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ABSTRACT 

In this paper a sequence of parallel-serial connections is considered. In this sequence next 
connection is obtained by parallel or serial linking of new arc to obtained connection. 
Distributions of random numbers of connectivity components are analyzed. These 
distributions are considered intensively now. Central limit theorem is proved for these 
distributions and parameters (mean and variance) of normal limit distribution are calculated. 

1. INTRODUCTION

In the reliability theory parallel-serial connections play important role [1] – [6] etc. These
connections are widely used in electrotechnics, in computer networks etc. A specific of these 
connections is a possibility to calculate their reliability by algorithms with linear complexity by a 
number of arcs. 

Last years large interest is called to characteristics of networks sparseness. It means that 
powers of nodes (a number of incident arcs) is bounded by some positive number (see [7] and large 
bibliography in this article). Stochastic modeling and statistical processing of internet type networks 
data showed that nodes powers have distribution with heavy tails [8]. Last circumstance makes 
actual to consider parallel-serial connections which are free of this lack. 

Last time a distribution of numbers of connectivity components in different random networks 
are analyzed intensively now [9] – [11]. In this paper numbers of connectivity components in 
recurrent sequence of connections obtained by parallel or serial linking of new arc is considered. 
For this sequence central limit theorem is proved and parameters of limit normal distribution are 
calculated. 

A problem to calculate a mean and mainly a variance of limit normal distribution in this 
model is technically sufficiently complicated. In this paper it is based on central limit theorem for 
discrete Markov chains [12] and on a construction of special and sufficiently fast algorithm of such 
calculations. 

2. MODEL DESCRIPTION

Consider the sequence ࣛ , ݊ ≥ 1, of ports defined recursively by a sequential or parallel 
connection of new arc ܾ to the port ࣛ. Denote a type of connection by || or → accordingly. 
Suppose that random variable ߱ characterizes a type of the arc ܾ connection to the port ࣛ	and 
put  

→ߨ = ܲ(߱ =→), ||ߨ = ܲ(߱ = ||) = 1 − ,→ߨ 0 < →ߨ < 1. 
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Here random variable ߚ characterizes a state of the arc ܾ: 

ߚ)ܲ = 1) = ܲ(ܾ		in	working	state) = ߚ)ܲ			, = 0) = 1 −  = 0			,ݍ <  < 1. 

The sequences of random variables {߱ , ݊ ≥ ߚ} ,{1 , ݊ ≥ 1} are independent and each of them 
consists of independent and identically distributed random variables. 

The port ࣛ	with randomly working arcs is characterized by random vector (ߙ ,  ) thereߟ
  is an indicator of a connectivity between initial and final nodes of parallel-sequentialߙ
connection ࣛ and ߟ is a number of connectivity components in  ࣛ. Introduce auxiliary 
random variables  

ାଵߙ⃗ = ߙ ∧ ߚ , ାଵߟ⃗ = ߟ + 1 − ߚ , (1) 

ାଵߙ = ߙ ∨ ߚ , ାଵߟ = ߟ − ߚ + ߚߙ , (2) 

then 

,ାଵߙ) (ାଵߟ = ߱)ܫ ,ାଵߙ⃖)(→= (ାଵߟ⃖ + ߱)ܫ = ,ାଵߙ)(||  ାଵ), (3)ߟ

where (ܥ)ܫ is an indicator of an event ܥ. 

3. LIMIT THEOREM FOR MARKOV CHAIN CHARACTERIZING CONNECTIVITY
OF PARALLEL-SERIAL CONNECTIONS

Denote Δାଵ = ାଵߟ − ߟ , then the sequence ܺ = ,ߙ) Δ),	 ݇ ≥ 1, is Markov chain with 
the states set ࣲ = {(݅, ݆),	 ݅ = 0, 1, ݆ = −1, 0, 1} as follows  

,ାଵߙ) Δାଵ) = ߱)ܫ ,ߚߙ)(→= 1 − (ߚ + ߱)ܫ = ߙ)(|| ∨ ߚ , ߚ− +  .(ߚߙ

From the equalities (1) - (3) and the conditions 0 <  < 1, 0 < →ߨ < 1 we see that Markov chain 
ܺ , ݇ ≥ 1, states are interconnected. Consequently from the central limit theorem for discrete 
Markov chains with finite states set [12, chapters V,VI} there are normally distributed random 
vector ܰ(0,ℬ) with the dimension six and with zero mean and with covariance matrix ℬ and real 
numbers (ݔ)ܣ, ݔ ∈ ࣲ, which do not depend on initial state ଵܺ so that for any real (ݔ)ݐ, ݔ ∈ ࣲ, 

