARD MODEL 

 
RT&A # 03 (22)  

(Vol.2) 2011, September 
 

 

81 

After solving this system and finding ),t(Vi  MSS reliability function can be obtained as 
),t(V1)t(R 12  where the 12-th state is the initial state. 

 
Now, we consider two types of the parameters as follows: 

 
(i) The air conditioners failure and repair rates are time-varying 
      
         As a particular case, we assume that the working time and the repair time of each conditioner 
are both Weibully distributed. We can then write: 
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Using MAPLE program, the MSS average availability  against time is illustrated in figure (3) 
with numerical solutions based on Runge-Kutta method. 
 
 

 
 

Figure (3): The average availability versus the time t (case i) 
 
         Similarly, the mean total number of system failures ),t(N f  the MTTF for MSS, and the MSS 
reliability function )t(R  against time are illustrated in figures (4), (5), and (6), respectively. 
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Figure (4): The mean total number of system failures versus the time t (case i) 
 
 

 
 

Figure (5): The MTTF for MSS versus the time t (case i) 
 
 

 
 

Figure (6): The MSS reliability function )t(R versus the time t (case i) 
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(ii) The air conditioners failure and repair rates are constant: 
      
         As a particular case, we assume that the working time and the repair time of each conditioner 
are both exponentially distributed. We can then write: 
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Using MAPLE program, the MSS average availability  against time is illustrated in figure (7) 
with solutions based on Laplace transform method. 
 

 
 

Figure (7): The average availability versus the time t (case ii) 
 
         Similarly, the mean total number of system failures ),t(N f  the MTTF for MSS, and the MSS 
reliability function )t(R against time are illustrated in figures (8), (9), and (10), respectively. 
 
 

 
 

Figure (8): The mean total number of system failures versus the time t (case ii) 
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Figure (9): The MTTF for MSS versus the time t (case ii) 
 
 

 
 

Figure (10): The MSS reliability function )t(R versus the time t (case ii) 
 

time to MSS failure, mean accumulated performance deficiency for a fixed  
 
 
5.  CONCLUSIONS 
 
1. Extension of continuous-time Markov chain to Markov reward models make them even more 
useful.                                            
 
2. A Markov reward models was developed as the basis for the generalized computation of 
availability and reliability measures.  
 
3. The method has been suggested for the computation of MSS reliability and availability 
measures based on a different reward matrix determination for the Markov reward model.   
         
4.  A Markov reward models is well formalized and suitable for practical application in reliability 
engineering.                              
 
5.  The numerical results are presented in order to illustrate the suggested model.                                                                            
 
 

 



M. A. El-Damcese  and N. S. Temraz – AVAILABILITY AND RELIABILITY MEASURES FOR MULTISTATE SYSTEM BY USING MARKOV REWARD MODEL 

 
RT&A # 03 (22)  

(Vol.2) 2011, September 
 

 

85 

REFERENCES 
 
[1] Barlow, R. E. and Proschan, F., Statistical theory of reliability and life testing, Holt, Rinehart 

and Winston, New York, 1975.  
[2] Carrasco, J., Handbook of reliability engineering, Springer-Verlag, Berlin, 2003. 
[3] Finkelstein, M. S., On the shape of the mean residual lifetime function, Journal of Applied 

Stochastic Models in Business and Industry, 18(2), 135-146, 2002. 
[4] Gertsbakh, I., Reliability theory with applications to preventive maintenance, Springer-Verlag, 

Berlin, 2000.  
[5] Hiller, F. and Lieberman, G., Introduction to operation research, McGraw-Hill, New York, 

1995. 
[6] Howard, R., Dynamic programming and Markov processes, MIT Press, Cambridge, 1960. 
[7] Lisnianski, A., The Markov reward model for a multi-state system reliability assessment with 

variable demand, Journal of Quality Technology & Quantitative Management, 4(2), 265-278, 
2007. 

[8] Lisnianski, A. and Levitin, G., Multi-state system reliability: Assessment, optimization and 
applications, World-Scientific, Singapore, 2003. 

[9] Lisnianski, A. and Frenkel, I., Non-homogeneous Markov reward model for aging multi-state 
system under minimal repair, International Journal of Performability Engineering, 5(4), 303-
312, 2009. 

[10] Lisnianski, A., Frenkel, I., and Khvatskin, L., Safety and reliability for managing risk, Taylor 
Francis, London, 2006. 

[11] Lisnianski, A., Frenkel, I., Khvatskin, L., and Ding, Y., Statistical models and methods for 
biomedical and technical systems, Birkhäuser, Boston, 2008. 

[12] Meeker, W. and Escobar, L., Statistical methods for reliability data, Wiley, New York, 1998. 
[13] Modarres, M., Kaminskiy, M., and Krivtsov, V., Reliability engineering and risk analysis: A 

practical guide, Marcel Dekker, New York, 1999. 
[14] Sahner, R., Trivedi, K., and Poliafito, A., Performance and reliability analysis of computer 

systems: An example-based approach using the SHARPE software package, Kluwer 
Academic, Boston, 1996. 

[15] Volik, B. G., Buyanov, B. B., Lubkov, N. V., Maximov, V. I., and Stepanyants, A. S., Methods 
of analysis and synthesis of control systems structures, Moscow, Energoatomizdat (in 
Russian), 1988. 

[16] Wang, H., A survey of maintenance policies of deteriorating systems, European Journal of 
Operational Research, 139, 469-489, 2002. 

[17] Welke, S., Johnson, B., and Aylor, J., Reliability modeling of hardware/software systems, 
Journal of IEEE Transactions on Reliability, 44(3), 413-418, 1995. 

[18] Wendt, H. and Kahle, W., Probability, statistics and modelling in public health, Berlin, 
Springer Science & Business Media, 2006. 

[19] Xie, M., Dai, Y-S., Poh, K-L., Computing systems reliability: Models and analysis, Kluwer 
Academic/Plenum Publishers, New York, 2004. 

[20] Zhang, F. and Jardine, A. K. S., Optimal maintenance models with minimal repair, periodic 
overhaul and complete renewal, Journal of IIE Transactions, 30, 1109-1119, 1998. 

