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ABSTRACT 

The paper offers the method for calculation of reliability parameters and functional safety of 
technical systems, differing from known methods by an opportunity of obtaining strict formula 
expressions of stationary parameters directly from a system state graph. The method is suitable for 
solution of both Markov, and semi-Markov models of reliability and safety. In addition the paper 
presents some examples of determining safety and availability factors, as well as time parameters of 
safety and reliability of the two-channel safety related device.  

Keywords: reliability, functional safety, parameters of reliability and safety, Markov and 
semi-Markov models of reliability, loop weight, graph breakdown weight.  

1. Introduction

When solving problems of reliability and functional safety of technical systems 
mathematical tools of Markov and semi-Markov random processes are widely applied. 
Development and solution of Markov and semi-Markov reliability models by traditional methods in 
general terms is brought into making up a system of the homogeneous differential equations 
describing behavior of the investigated system, their operational transformation, solving system of 
equations in the operational form, inverse transformation and finding the required reliability 
parameters. Such a way is always fraught with mathematical difficulties, especially when the 
number of equations exceeds ten and is problematic to execute correctly inverse transformations of 
solutions of system equations obtained in the operational form. Therefore in the majority research 
people and, especially practical workers, are compelled to introduce a lot of assumptions which 
radically simplify solution of reliability models and allow obtaining reliability parameters of 
considered systems in the analytical or numerical form. However these results are already far from 
true and there is a natural question: whether it is necessary to aspire to realization of the traditional 
plan of construction and solving reliability models of systems.  

In many problems of reliability calculation it is enough to be limited by stationary reliability 
and availability factors (parameters). In these cases it is necessary to switch over from the model of 
differential equations to the model of algebraic equations describing system behavior in the steady-
state mode, to solve them, find stationary probabilities of staying system in each of possible states. 



I. Shubinsky, A. Zamyshlyaev - TOPOLOGICAL SEMI-MARKOV METHOD FOR CALCULATION OF STATIONARY PARAMETERS OF RELIABILITY AND
FUNCTIONAL SAFETY OF TECHNICAL SYSTEMS

RT&A # 02 (25)  
(Vol.7) 2012, June 

13 

Then based on system failure criteria with the help of the specified probabilities probabilistic 
system availability and unavailability should be found. Thereafter stationary parameters of system 
non-failure operation and maintainability should be defined. Such problems are not connected with 
necessity of operational calculus application for development and solution of reliability models. The 
required stationary reliability parameters are calculated sufficiently strictly. However, alongside 
with the fact that the given plan does not provide definition of a full list of reliability parameters, 
there is also the unsolved problem of the big dimension of algebraic equations’ model. Therefore 
even at rather small number of states it is not possible in many cases to analytically describe 
required reliability parameters of the system. This circumstance does not depend on a degree of 
system graph model connectivity. Dimensions of a system matrixes for algebraic equations 
representing reliability of investigated technical system model do not vary both with weak 
connectivity and with strong connectivity.  

At the same time, graph models of complex systems’ reliability, as a rule, are poorly 
connected. This circumstance has stimulated us to switch from the traditional plan of solving linear 
algebraic equations by Kramer's rule to the scheme of breakdown initial graph to the constituent sub 
graphs which are not containing single out nodes (for example, disabled states of model or states 
which are being on the way from one node to another, or an initial system state). At application of 
such a scheme (plan) it has turned out sufficient for solving the system of algebraic equations. 
Moreover it has turned out sufficient to be limited by finding ways and loops on the graph, what is 
now well formalized. 

2. Problem definition
Stationary parameters of technical systems’ reliability are factors of availability ГK and 

unavailability ГK , mean time to failure СРT , dispersion of  mean time to failure СРD , an average 
time between failures T , mean idle time average of a ПРT . As functional dependence 

)T(T, fK ПРГ   is known methods of calculation of these three parameters are expedient for 
considering simultaneously. Similarly it is necessary to simultaneously consider methods for 
calculation of parameters СРT  and СРD . 

