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ABSTRACT 
 
In this paper complete asymptotic formulas for an disconnection probability in random planar graphs with high 
reliable arcs are obtained. A definition of coefficients in these formulas have geometric complexity by a number 
of arcs. But a consideration of planar graphs and dual graphs allow to solve this problem with no more than 
cubic complexity by a number of graph faces. 

 
1. INTRODUCTION 
 

A problem of a calculation of a connectivity probability in random graphs with unreliable 
arcs is considered in manifold articles and monographs devoted to the reliability theory [1] - [4] etc. 
It occurs in an analysis of electro technical devices, computer networks and has manifold 
applications to a research of honeycomb structures [5], [6], and nanosystems [7] – [9]. 

In [10] – [12] upper and low estimates of the connectivity probability are constructed for 
general type networks on a base of maximal systems of disjoint frames. For small numbers of arcs 
in [13] accelerated algorithms of a calculation of reliability polynomial coefficients are constructed. 
These algorithms showed good results in a comparison with direct calculations. In [14] this problem 
is solved using the Monte-Carlo method with some combinatory formulas. To calculate the 
connectivity probability in rectangle lattices the transfer matrix method is used [15]. But an 
increasing of arcs number leads to large complexity and so it is worthy to develop asymptotic 
methods. 

In this paper an analog of the Burtin-Pittel asymptotic formula [16] for disconnection 
probability of random graph with high reliable arcs is constructed. Its parameters are the minimal 
number D of arcs in cross sections and the number C of cross sections with volume D . A definition 
of D for a random port demands to find a maximal flow and has cubic complexity [17]. But a 
definition of C has geometric complexity. 

So we consider widely used planar graphs for which we prove that a definition of coefficients 
D, C has no more than cubic complexity by a number of faces. And there is a lot of graphs [18, Ch. 
IV] for which this complexity is linear and smaller. These results are based on a consideration of 
dual graphs [19, [20], in which cross sections generate cycles [21], [22]. Numerical experiment 
confirms an accuracy and a performance of suggested method. 
 

2.  ASYMPTOTIC FORMULAS 
  

Consider non oriented connected graph G  with finite sets of nodes U  and of arcs W . 
Suppose that each pair of nodes in G  may be connected with no more than single arc and there 
are not loops. Denote  ,u vL  the set of all cross sections in G  which divide nodes 

, , ,u v U u v   and define the set  ,
u v

u v


L L
 
of all cross sections in G . Graph cross section 
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is such set of arcs which deletion makes the graph non connected. Put  Ld  a number of arcs in 
the cross section L  and 

      , min : ,D u v d L L u v L ,  min ,
u v

D D u v


 ,   :* L d L D  L L , 
C  - is a number of cross sections in the set .*L  Suppose that graph arcs work independently with 

probabilities ( ), .p w w W  
Theorem 1.  If  ( ) 1 , ,p w p w h w W     then graph disconnection probability  

 ~ DP Ch , 0h  . (1) 

Theorem 2.  If hcwp w~)( , 0h , ,w W  then 

 
*

~ , , 0.D
w

L w L
P h c w W h

 
  

L
  

Theorems 1, 2 are generalizations of the Burtin-Pittel asymptotic formula [16]. 

 
3. CALCULATION OF CONSTANTS C, D 

 

Theorem 3. The set of arcs which do not belong to any cycle coincides with the set of cross 
sections *L  and 1D . 

Assume that the graph G  is planar and its each arc belongs to some cycle. Arcs of planar 
graph divide a plane into faces [19,Сh. 1]. }. Confront the graph G  its dual graph *.G  Each face z  
in G  accords the node *z  in *G , each arc w  in G  belonging faces 21, zz  accords an arc *w  
connecting nodes *

2
*
1 , zz  in .G  

A set of arcs  dww ,...,1  in G  accords some subgraph *R  in *G . For its definition each arc 

iw , di 1 , accords a pair of faces which contain this arc. Then this pair of faces accords a pair of 
nodes in *R  connected by the arc *w . Say that the graph *R is generated by the set of arcs 
 dww ,...,1 . 

Theorem 4. The set of cross sections *L  consists of all sets of arcs  dww ,...,1  which 
generate cycles with minimal length *D  in the dual graph *G and 5*  DD . 

This statement is a corollary of the Whithney theorem and the Euler formula [19, Theorem 
1.5, Corollary of Theorem 1.6], [20]. In fig. 1 there are examples of planar graphs arranged on a 
sphere with 4, 5.D D   

 
Fig. 1.  

 
Suppose that elements ija  of the matrix A define a number of arcs which belong to ji zz  , 

ji  , 0iia , in the planar graph G  with n faces and m arcs and without loops and multiple arcs. 
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Corollary 1. If
1 ,
max 1iji j n

a
 

 , then 

 2D ,  1
4
1

,1
 


ij

nji
ij aaC  (2) 

and a complexity of constants CD,  calculation by the formula (2) is squared by n. If for ji   
1ija  only for nj   then this complexity is linear. 