 



Katsman M., Kryvopishyn O., Lapin V. - MATHEMATICAL MODELS OF DECISION SUPPORT SYSTEM FOR THE HEAD OF THE FIREFIGHTING 
DEPARTMENT ON RAILWAYS 

 
RT&A # 03 (22)  

(Vol.2) 2011, September 
 

 

86 

MATHEMATICAL MODELS OF DECISION SUPPORT SYSTEM FOR THE HEAD OF 
THE FIREFIGHTING DEPARTMENT ON RAILWAYS 
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Lapin V., Ph.D. 
 
 
 

 Rail transport is an important basic sector of economy of Ukraine, provides its internal and 
external transport and economic connections and transportation needs of the population. 
  Currently, the country's railways transport a large quantity of various goods, including nine 
form of dangerous goods.  

We know that traffic accidents on the railway, according to the causes of origin, are divided 
into technological, natural, social, political and military character and, according to territorial 
distribution, disruption of traffic and volumes of technical and financial resources necessary to 
eliminate them, they can be national, regional and local or object level.  

These transport events may lead to loss of life or create a dangerous situation on particular 
area or particular object which may lead to loss of health, lead to the destruction of buildings, 
equipment and vehicles, violations of the manufacturing or transport process and harm the 
environment.  

Especially dangerous are accidents, accompanied by explosion of tanks with liquefied 
hydrocarbon gases and flammable liquids and throwing of flammable liquids and potent poison. 
Much of the danger comes from solid combustible substances during their transportation and 
storage [1].  

Fighting fires on the railway is marked difficulty in organizing the operations of fire 
departments and related units of the railway, because of a large number of goods that have a variety 
of fire and explosive properties, the need to power down the contact network, the complexity of 
assessing the situation on the fire, the concentration necessary capabilities, etc. [2].  

From the above, for the effective management of forces and means of fire must have an 
effective system of fire departments and relevant units of railroads, to organize a scientific basis for 
Task Force work to eliminate traffic accidents and fires at the operational headquarters, which is 
impossible without widespread use of modern information technology including decision support 
systems (DSS).  

Application of DSS allows the informational, technological, analytical and organizational 
support iterative interactive process of analysis of the situation as a result of accidents, training and 
evaluation of solutions managers eliminate traffic accidents and fire suppression and selection of 
the final decision to eliminate such events.  

To implement the DSSfor our opinion it is necessary to create mathematical models to 
assess the situation and the process of developing recommendations for their elimination, and the 
mathematical model for evaluating the effectiveness of firefighting units [3]. 
 Creating models to assess the situation which arose as a result of traffic accidents 
accompanied by fire, in our view, should do with the productive systems that provide a view of 
human experience evaluating the situation in dangerous situations in the form of rules and allow the 
results to develop a search algorithm and are effective tool for developing expert systems [4].    

Based on an analysis of work in addressing issues of liquidation of traffic accidents on the 
railway and general systems theory, set-theoretic model that reflects the cause-effect relationships 
of processes that create extraordinary situation, is given by [5]: 

S={ CS(t1),  FS(t2) }, 
                         

where S - the set of emergencies; CS (t) i FS (t) - set the current and final states of 
emergency, respectively; t = t + t, t - duration of the emergency, t1 - the beginning of an emergency. 
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Current state of emergency determined by tuple:  
             

CS (t1) = {  ,,,,,, ,T}. 
 The set E defines a set of character attributes burning hazardous substances fire signs of the 
impact of hazardous substances at the emergency and the adjacent tank includes a set of Г; warning 
signs of cargo tanks are set on X, the set  consists of the signs of the impact of combustion 
leakage of substance on the emergency and the adjacent tank; signs of the impact of other 
(neighboring) emergency tank fires are set  , the set  consists of flame characteristics influence 
another (neighboring) fires in emergency cases or a neighboring tank features of the environment 
and weather conditions contained in the set  , the set T consists of a period of time. 

The set of final states FS (t2) emergency includes a set of SE, ME, i HE, which determine 
the results of such situations. SE set contains the final states of emergencies, bomb threats, when the 
tank is missing, the set consists of the ME final states of emergency when there is some danger of 
explosion, and the HE set includes final states with an explicit threat of explosion of the tank. 

                   
FS(t2) = {HE, МE, SE}. 

 
 To create an information model of emergency, which is accompanied by fire hazardous 
cargo, the method of production systems, which is now widely used in artificial intelligence theory 
to retrieval algorithms and modeling problem solving person. Productive system manages the 
process of solving problems on the model and consists of a set of production rules, working 
memory and control cycle "recognition – action”. 

The generalized production rules to determine the result of an accident is determined by the 
expression: 

)}]t(fs{}]{}{}{}{}{}{}{)}t(cs[[{}e{ 21qmkdcba1i
fs
i  ,    (1) 

 
Where 

.FS)2t(ifs,q,m,k,d,c,b,a,Sfs
іе   

 

Assessment of the situation and making recommendations on elimination of emergency 
situations that are accompanied by fire-hazardous cargo, is a complex multistep process. Given that 
the problem being solved and the heads of an emergency fire suppression in fire suppression is 
poorly formalized, their solutions should be undertaken using models, which formalizes the 
knowledge of experts to solve such problems. 

The development of such models currently being carried out by means of information 
technologies using expert techniques and theories of artificial intelligence techniques that allow 
professionals to take into account experience and easier to work with DSS not prohramuyuchoho 
specialist who has knowledge of the organization dealing with breakdowns, accompanied by fire of 
dangerous goods and involved in the process of making necessary decisions. 