Stationary parameters of functional safety of safety related  systems is a factor of safety БK
, mean time to dangerous failure ОПT , dispersion of time to dangerous failure ОПD , mean time to 
protective failure ЗT , dispersion of time to protective failure ЗD , mean time to dangerous 
(hazardous)  failure ПT . 

Methods of calculation of corresponding groups of reliability and functional safety 
parameters are identical. Difference is only in the separation of initial system states on efficient and 
disabled (concerning reliability) subsets and nonhazardous, hazardous and protective subsets of 
states (relating to functional safety). So in the study [1] the following formula of calculation of 
system availability factor which behavior is described by semi-Markov random process is 
determined  
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where РS  is a subset of efficient system’ states , S  is full set of system states; iP  is a final 
probability of staying Markov chain in i-th state; iT  is an expectancy of unconditional time of 
system staying in i-th  state. 

By turn, formulas of the calculation of mean time to failure (time between failures) and the 
average idle time of the system which behavior is described by semi-Markov random process, and 
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determined according to the study [2] are the following: 
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where it is implied, that transition from a subset РS  into a subset РS  can be carried out not from 
any working state capacity, but only from boundary conditions (subset) S . Similarly transition 
from РS  into РS  can be carried out from a subset belonging to the subset of boundary disabled 
states S . 

Practical methods for calculation of functional safety parameters of recoverable safety 
related systems nowadays are poorly developed. 

The purpose of this paper consists in development of practical methods of calculation listed 
above stationary parameters of reliability and functional safety of complex technical systems. It is a 
question of formalization of calculations on the basis of the graph theory. 

3. Calculation of availability and safety factors

3.1. Topological concepts: 

 Path – chain of consistently connected unidirectional arcs starting from a state i and
ending in a state j, path weight rj

Sjri
ir

ij ppl 



,,

, where irp  - probability of one step transition for i –

th state in a state r; 

 Closed loop is a chain of consistently connected unidirectional arcs in which the output of
final vertex in the chain is connected to starting vertex of the chain; 

 Weight of  j – th loop ji
Sji

ijj ppC 



,

; self-loop is a special case of the closed loop 

(entering and leaving arcs in self-loop merge into one arch), weight of a self-loop jjj pC  ; 
 Graph decomposition - a graph part which is not containing assigned vertices and arcs

connected with them; weight of a decomposition iG is calculated taking into account  the 
exclusion from the graph a vertex i and the arcs connected with it; the weight of a decomposition 

i
SР

G  is calculated taking into account  the additional exclusion from the graph the vertices of a set 

of disabled states РS  and the arcs connected with them; the weight of a decomposition i
kG  is 

calculated taking into account  the exclusion from the graph the vertex i, as well as the vertices 
located on  k-th path from starting vertex into a vertex i and arcs connected with them;  

 The decomposition weight (determinant) is calculated under Mason’s formula
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Application of Mason’s formula allows to considerably reducing labor input of calculations 
of minors on the rarefied matrixes, and matrix G, as a rule, is rarefied. 
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3.2. Topological formulas of calculation of availability and functional safety factors 

The statement 1. If system reliability is modeled by means of the graph states and semi-
Markov random process on this set of states, specified by transition probability matrix and a vector 
of unconditional expectances of staying time in each graph state the factor of system availability in 
the topological form is equal: 

,РSi
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where iG - decomposition weight of the graph without a state i, iT  - expectance of unconditional 
staying time  of the system in  states is . 

Proof.  The stationary probability of enclosed homogeneous Markov chain staying in a state
i , is equal
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where n - number of states in initial set of states of the system S 

1  2  …   n 
1 1- 11p   - 12p  … - np1

D     2 - 21p    1- 22p  …- np2

……………………. 
 n - 1np    - 2np   … 1- nnp

and )( ji DD - a minor obtained by deletion of  i (j) line and of  i (j) column in matrix D . In turn, 
both the determinant D  and minors )( ji DD can be strictly or with acceptable accuracy calculated 
under Mason’s formula (4). Hence, the stationary probability of enclosed homogeneous Markov 
chain staying in a state i , is equal to the following
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Substituting the formula (6) in the expression (1) we obtain the formula (5), as was to be 
shown. 