ܲ ൬ቀே(௫)ି(௫)
√

, ݔ ∈ ࣲቁ > ,(ݔ)ݐ) ݔ ∈ ࣲ)൰ → ܲ(ܰ(0,ℬ) > ,(ݔ)ݐ) ݔ ∈ ࣲ)), ݊ → ∞. (4) 

Here ܰ(ݔ) = ∑ 	
ୀଵ ܺ)ܫ =  .and the inequalities are defined componentwise (ݔ

Introduce auxiliary numbers ܽ(ݔ), ݔ ∈ ࣲ: 

ܽ(݅, 0) = 0, ܽ(݅, 1) = 1, ܽ(݅, −1) = −1, ݅ = 0,1. 

From the formula (4) it is simple to obtain that there is normally distributed random variable 
ܤ with zero mean and with the covariance (ܤ,0)ܰ > 0 so that for any real ݐ 

ܲ ቀ ଵ
√
∑ 	௫∈ࣲ )(ݔ)ܽ ܰ(ݔ) − ((ݔ)ܣ݊ > ቁݐ → ܲ(ܰ(0, (ܤ > ,(ݐ ݊ → ∞. (5) 

Using obvious equality ∑ 	௫∈ࣲ (ݔ)ܽ ܰ(ݔ) = ∑ 	
ୀଵ Δ = ߟ , ݊ ≥ 1, rewrite the formula (5) as 

follows 
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ܲ ቀఎି
√

> ቁݐ → ܲ(ܰ(0, (ܤ > ,(ݐ ݊ → ∞, ܣ = ∑ 	௫∈ࣲ .(ݔ)ܣ(ݔ)ܽ (6) 

Remark 1. A calculation of the vector ((ݔ)ܣ, ݔ ∈ ࣲ)) and especially of covariance matrix ℬ in 
the formula (4) is sufficiently complicated procedure [12, chapters V, VI}. So to define the mean ܣ 
and the covariance ܤ we use following limit formulas  

ܣ = lim
→ஶ

ெఎ

, ܤ = lim

→ஶ

ఎ


 (7) 

which are corollaries of the formula (6) with special initial distribution of ଵܺ. 

4. CALCULATION OF LIMIT NORMAL DISTRIBUTION PARAMETERS

Choose random vector (ߙଵ, Δଵ) = ,ଵߙ)  ଵ) which does not depend on random sequencesߟ
{߱ , ݊ ≥ ߚ} ,{1 , ݊ ≥ 1} and satisfies the equalities  

,ଵߙ))ܲ (ଵߟ = (1,1)) = ܲ = గ||
గ||ାగ→

, ,ଵߙ))ܲ (ଵߟ = (0,2)) = ܳ = 1 − ܲ (8) 

with ܲ(ߙ = 1) ≡ ܲ, ߙ)ܲ = 0) ≡ ܳ. Random sequence ߙ ,		 ݊ ≥ 1, is stationary Markov chain. 
Theorem 1. The equalities 

ܣ =  (9)  ,ݍ→ߨܳ

ܤ = 1)ܳݍ→ߨ − ܳݍ→ߨ + 2ܲܳ) > 0	 (10) 

are true. 
Proof. To define the constants ܣ,  from (7) we construct recurrent algorithm. Denote ܤ

ܯ = ߟܯ , ܣ = ߟ)ܯ ߙ| = 1), ܤ = ߟ)ܯ ߙ| = 0), ܯ = ܲܣ +  ܳ, (11)ܤ

ܯ		
ᇱ = ଶߟܯ , ᇱܣ = ߙ|ଶߟ)ܯ = 1), ᇱܤ = ߙ|ଶߟ)ܯ = 0), ܯ

ᇱ = ᇱܣ ܲ +  ᇱܳ (12)ܤ
where 

ଵܣ = 1, ଵܤ = 2, ଵᇱܣ = 1, ଵᇱܤ = 4. 
Using the formulas (1) - (3), (11) obtain for ݊ ≥ 1: 

ାଵܣ =
→ߨܲܣ + ||ߨܲܣ + ܤ) − ||ߨܳ(1 + ݍ||ߨܲܣ

ܲ , 

ାଵܤ =
→ߨܳܤ + ܣ) + ݍ→ߨܲ(1 + ܤ) + ݍ→ߨܳ(1 + ݍ||ߨܳܤ

ܳ , 

ାଵܯ = ܲܣ + ܳܤ − ||ߨܳ + ݍ→ߨܲ + ݍ→ߨܳ = ܯ + ݍ→ߨܳ = ଵܯ + ,ݍ→ߨܳ݊ ଵܯ = 1 + ܳ. 