In order to create information models and recommendations to eliminate fire on the analysis 
of guidance documents that define the order of liquidation of accidents with dangerous goods 
during their transportation by rail, also found that elements of the decisions the leaders of an 
emergency and a fire that define for fire suppression, cooling and emergency protection of rolling 
stock and infrastructure, evacuation, equipment and rolling stock, and take into account the 
experience of experts in making decisions regarding operations of fire departments in emergency 
situations, which are accompanied by fire-dangerous goods. 
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Accordingly, the expression for the information model recommendations regarding 
emergency is defined components: 
                

Ra = {Ex, Col, Ev, Liq, Ac, Det, Ob} 
 

         Ex set includes recommendations for actions aimed at putting an emergency rolling stock and 
prevent formation of explosive concentrations of fuel mixture; Col set includes recommendations 
for cooling rolling stock; recommendations for measures to eliminate leakage of dangerous 
substances includes set Liq; Ev has set guidelines that define the arrangements for the evacuation of 
people, equipment and rolling stock; recommendations for the General measures: isolation of the 
danger zone, in her handling of personnel, compliance with fire safety measures, provide first aid to 
victims, etc. contained in the set of Ac, Det set includes recommendations for the parameters of 
explosion and fire areas and the number of forces and capabilities necessary for fire, cooling and 
protection of rolling stock and facilities; recommendations for analysis of infrastructure, 
environment are in set Ob. 

Situation assessment and recommendation of the software DSS to eliminate accidents 
accompanied by fire, carried out in several stages [6]. 

In the first phase recommendations determined by state emergency rolling stock, 
infrastructure and rolling stock that are in dangerous areas of the accident, and fire suppression 
methods in such hardware. 

The first procedure  2  of this stage is to identify the hazardous event occurring in 
emergency hardware. Procedure 1 by using the generalized production rules (1). 

The procedure 2  allows to identify the infrastructure and rolling stock of railway transport, 
which are located in dangerous areas of the accident. 

Calculating the size of zones of influence of hazards and accidents and detection of rolling 
stock in these areas is the methodology and algorithms are created in developing automatic 
working place for leader fighting a fire at the facilities and rolling stock of railway transport. 

The procedure 2 , based on the above factors is given by: 
                               }.vEОb,T,,tDe,tDe, { 12                                                 (2) 

 
          Elements Det I  subsets are recommendations from the calculation of accident hazards of 
liquefied hydrocarbon gases. Guidelines for determining the size of accidents hazards with 
combustible (flammable) liquids are in the subset of Det II . Ev I subset includes recommendations 
for evacuation. 

Given (2) production rules for such a procedure defined by the expression: 
 

}]],ve{}ob{}ob{}so[{
)}]t(t{de)}t(t{de}e{}c[[{e

qP
2

202r
fs
i2i2

21 



 

where 2ice  ЕС, ЕС S - subset of the set of emergencies S, which takes into account the 

consequences of an accident fs
iе ; rtde  (t 2 )  tDe  ; 0tde  (t2)  tDe   - calculated from a 

formula determining the size of hazardous zones accident at the time t2 ; 2so  SO, SO  S - 
subset of the  the set of emergencies S, considering the state of rolling stock and facilities that are 
in dangerous areas of the accident: P

1
ob - rolling stock items that are in areas of excessive pressure 

of the front shock wave from the explosion facilities and rolling stock, suffering from flames; ve  
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 vE  - guidelines for notification and evacuation of the objects that are in dangerous areas of the 
accident. 

After detection of such facilities and rolling stock, using the procedure 1  identified 
hazardous events have been found damaged rolling stock of dangerous goods and set its impact on 
the surrounding objects and railway rolling stock. 

Iterative process of application procedures 1  and 2  ends when they have not found an 
emergency rolling with the dangerous goods in zones hazards of accidents, followed by fires. 

The procedure 3  is devoted to considering ways of fighting fires and emergency cooling 
tank, taking into account properties of the substance that burns, and develop measures to prevent the 
formation of explosive concentrations of vapor in a cloud  for substances that do not burn. 

Formally this procedure is determined by a tuple: 
3  = { S, A, Ex, Col, Ас}, 

                               
where A-set of properties of matter, which affect the processes of combustion, and of 

making fire and emergency cooling of the rolling stock  (А={ А , А   ,А  }). 
Subset АА  characterized by physical and chemical properties of substances. Signs of 

fire explosion properties of matter form a subset of А   , А  А. The danger to humans 
characterize subsets of features ,А  АА  . 

The second phase of recommendations designed to determine the measures for the 
evacuation of military servants, railway workers, equipment and rolling stock from dangerous areas 
of the accident and measures aimed at eliminating leakage alarm substance. 

The procedure 2
1  for determining the necessary measures to evacuate people, equipment 

and rolling stock and eliminate leakage of dangerous substances is given a tuple: 
 

 Ob Liq, Ev, T, , , Ac, Ex, ,S2
1 . 

 The third stage of automated recommendations designed to determine the required number 
of fire departments for fire suppression and protection of the rolling stock, the definition of 
probabilistic assessments of operations of fire departments and optimization plan to focus their 
combat.  

Determine number of fire departments to extinguish fires in rolling stock is carried out by 
known techniques, and using algorithms developed for the DSS leader fighting a fire in rolling 
stock and rail transport facilities. 
 The procedure 3

1  for determining the required number of capabilities for fire suppression 
and protection of the rolling stock is given a tuple: 

                                           N,T,tDe,1
3

3
1 . 

 
Det III  subset includes recommendations for determining capabilities necessary for fire 

suppression. ρN  - number of units required for fire extinguishing. 
 Procedure of the probabilistic estimates of operations of fire departments is given by a tuple:  
 

 м
IV3

1
3
2 J,Det,T, . 

    
 Det IV  is decide on a probabilistic assessment of operations of fire departments in fire 
suppression and optimization plan to focus fire departments. Jм - the likelihood of possible states of 
the system, which consists of fire units, facilities and rolling stock. 
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After defining the principal possibilities of success of fire suppression and protection 
facilities, optimization plan is to focus on capability, taking into account losses from fire and focus 
of time and input the required number of fire departments in each of the objects (rolling stock). 

The procedure for optimizing the plan focus and putting fire departments is given a tuple: 
 

IV3
1

3
3 Det,с, , 

where ρc  -  losses of time to concentrate fire departments. 
To determine the probabilistic assessment of subdivisions fire department while managing 

traffic accidents in the DSS applies mathematical tools of queuing theory, including mathematical 
models, based on closed stochastic networks [7]. 

The system of "fire units - objects (rolling stock) railway affected by fires in DSS filed a 
stochastic closed network - a set of interrelated systems of mass service (СМО). 

The view of the network depends on the particular priority designation capabilities to sites 
affected by fire. 