The consequence 1. If SНS - a subset of nonhazardous states of safety related system.
The system safety factor is determined as the following 
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The formula (7) is obtained by analogy to the formula (5) concerning set of nonhazardous 
states. 

4. Topological formulas for calculation of stationary time parameters of reliability

Mean time to system failure 
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Average idle time of a system 
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Formulas (8) and (9) are obtained from formulas (2) and (3) by substitution in them the 
formula (6). 

Mean time between hazardous failures 
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where 1S  - a subset of nonhazardous states, 1S - a subset of hazardous states SSS 11  , 1S - a 
subset of boundary nonhazardous states ( 11 SS  ). 

Mean time to system failure and dispersion of mean time to failure 
With a view of development of the formalized engineering methods for determining these 

parameters we shall prove the following statement. 
The statement 2. If system reliability is modeled by means of the graph states and semi-

Markov random process on this set of states then the confidence curve to system failure in Laplace 
transformations at i-th initial state is determined by the following expression 

)(~

)(~)(~

)(~
zG

zGzl
z

Р

Р

S

Sj

j
k

k

ij
k

i






 ,  (11) 

where )(~ zl ij
k - k-th path  in Laplace transformations, leading from an efficient state of the graph

РSi  into the failure state РSj ;  )(~ zG j
k  - graph decomposition weight in Laplace

transformations without j-th vertex and the graph vertices located on the k-th path;  )(~ zG
нS - 

without vertices, graph decomposition weight of a set of failure states  
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Proof 
 In the study [1] it is shown, that the function of time distribution of system staying in a set 

of efficient conditions РS  in Laplace transformations can be obtained from the following equation 
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Let's transform this equation to a matrix form, keeping in mind, that the right part of the 
equation is a vector-column of free terms of semi-Markov transitions’ probabilities for one step 
from vertices РSzji ,..., into the vertex РSl . 

)(~)(~)(~)(~ * SQSSQS  ,
where  ))(~()(~ SQSQ ij - is a matrix of semi-Markov probabilities; ))(~()(~* SQSQ il - is a vector-
column. 

In system of the equations the unknown elements are those of the vector-column )(~ S .
After their grouping in the left part we shall obtain  
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 , where )(~)( SQIS  , and )(Si  - 

the determinant, obtained by  replacement of i-th column in the matrix )(~ SQI   on a vector-
column of free terms )(~ * SQ  provided that )(Si  and )(S  are not equal to zero. 

The determinant )(Si  differs from the determinant 
РSGS  )(  by the fact that in the 

column i the element )(~ Spij is replaced with the element )(~ Spil where РSji , , and РSl . As a
result we obtain the following 
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and at replacement of an index l on j the required result is obtained. The statement is proved. 

From the formula (11) follows 
- Mean time to system failure at initial state i=1
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- Dispersion of the mean time to system failure at initial state i=1
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Consequence 2 The function of time distribution (confidence curve) to system hazardous 
failure in Laplace transformations at i-th initial state is determined by the following expression 

where )(~ zl ij
k - k-th path in Laplace transformations leading from a nonhazardous state of

the graph НSi  into hazardous failure state НSj ; 
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 From the formula (14) follows 

- Mean time to system failure at an initial state i=1
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- A dispersion mean time to system failure at an initial state i=1
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5. Examples

Example 1 
The two-channel device is analyzed. It contains two identical and independent channels, as 

well as diagnostics tools which check with acceptable frequency for good safety the functioning 
state of each channel and compare their output results. Failures of channels are asymmetrical. When 
diagnostics tools are sound the fact of failure of any one channel is detected and then the device 
transition in a state of protective failure is carried out. In the case of diagnostics tools’ failure only a 
nonhazardous failure of the device can occur. The subsequent behind this event failure of a channel 
leads to hazardous failure of the device. 