Define ic  the number of cycles with length i , 3,4,5,i  in *.G  Assume that all cycles 

121 ... uuuu k  , consist of same set of nodes  kuu ,...,1  and differ by an initial node 1u  
and by a direction of a bypass coincide. Elements of a power lA , 1,l   of a matrix A denote by  l

ija . 
Corollary 2. If 1max

,1


 ijnji
a , then 

  5,4,3,0:min  iciD i , DcC   , (3) 

 3
3 6

1 trAc   ,  24
4

1

1 2 2
8 ij

i j n
c trA m a

  

 
   

 
 ,  

  


















  

 

n

i
ij
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j
ij aatrAtrAc

1

3

1

35
5 255
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1 .  

Complexity of the constants CD,  calculation using the formula (3) is cubic by n. The formulas of 
543 ,, ссс  calculation are obtained in [21], see also [22, Formulas (16), (17)]. 

Consider a connected graph G  which consists of plane faces in three dimensional space. 
Suppose that each pair of faces has not joint points or has joint node or has joint arc and each arc 
belongs at least to two faces. Take a set of arcs , 1iw i d   from G  and confront each arc iw  a 

pair of faces i
i zz , , which contain this arc. Then the set of arcs  dww ,...,1  accords some (non 

unique) graph d  with the nodes , ,1 ,i
iz z i d   and arcs  dww ,...,1  which connect these nodes. 

Theorem 5. If the graph d  is acyclic then the set of arcs  dww ,...,1  which generates it is 
not cross section in G . 

Corollary 3. Suppose that the set L  of arcs sets which generate cycles with minimal length 
*D  and which are cross sections in G  is not empty. Then *DD  , * L L . 

4. EXAMPLES 
 
Results of the number D definition and an enumeration of cross sections with minimal 

volume are based on listed theorems and simple geometric constructions.  

Example 1. On fig. 2 there are examples of planar graphs with representatives of cross 
sections from the set *L : 

1) an integer rectangle with the length M an integer rectangle with the length N ( *L consists of arcs 

pairs connected with angle nodes), 
2 a honeycomb structure ( *L consists of all possible pairs of arcs which belong to internal and 

external faces simultaneously), 
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3) a tube which is constructed by a gluing of opposite sides (with a length M ) of integer rectangle (

*L consists of arcs triplets which have common butt node), if N>3. 

 
Fig. 2. Planar graphs with cross sections dedicated by bold type. 

 
Example 2. On fig.  3 there are graphs with examples of their cross sections from the set *L

: 
1) a graph constructed from integer rectangle by a gluing of pairs of its opposite sides ( *L consists 

of arcs quads which have common node), 
2) a graph constructed from unit cubes with integer coordinates of their nodes ( *L  consists of arcs 

triplets which contain a cube node, in this node the cube does not intersect or has only common 
node with another cube). 

 
Fig. 3. Graph G  with dedicated cross sections. 

 

5. NUMERICAL EXPERIMENT 
 
Calculate the disconnection probability of honeycomb structure (fig. 1, in center) using 

Theorem 1 and Corollary 1 and by the Monte-Carlo method with 106 realizations. Failure 
probability of each arc is 0.005. Results of calculations are represented in the table. Time of 
calculations by asymptotic method is few seconds and by the Monte-Carlo method is some hours.  

 

Size structure Asymptotic method Monte-Carlo method Relative error 

2×2 0.00045 0.000439 2.4 % 

3×3 0.00055 0.000526 4.3 % 

3×4 0.00060 0.000579 3.5 % 

3×5 0.00065 0.000621 4.5 % 

4×4 0.00065 0.000619 4.8 % 

5×5 0.00075 0.000732 2.4 % 
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The author thanks A.S. Losev for numerical experiment realization. 

 

6. PROOFS OF MAIN STSTEMENTS 
 
Proof of Theorem 1. Suppose that LV   is a random event that all arcs in cross section L 

fail. Then 

* * *\

~ , 0.L L L
L L L L

P P V V P V h
  

      
                   

   
L L L

 

 
As    D

LP V o h , *\LL L , 0h  , so 

*

~ D
L

L L

P V Ch


 
  
 
 , 0h  . 

Proof of Theorem 5. Suppose that arcs set  dww ,...,1  from the graph G  generates acyclic 
graph *R . Prove that each arc , 1 ,iw i d   may by bypassed in G  by a way which does not contain 
arcs of this set. 

The subgraph *R  consists of trees ** ,..., mi SS   which do not connect with each other. Arrange 
each tree 

*
iS , 1 ,i m   on a plane so that in each node *z  arcs connected with this node follow each 

other as their pre images on the face z if we bypass this face in some direction. Confront each tree 
*
iS  closed way which bypasses once all its arcs from both sides, mi 1  (fig. 4). 

 
Fig. 4. Bypass of tree arcs. 

Accord the way *
i  bypassing tree *

iS  arcs a closed way i  which passes in the graph G  
through all nodes of arcs  dww ,...,1 , which generate the tree *

iS  (fig. 5). The way i  has not arcs 
from the set  dww ,...,1 . Consequently each arc from  dww ,...,1  may be bypassed in G  by a way 
which does not contain arcs from this set. So the set  dww ,...,1  from the graph G , *Dd  , which 
does not generate a cycle in *G , does not belong to the set of cross sections L . 

 
Fig. 5. Bypassing of arcs in a tree and in G . 
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