A general view of such a closed stochastic network presented in Figure 1. 
 

 
 

Fig. 1. Closed stochastic network system "fire units - objects (rolling stock), affected by fire. " 
 

Number of fire departments Mrs required for all objects defined tactical calculations. Not 
allowed income units from outside the network and outputs the limits of their network. It is clear 
that 

                                             n= ,n
к

1j
j



                                  (3) 

                   
where k - number of facilities affected by the fire; nj - number of fire units required for fire 

suppression and-so on the site. 
The items affected by fire are the QS as storage systems with limited service applications. 

QS-0 is a model fire station, where fire units arrive. In theory queuing system with n parallel 
handling equipment queue. QS that describe the objects that suffer from fires, are a limited period 
of storage applications service. 

Assuming that the number of fire units that travel to sites is limited, a closed network is 
always stationary. 

Calculating the closed stochastic network made the assumption that the duration of service 
applications in the QS, which part of the network are random variables, which are distributed by the 
exponential law. 

An important justification for studies of this network scheme is also that it can be considered 
as a set of independent QS with simpler input. 

Closed stochastic network is determined by the following parameters: 
- number of (K +1) queuing systems that are part of the network; 
- quantity of devices for each QS (n0,.......,nк); 
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- matrix of transition probabilities Р= ijP , where Р ij - probability that the application and 
after passing th QS will receive the input of that j-QS; 

- n number of applications that circulate in a closed network; 
- flux j  applications for the entrance of that j-QS. 
The sequence of calculating the numerical parameters of stochastic networks [8]. 
1. Defining the matrix of transition probabilities. 
The matrix of transition probabilities - square, the size of (K +1) x (K +1). Index 0 in the 

transition probabilities related to the source applications QS-0 (fire station): 
It Роі - a possibility that application of QS-0to the input and th QS, and jo -- the likelihood 

that an application after the passage of that j-QS tends to QS-0. 

Р=
























кккк

к

к

.....
.................

.....

.....

10

11110

00100

 

Thus Poi – is the probability of that the request from QS-0 comes to the entrance of  i-th  QS, 
and  Pjo – is the probability of that the request after coming of j-th QS goes to QS-0.  

It is obvious that elements of the matrix P sum of each tape is 1. 
2. Determination of the intensity of flow at the entrance of each QS. 

Assuming that the intensity of the stationary mode flow of applications for the entrance and exit of 
any cleanse the same: 





к

0і
iіjj ,     к,оj ; 0i n , 

we can write the system of homogeneous linear к0 ,.......,  ,which will look like: 
 
                                              













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к1к111001
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3. Calculating the probability of network status. 

 
Network status determined by the number of applications in each QS network. Denote the 

number of entries in the j-and QS ( j = к,0 ) by nj. The set of values {n0,…,nк} determines the state 
of the network. Given (3), the parameter that is calculated to be determined by the expression: 

                                     .
P

P.....Pn,.....nJ к

0j

)j(
nj

)k,n(A

)n(
nk

)0(
0n

к0n




 .                                                     (4) 

                                            
In the numerator (4) - the product of probabilities of states of QS, which part of the network, 

and )j(
njР  - the likelihood of each j  of that QS. 
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In the denominator (4) The summation is over all states for which n =


к

1j
jn   (the set of such 

states indicated A (n, k)). The denominator in (4) - is a normalizing factor that is introduced to the 
sum of probabilities of all possible states of a network unit equal. 

According to the method of DSS considered various options for priority focus fire units at 
sites affected by fire, and determined the likelihood of possible states of the network.  

From a comparison of the probabilities chosen focus option with a maximum value of such 
magnitude. Technique is used, you can determine the success of concentrating fire departments for 
fire suppression on objects (rolling stock) Railway provided when known only time characteristics 
of "fire departments - objects (rolling stock) railway affected by fire”. 

With DSS automatized process of assessing the situation, the parameters of transport 
developments in fire zones availability of rolling stock and rail facilities and to identify the required 
number of capabilities for fire suppression. 

 
 
CONCLUSIONS 
 
Using such a DSS can significantly reduce the time to evaluate the situation and making 

decisions on the organization of firefighting units to eliminate fire techniques to produce efficient 
thinking at training officers fire departments railroads, and develop knowledge base DSS. 

Future directions of the development of DSS are its use in research networks, comprising 
some QS with different characteristics, and models that take into account the loss of combat 
vehicles and servants, and the sequence of different disciplines to focus on capabilities rolling stock, 
affected by fire. 
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ABSTRACT 

 
In article generalization of a problem of optimum quantization of a casual signal with blanks between quanta is 

presented. Unlike known works the law of distribution of a casual signal with quanta is received. Instead of the integer 
decision of a problem the approached asymptotic decision is offered at a great number of quanta and the estimation of 
its accuracy is given. Besides, the decision of the given problem is received at fuzzy values of parameters of a blank and 
a population mean of an initial random variable with the normal law of distribution. Bibl. 8 nam., 5 fig.   

Keywords: a random variable, asymptotic the optimum decision, quantum, probability density, uniform and 
normal distributions, fuzzy parameter, accessory function. 

 
 

   Introduction. The problem of quantization of a casual signal, apparently, has been put for the first 
time and asymptotic is solved in article [1]. Article has been connected with a problem of value of 
the information in the theory of the information [2], it differed high mathematical level. Application 
of results of this article to the decision of applied problems of a technical profile inconveniently 
enough. However, the idea of the asymptotic approach to the decision can form a basis for the 
decision of various practical problems. 

In article [3] as criterion function of quantization of a casual signal the population mean, the 
most simple and rough characteristic of a random variable is accepted. The problem consisted in 
search of size of such quantum at which the population mean quantized random variable would 
reach a minimum. It has been shown that the problem of search of a minimum is a problem of 
integer optimization. For the numerical decision of a problem original enough algorithm is offered. 
Use of this algorithm, in our opinion, is expedient for the decision of unique problems of the raised 
accuracy, especially at small number of quanta. The basic lack – a combination of rough criterion 
function and enough bulky algorithm of the decision of a problem. The algorithm of the decision 
represents the basic value of article. It can be used as the sample of programming of the decision of 
challenges by students of technical colleges. For the decision of engineering problems it restrictedly 
is suitable because of high labor input of search of result, especially at rough criterion function. 