Graph states of reliability and safety of the two-channel device with diagnostics tools 
without channels’ restart is shown on fig. 1. 

The description of states: 
1 - Serviceable state; 
2 - Diagnostics tool failure; 
3 - protective failure of the device caused by detected failure of one of the channels; 

detection was carried by regular diagnostics tools with probability ; 
4 - Not detected failure of one of the channels, owing to failure or insufficient efficiency of 

diagnostics tools (hazardous failure of the device). 
For presentation of an illustration of opportunities of the offered method we assume, that 

failure and recovery flows, as well as a flow of detected failures of one channel are  the simple 
flows with rates , д , .. Restoration is carried out in the state of protective failure 2. 

Graph edges on fig. 1 are marked by following parameters: д - failure rate of diagnostics
tools; 2  - failure rate of the two working channels;   - recovery rate of failures by one repair 
team. 

Transition from a hazardous state 3 into initial state 0 is shown. The edge 3-0 is marked by 
parameter c  - recovery rate of hazardous failure of the device, where the factor 10  c . If for the 
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elimination of hazardous failure there is no need to update the device then  c=1 and the rate of 
hazardous failure elimination is equal to recovery rate of the device. If it is required to update the 
device depending on duration of updating time   the given factor will have the value 

1c which

is much less 1. The opportunity of failure of one more channel when the device is in the condition 
3, is not considered, as hazardous failure has already taken place and either one channel or two 
channels are subjects to recovery.  

 

 
 

Figure 1. Graph of safety states of the two-channel device without channels’ restart 

The model of reliability and functional safety of the two-channel device on fig.1 provides 
the following logic of device operation: an initial state 0 (all elements of the device are serviceable). 
In case of diagnostics tools failure there is a transition into a state 1. If at serviceable diagnostics 
tools any one channel (a state 2) has failed, and the channel failure is detected in due time out with 
probability  the device is transferred into a state of protective failure (the device does not function, 
the channel is under repair). At the latent failure of the channel probability 1 or at failure of one 
channel after the failure of diagnostics tools  (the path 0 - 1 - 3) there is a transition  into transition a 
state 3 of hazardous failure. 

Failure criterion: {0,1}рS {2,3}рS SS РрS  . 

Hazardous failure criterion: {0,1,2}НS {3}S Н SS ННS  . 

It is required by means of formulas (5) and (7) to determine availability and functional 
safety factors of the two-channel device 

Solution 
- Initial parameters should be defined:
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If for elimination of hazardous failure there is no need to update the device then the factor 
с=1 and expression for availability factor of the device will be transformed in to the following 
form: 
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- Find safety factor of the device
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 At с=1 the safety factor of the device is determined by means of the  following expression: 
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If the two-channel system is inefficient (in extreme case 0 ) the safety factor of the 
device is equal, as one would expect, to its availability factor. 

Example 2 

In conditions of the example 1 it is required by means of formulas (11), (12), (14), (15) to 
determine time parameters of reliability and functional safety of the two-channel device 

Solution 
From the formula (11) follows, that functions of time distribution to system failure at an 

initial state 0 in operational transformations has the following form: 
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In Laplace transformations at exponential distributions of random variables 
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The formula of function of time distribution to system failure in Laplace transformations 
under conditions of the given example has the following form: 
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If to take into account, that   д; , with an margin error less than the first 
infinitesimal order then the following expression is true 

д
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1 .

At high efficiency of detection of hazardous failures on the basis of two-channel architecture 
of the device ( 1 ) its safety depends only on the reliability of the built in diagnostics tools and 
the comparator (i.e. on failure rate д ). 

The conclusion 
The offered topological semi-Markov method for calculation of reliability and safety 

parameters of technical systems allows determining directly on the states’ graph the strict or 
approximates formula expressions of typical reliability and safety parameters of technical systems 
which behavior is described by both Markov, and semi-Markov random processes. Mathematical 
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positions of the method are illustrated by examples which show simplicity and rigor of finding out 
the required reliability and safety parameters. 
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