Then from (7) we obtain the equality (9). 
And 

ାଵܣ	 − ାଵܤ = ܣ) − ߣ(ܤ − ൫2ݍ→ߨ + ,൯||ߨ ݊ ≥ ߣ			,1 = ݍ||ߨ + →ߨ < 1. 
(13) 

so 

ାଵܣ − ାଵܤ = − ߣ + ൫2ݍ→ߨ + ൯||ߨ
1 − ߣ

1 − ߣ ൨ = ܳߣ − 1 − ܳ, ାଵܲܣ + ାଵܳܤ =  ାଵܯ
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consequently 

ାଵܣ									 = ାଵܯ ܳߣ]ܳ+ − 1− ܳ], ାଵܤ = ାଵܯ − ܳߣ]ܲ − 1 − ܳ], ݊ ≥ 1. (14) 

Begin now a calculation of 	ܯାଵ
ᇱ . Using the formulas (1) - (3), (12) obtain for 	݊ ≥ 1: 

ାଵᇱܣ =
ᇱܣ →ߨܲ + ᇱܣ ||ߨܲ + ᇱܤ) − ܤ2 + ||ߨܳ(1 + ᇱܣ ݍ||ߨܲ

ܲ , 
, 

ାଵᇱܤ =
→ߨᇱܳܤ + ᇱܣ) + ܣ2 + ݍ→ߨܲ(1 + ᇱܤ) + ܤ2 + ݍ→ߨܳ(1 + ݍ||ߨᇱܳܤ

ܳ , 

ାଵܯ
ᇱ = ܯ

ᇱ + ||ߨܳܣ2 + ݍ→ߨ)ܳܤ2 − (||ߨ + 1)ݍ→ߨ + ܲ). 

So from (14) we obtain 

ାଵܯ
ᇱ = ଵܯ

ᇱ + ||ߨ2ܳ 	
ିଵ

ୀ

ାଵܣ + ݍ→ߨ)2ܳ − (||ߨ 	
ିଵ

ୀ

ାଵܤ + 1)ݍ→ߨ݊ + ܲ) = 

= ଵܯ
ᇱ + ݍ→ߨ2ܳ 	

ିଵ

ୀ

ାଵܯ − 2݊ܳܲ(1 + ||ߨ(ܳ + 1)ݍ→ߨ݊ + ܲ) + ଶܳܲݍ→ߨ2
1 − ߣ

1 − ߣ = 

= ଵܯ
ᇱ + 1)݊)ݍ→ߨ2ܳ + ܳ) + ݊)݊ܳݍ→ߨ − 1)/2) − 2݊ܳܲ(1 + ||ߨ(ܳ + 

1)ݍ→ߨ݊+ + ܲ) + 2ܲଶܳଶ(1 − ,(ߣ ଵܯ
ᇱ = 1+ 3ܳ. 

Consequently 

ାଵߟܦ = ାଵܯ
ᇱ ାଵܯ−

ଶ = 1]ݍ→ߨ݊ + ܲ − ܳଶݍ→ߨ − 2ܲଶ(1 + ܳ)] + 2ܲଶܳଶ(1 − (ߣ + ܳܲ. 

Then from (7), (13) we have 
ܤ = ൫1ݍ→ߨ + ܲ − ܳଶݍ→ߨ − 2ܲଶ(1 + ܳ)൯ = 1)ܳݍ→ߨ − ܳݍ→ߨ + 2ܲܳ) > 0.			 

Theorem is proved. 
Remark 2. From Remark 1 is possible to replace the condition (8) by more natural suggestion 

ܲ൫(ߙଵ, (ଵߟ = (1,1)൯ = , ܲ൫(ߙଵ, (ଵߟ = (0,2)൯ =  ݍ

so that the equalities (6), (9), (10) are true also.  
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