The idea of article [3] was used successfully at the decision of various problems of protection of 
the information [4,5], and also in problems of reliability of switching structures of systems.  

Interest to a quantization problem, in our opinion, is connected now with a problematics of the 
theory of fuzzy sets. Really, many parametry technical, program and social systems can't be having 
appearedleny unequivocally, accurately, "is not washed away". The author of given article in [6] the 
decision of a problem of optimization by a method uncertain mnozhitelja was offered to Lagranzha 
at fuzzy restriction.  

The decision of a problem of quantization at fuzzy parameters practically it is necessary. 
However, to promote in this area it is not simple enough. In is given the article some generalization 
criterial the approach to quantization of a casual signal, and also model of the account of an 
illegibility parametra a blank between quanta is offered.  

The author realizes that article is connected only with a question kvantovanija a casual signal, 
but not quantizations in the information theory. 
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Density of probability of size quantized a signal. Despite the stated critical remark concerning 
roughness of criterion function, we will use value of its formal representation and we will make 
attempt of development of idea of authors [3]. So, the size population mean quantezed a casual 
signal is presented by authors as:  

        



0

),(]1)([)()( zdF
x
ztrunccxxM                                    (1) 

Where size of quantum of a signal, blank size between quanta, the greatest whole part of 
number, and function of distribution of a random variable no quantized a signal. Further we will be 
a floor-corduroy road that distribution function has continuous density and a final population mean. 
We will construct formally following expression for probability density, using application delta-
function [7]:  

   



0

)(]))()[(()( dzzfr
x
ztrunccxww ,                             (2) 

where    delta-function, )()( ' zFzf  and r let some constant number, satisfying to a condition

10  r . Further, we will be released from integer relations 
x
z , that is we believe that division is 

presented with some on-sinfulness from integer value. At 0r  size of the relation of the tsebark, 
some lack, at  1r whole with some surplus. It is asked, at enough great number of quanta as 
itself will conduct conducted-rank r ? Obviously, we have the right to believe with the big degree of 
confidence that the random variable r̂  between the next quanta will be distributed in regular 

intervals with probability density 
x
1  on an interval x . Certainly, at small number of quanta and 

necessity of search of the integer decision of a problem of quantization it is an assumption 
unacceptably. Thus, it is a question of asymptotic representation of density of probability (2). For 
search of density (2) it is necessary to execute double integration at a random r̂ , but we won't do it, 

and we will be limited to size population mean expectations for it 
2
1

,1 r  . Then (2) it will be 

presented in a kind: 
 





0

)(])
2
1)[(()( dzzf

x
zcxww .                                   (3) 

As to transform the size in integral is monotonous, after performance of simple transformations 
(2) is received:  




 wcxrxw
cx

xf
cx

xw ),()(  .                            (4) 

It is easy to be convinced, that ,1)(
)(







cxr

dzz  having made variable replacement urxw
cx

x



 .   

Let's find a size population mean ,ŵ  using (4): 

                                           ),()( ,1,1 cxr
x

cxx Z 


                                               (5) 

where 



0

,1 )( dzzfZ . 
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We investigate special cases for 1,
2
1,0r ,. At 0r  it is had

2
,1

,1,1,1 )(,)(
x

c
x

x
cxx Z

Z


  

  . Function of )(,1 x  a minimum has no. At  
2
1

r  

2
1)(),(

2
1)( 2

,1
,1,1,1 




x
c

xcx
x

cxx Z
Z


  .    

There is a minimum at Zcx ,10 2  , equal )2(
2
1)

2
1()( ,1,1

,1
0,1 cc

c
cx ZZ

Z

 


  . At 

1r  1)(,)( ,12,1,1,1 


 ZZ x
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x
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c
cx ZZ

Z

 ,1,1
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0,1 )1()( 


   .  

Making calculations under the resulted formulas for normal distribution with parameters 
.,20.,100,1 едед ZZ     and .5 едс  , we receive:  

;7,3.,1,134)(.,6,31,
2
1

0,10 квантоведxедxr    

;5,5.,7,149)(.,4,22,1 0,10 квантоведxедxr    
квантоведxедxr 3,8.,2,173)(.,8,15,2 0,10   . 

The calculation executed under the formula (1), shows that for resulted values parameters of the 
normal law is received квантоведxMедx 7,3.,3,134)(.,6,31 00  . It testifies about 

satisfactorym coincidence of calculation to the calculation executed under the formula (4) at 
2
1

r . 

Let's find expression for the second initial moment quantized a size case:  

 )()()()( 22
,1,2

)(
2

2
2

,2 xrx
x

cxdzzzx ZZ
cxr



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  ,                          (6) 

where   dzzfzZ )(
0

2
,2 



 . We will result expression for an average quadratic deviation at 
2
1

r  – 

)
2

()( ,1
22

ZZ

xx
cx 
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

 , we will calculate its value and value variation factor in a minimum 

point .,6,310 едx  it is received 38,0.,5,51    ед . 
For determined distributions, that is at .100),()( ,1,1 едzzf ZZ   , we will receive the 

same values for a population mean as it depends only from Z,1  and doesn't depend from Z . 

Likelihood estimation of size quantized a random variable to mozh the  approximately to define, 
using the formula of density of probability: 
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xx

ex




 .                                            (7) 

Thus its third initial moment will be equal:  
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   .                  (8) 

The relative error of value of the third initial moment, defined under the formula (8), in 
comparison with the third moment found on method [3] is equal 

%7,110674,2/10010)629,2674,2( 66   . 
Any initial moment i  an order for probability density can be defined under the formula :  

                   






i

j

j
Zji

j
ii

i

i rxC
x

cx
0

,, )()(
  .                                             (10) 

Believing size of optimum quantum a random variable, it is possible to find its approached 
value mean squared deviations к  and using the normal law of distribution to receive a necessary 
likelihood estimation of size of quantum. Exact definition к is inconvenient enough, as quanta as 
random variables, are dependent. Believing their independent, the approached estimation from 
above for к  can be found from  following reasons. We will find transformation of Laplas of 
density of probability (4) 

                                ),()( )( s
x

cxesL cxr 
                                                      (11) 

where      transformation of Laplas )(zf . Further, believing known 0x  and average of quanta 

0n , at the given optimum decision we will write down: 
                                               ),()]([ 0 sLsg n                                                              (12) 

where  )(sg the image of Laplasa of density of probability of size of quantum. Let's find  it 
0 )()( n sLsg  . The first and second initial moments will be defined as 

),0(),0( ,,1 gg kk   and 2
,1,2 kkk   . Without resulting bulky calculations for 

our example with 4.,62,31,
2
1

00  nедxr  we will receive 43,0;58,13
,1


k

k
k 


 . 

For real, dependent quanta, these values will be slightly less. 
     

Algorithm of fuzzy quantization of a casual signal. In many cases quantizations of a casual 
signal it is necessary to take into consideration a fuzzy of the separate parameters influencing 
received decisions of a problem. Such parameters can be a little. In our example in such parameters 
can to be parameters of the law of distribution quantized  a random variable, blank size between 
quanta.  

The decision of   a problem of fuzzy quantization at several fuzzy parameters inconveniently 
enough because of necessity of construction of multidimensional function of an accessory. 
Therefore we will be limited to influence consideration only one fuzzy parameter. As such 
parameter we will accept blank size between quanta c . We will be set by an interval of  fuzzy and 
function of an accessory of parameter in the conditions of a considered example with normal 
function of distribution of a random variable. Let they are represented by the function 

]8,2[),2()8(111,0)(  cccc  which schedule is represented in drawing 1. 
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Fig. 1 
 
 

 To construct schedules of functions of an accessory to a population mean (5) and 
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0
0,1 cxr

x
cxx Z 


   , Zcx ,10 2   and at 

2
1

r . Then it is necessary to be set by 

degree « illegibility» these   functions  and  to  define   their  admissible borders illegibility». 
For construction of calculations in the environment of Mathcad it is necessary to use indexes 

representations of functions [8]: 

.2);
2
1()();2()8(111.0;;1;8:3,2 ,10
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,,1 Zi

Z
iiiiii cx

x
cxccici 


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    Calculating, we will receive two vectors – a vector - argument and function vector. Substituting 

in a vector-argument numerical values  
2
1.,100,1  rедZ ,   writing down values both functions 

in shape it is transposed vectors-lines, we will construct the functions of an accessory of size 
population mean quantezed the random variable, represented on figure 2.  

 
 

 
 

We will be set, for example, by trust level to the size  ,1 , equal 8,0  and we will find values of 
the bottom and top borders for this level:  

;8.0)26.129,,(int);,,(int)( ,1,1    erplterpltA  .8.0)04.139,,(int ,1  erpl  
Thus, at level trust a size 8,0  population mean  quantezed a signal will be in limits 

.04,139.26,129 ,1 unun   . 
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Arriving similarly, we find the function an accessory for optimum size of quantum at fuzzy size 
of a blank between quanta which is represented in figure 3. Function and argument vectors are 
equal: 

,)4042.3764.3462.3128.2849.24200(0
Tx   

T)056.089.000.189.056.000( . 
                                         
 Fig. 3. 
 
 
 
 
 
 

Interval accessories of optimum size of quantum at 8,0  trust level should satisfy to 
inequality .40,35.25,27 0 unxun  .  

For comparison we will calculate function an accessory for a population mean (1) resulted in 
[3]. The schedule of this function is shown in figure 4, and at the left it is an interval of an accessory 
of argument  )( 0xM  for .62,310 едx  , at which .min)( 0 xM  

At trust level 8.0   .73.138.41.129 unMun   
The received results coincide practically with split-hair accuracy that testifies to a correctness of 

the offered model quantization at the account of an fuzzy of parameter. 
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Fig. 4. 

 
 
 
 
 
    Let's give an example calculations of two-dimensional function of an accessory to fuzzy 
definition of size of optimum quantum: 

                     ),min(,)(2)( ,

8

2

120

80
, jijijiji dzsumzuzcur     ,                            (13) 

where  jir ,  an element of a two-dimensional matrix of values of arguments, and ji,  an element 
of a matrix of function of the accessory, corresponding ji,  to value of argument. Both matrixes 
are shown in drawing 5.              
 
                                       
 
                               (14) 
 
 
  Fig. 5.                                                                                                      

 
 
 
 
From matrixes (14) follows that value the accessory function, equal 00.1 , corresponds to 

optimum value of size of quantum .6.310 едx   On values of elements of a matrix  r  it is possible 
to define degree  fuzzy quantum sizes at certain level of trust to accessory function in a matrix  . 
For example, for 75.0c   on parameter of a blank c  the quantum size should be in limits

.2.33.0.30 0 unxun  , and for 89.0  on value of a population mean Z1  – in limits 
.6.34.3.28 1 unun Z  . For achievement it is more necessary for accuracy to raise accuracy of 

calculations under formulas (13). Similarly it is possible to define requirements to fuzzy size of a 
population mean with quanta  1 . 

 
The conclusion. On the basis of use of expression for a population mean of the random variable 

presented in the form of sequence of equal quanta on size with blanks between them, expression for 
density of probability of a random variable with quanta is received.   
   Asymptotic representation of the given density of probability under condition of replacement of 
integer number of quanta with the sum of the relation of realization of an initial random variable to 
size of quantum and a population mean of in regular intervals distributed random variable on an 
interval of size of quantum is offered. It allows to define optimum size of quantum, to find a 
likelihood estimation of a random variable with quanta and values of its initial moments at optimum 
size of quantum. 
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On an example for an fuzzy blank on size between quanta definition of functions of an 
accessory of fuzzy values of sizes of optimum quantum and a population mean of a random variable 
with quanta is shown.  

Given article has no direct relation to the information. Further it is expedient to consider the 
problem on quantization of a casual signal with syntactic, semantic and pragmatical forms of the 
static information. 
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ABSTRACT 
 

The author presents a general analytical solution determining “the Occurrence probability of a sequence of 
events each following Poison Stochastic Process”. Generally, this probability is described under the form of an integral 
equation of order “ n ”. Where “n ” is number of the elementary events in the examined sequence.  

As far as the author can tell, the solution is original. It will be of a great interest to a wide range of system 
reliability problems such as: sequential calculations, dominos effects, dynamics fault trees, Markov systems, priority 
AND gates, events trees, stochastic optimisation, acceleration techniques for Monte-Carlo simulation, … 

Key words: Ordered events, sequential events, Poisson stochastic Process, Markov, probability 
 

1 INTRODUCTIONIS 

The author is interested in determining “the occurrence probability of a well-defined sequence 
of ordered events obeying a Poisson stochastic process”, )(tpn .  

One meets often ordered events in system reliability analyses. Analysts may use “Dynamic 
Fault Tree” with “Priority Gates”, “Markov Graphs” or “Monte-Carlo Simulation” tools in order to 
deal with the dynamic aspect of this problem.  

A fault tree can be described by means of some cut sets. One may calculate the occurrence 
probability of each cut set. However, the calculated probability does not tell about the occurrence 
order of the involved events in the cut set.  A cut-set, containing n -independent events, may be 
expressed in n ! different ordered sequences. In many reliability and risk assessments, only some 
given ordered sequences may be of specific concerns. Consequently, it is of great interest to 
determine the occurrence probabilities of these sequences and their occurrence rates.  

In the paper, one describe the problem in the form of a given integral in §3 and a differential 
equation in §4. In [1], Fussell use the same integral equation as we use in §3, but the events are 
given in the opposite order. He uses Laplace transformation to find out an exact solution. Although 
the solution is exact, Fussell switched on to use the asymptotic form of the solution. In [2], Yunge 
uses the same differential equation given previously in §4 in order to model the sequential 
occurrence of events in a given priority AND gate (PAG). He uses Laplace transformation and find 
out the exact solution of the occurrence probability )(tpn . However, in both cases, the authors used 
complicated forms such that it did not allow putting in evidence the recurrence aspect of the 
solution. They were more concerned by inserting their models (PAG, ...) in a Dynamic Failure Tree 
than by other aspects of the solution.  

However, if they had not excluded the use of an equivalent Markov Graph, they would have 
noticed this interesting recurrence aspect of the model, and maybe, they would have used a simpler 
expression of the solution. 
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Many other authors followed almost the same way on modelling and produced very 
interesting applications, [3]-[7], without perceiving that the exact solution could be put in a simpler 
form. 

This would have extended the solution to other categories of problems rather than just the 
modelling of the PAG’s and their inclusion in Dynamic Failure Trees. 

Some other researchers could solve the same problem in using numerical techniques such as 
Petri Nets of Dynamic Bayesian Net (DBN). The use of a numerical technique prevents all 
possibility to underline the analytical solution and its interest. This is the case of Montani, [8] in an 
application relative to an active heat rejection system (AHRS) that he used to validate the 
methodology. The case would have been solved immediately if one had applied the analytical 
solution given herein. The problem contained only 8 sequences with a maximum length of 4 
successive failures. 

One may equally mention the case of the applications in [9]-[11], where the general analytical 
solution would have helped in treating the problems in exact way.  

Regarding rare sequential events, many researchers sought answers in developing methods 
based on Monte-Carlo simulation, [12]-[13]. Some other papers are given in [14]-[21] which have 
developed interesting methods as well as they developed solutions very close to the one proposed 
her. Two papers should particularly be underlined are [19] and [20]. 

The work presented here is limited to Poisson stochastic processes. However, it is of high 
interest because it will obviously improve the numerical procedures used to treat practical industrial 
cases.   

The analytical solution of this problem presents a particular interest by itself, because of its 
originality and simplicity. Besides, it suggests some interesting directions of investigation so that it 
may help in developing analytical solutions for some other specific time distributions different from 
Poison ones.  

2 PROBLEM DEFINITION 

Let T  describe a top event which results from the occurrence of some n  basic events ie  (
ni ,...,2,1 ) in a well determined sequential order. Basic events ie  are following Poisson stochastic 

processes and each is fully characterised by a constant occurrence rate i  and by its occurring order 
‘ i ’. The 1e  is the 1st occurred and ne  is the last event. 

One would like to determine the occurrence probability of the top event T  and its occurrence 
rate.  
 

3 PROBLEM MODELLING 

A will defined top event T  will occur if and only if some discrete and independent events ie  
happen according to a well specified order  neeee ,...,,, 321 . The corresponding occurring instants 
are defined by  ntttt ,...,,, 321 , where  ntttt  ...321 . Each of these instances  ntttt ,...,,, 321  
has its distribution probability function (pdf). The first event is 1e  and the last one is ne . 

 
The probability )(tpn  that Event T  happens within the interval [0,t] is given by: 
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Where: tn   ...0 321  and,  

i  is the Poisson density function characterising the event ie  [ i = t
i

ie  * ].  
 
Many authors could previously developed analytical solutions fo Equation (1) when it was a 

matter of limited number of ordered events obeying a Poison’s Stochastic Process, e.g. 
[1][2][19][20].  

Here, the paper develops a simpler form of the exact solution of Equation (1). 

4 ANALYTICAL SOLUTION 

It is obvious that Equation (1) can equally be expressed on the following differential form: 
 

 )(1 tp
dt
d

n  = )(1 tn )(tpn   (2)

 
Let )(tpn  be the occurrence probability of a sequence T , a set of chronologically ordered 

events  neeee ,...,,, 321 . The probability )(tpn  is the solution of the Equation (1) and (2).  
 
Let )(tpn  be expressed by following expression: 

 

 )(tpn  =


 
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t
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j

n

jnl
l

eC
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, 1
1C  = 1.0. (3)

 
Where, each event ie  is defined by a constant occurrence rate i , {  ni ,...,2,1 }. 
The solution of the problem resumes in determining the coefficients n

iC .  
In appendix (1), we demonstrate the solution proposed in Equation (3) and show that the 

coefficients i
jC  are fully determined thanks to some recurrence pattern, as following:  

 

 1
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 ,   ij ,...,2,1 , and   ni ,...,2,1  (4)

 
Some examples for calculating the parameters i

jC  are given in appendix (2).  
 

4.1 Occurrence Density and Occurrence rate 

By definition, the corresponding occurrence density function )(ti  can directly be deduced 
via the first derivative of the occurrence probability function as following: 

 

 )(tn   = 
dt

tdpn )(  (5)

 
The occurrence density function will then be defined by: 
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We may also define an equivalent occurrence rate i  of the whole sequence T , such as: 
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As we may expect, although the ordered events are individually governed by a Poisson 

Stochastic Process, the sequence T  is not. The occurrence rate of the sequence T  is time 
dependent, Eq.(7).  
 

4.2 Mean Occurrence Time 

One may also determine the mean occurrence time n  corresponding to a given sequence ( nS ) 
of n-events  neeee ,...,,, 321 , such as: 
 

 n  = 


0

)(*
t

n tdpt  (8)

 
The solution of Eq.(8) is elementary and described by: 

 

 n  = 





n

j
n

jnl
l

n
jC

1
1

)( 
 (9)

 

4.3 Asymptotic Behaviour 

Having demonstrated that the occurrence probability )(tpn  of a given sequence of n-well 
defined ordered events can be described by Equation (3), it is straightforward to demonstrate that 
the occurrence probability )(tpn  has an asymptotic value equal to: 
 

 )( tpn     


n

j

n
jC

1
 (10)

 
The occurrence probability density function n  of the sequence nS  has an asymptotic value 

equal to: 
 

 )(  tn     0. (11)
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Similarly, the equivalent occurrence rate n  of the sequence nS  has an asymptotic value 
equal to: 
 

 )(  tn     0. (12)
 

5 NUMERICAL APPLICATION 

Two illustrative numerical applications are given in the following in order to help in sizing the 
interest of having a generic analytical solution determining the occurrence probability of a given 
sequence ( nS ) of n-events  neeee ,...,,, 321  in the given order. 
 

5.1 Occurrence Order 
In this application, we are focusing on the dependence of the occurrence probability on the 

occurrence order of the basic events.  
 
A very simple example is illustrated in figure (1) where the time evolution of the occurrence 

probability of a sequence of four basic events  4321 ,,, eeee  whose occurrence rates are constant and 

having the following values: 410  /h, 310*5   /h, 210*5.2   /h, 110*25.1   /h. In Figure (2), we are 
comparing two configurations represented by a red curve and a blue one.  
 
 
 

 
 

Figure (1) : the occurrence probability of the same set of events in two different orders 
(dec: decreasing order, inc.: increasing order) 

 
 

The red curve represents the case where the sequence of events follows the increasing order of 
the occurrence rates (less frequent occurs first). While, the blue curve describes the case where the 
sequence of events following the decreasing order of the occurrence rates (more frequent occurs 
first). 

It is obvious that the occurring order of events impacts on the time behaviour of the occurring 
probability of any sequence of events.  

The asymptotic behaviour of the occurrence probability can also be underlined. 
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5.2 Treatment of a Markov Graph  
In this example, a given system is described by Markov graph. The system has 8 possible 

states. The transitions between different states are fully determined by their transition rates. 
In this illustrative example, Figure (2), a unique transitions rate value of 110  1h  is 

considered for all transition rates as following: 
 

12  = 13  = 14  = = 25  = 52  = 36  = 47  = 56  = 68  = 110  1h  
 

We are interested in the sequences nS  leading to the absorbing states 7e  or 8e , which are the 
following: 
 

3S  = 741 eee  , 

4S  = 8631 eeee  , 

5S  = 86521 eeeee  , 

nS 25  =   86521 eeeee n  ,   ,...2,1,0n  
 
Where;  
 052 ee   = 52 ee   

 152 ee   =   5252 eeee   

 2
52 ee   =     525252 eeeeee   

 
 
 
 

 
 

Figure (2) : Schematic presentation of a Markov Graph 
 
 

One would, then, like to determine for each sequences ( 3S , 4S , 5S , 7S ) its occurrence 
probability time-profile, )(tpn . The occurrences probabilities of the sequences 3S , 4S , 5S , 7S  are 
illustrated in Figure (3). Higher order sequences would have much lower contribution than that of 

7S  as illustrated in Figure (3). 
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Figure (3) Occurrence probability as a time-function of each sequence rank 
( 3S , 4S , 5S , 7S ) 

 
The asymptotic values of the occurrence probabilities of the sequences ( 3S , 4S , 5S , 7S ,...) are 

illustrated for the application in Figure (4). 
 
 
 

 
 

Figure (4) : the asymptotic probability as a function of the sequence rank 
 
 
 
 

Finally, one would also determine the mean occurrence time of the sequences ( 3S , 4S , 5S , 7S
,...) as a function of the sequence order.  
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Figure (5) : Meantime of occurrence as a function of the sequence length 
 
 

6 CONCLUSIONS 

The paper proposes a general solution in order to determine the occurrence probability of a 
given sequence of n-events following Stochastic Poison’s Processes. The solution is analytical and 
original. 

Some interesting asymptotic characteristics of this analytical solution have been assessed. 
Two simple numerical applications are illustrated in order to underline the interest of 

possessing an analytical generic solution to this problem. 
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Appendix (1) 
 
Let )(tpn , the occurrence probability of the sequence T, be the solution of the Equation (1) and (2) 
and be expressed as: 

)(tpi =


 
 

i

j

t
i
j

i

jil
l

eC
1

)(
)1(* 1



, 1
1C  = 1.0 and  ni ,...,2,1  

)(1 tpi =













1

1

)(
1 )1(*

1
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i

j

t
i
j

i

jil
l

eC


, 1
1C  = 1.0 and  ni ,...,2,1  

And, 
 

)(1 tp
dt
d

n = )(1 tn )(tpn  

 
Where Sequence T contains i  ordered events, each is defined by an occurrence rate j . 
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dt
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1st Condition 
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Appendix (2): 
 
Consider the case of a sequence containing 4 basic events in some well-determined order, so we 
have :  
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We may, then, find out the coefficients i

jC  as following: 
1N  

1
1C  = 1 

 
2N  
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So, the occurrence probability of this given sequence will, then, be determined by: 
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