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Abstract 

This paper presents estimation of reliability R P(X Y)   of a system, for the cases when 
its strength (X) and stress (Y) follow exponential, normal or gamma distributions, using Monte 
Carlo simulation (MCS). First the parameters of strength and / stress are estimated and substituting 
them in the reliability expressions, in different cases, the estimates of reliability are obtained. 

Normal distribution is fitted to various sets of estimated reliability 


R , generated by MCS. The 
goodness of fit is tested using Kolmogorov-Smirnov one sample test.   
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1. Introduction
In interference theory of reliability, reliability and other reliability characteristics of a system 

can be expressed as some functions of the parameters of the distributions of the random variables 
(r.v.’s), strength (X) and stress (Y) associated with the functioning of the system. We estimate these 
parameters and substitute these values in the expressions for reliability and other characteristics to 
get their estimates. The estimates of parameters used here are maximum likelihood estimators and 
as such from the invariance property of MLE’s, the corresponding estimators of reliability are also 
MLE’s. In absence of hard data the numerical values of the estimators can be obtained from 
simulation. There exists extensive literature for estimation of reliability analytically for single 
component systems e.g. Mazumder [12], Church and Harris [4] etc.  But the reliability expressions 
for multi-component systems are not simple enough to facilitate analytical estimation of reliability 
and its other characteristics. Also due to lack of hard data, one way out is simulation, in particular 
Monte Carlo simulation. 

With simulation technique it is possible to estimate reliability (or probability of failure) or 
other reliability characteristics without going into the analytical techniques. The availability of 
personal computer and software makes the process comparatively simple. In fact, to evaluate the 
accuracy of the sophisticated analytical techniques or to verify a new technique, simulation is 
routinely used to independently evaluate the underlying probability distributions. 

1.1 Monte Carlo Simulation: 
 The Monte Carlo Simulation method is an artificial sampling method which may be used 

for solving complicated problems in analytic formulation and for simulating purely statistical 
problems. In the simplest form of simulation, each r.v. in a problem is sampled several times to 
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represent its real distribution. Each realization of r.v.’s in the problem produces a set of numbers 
that indicates one realization of the problem itself. Solving the problem deterministically for each 
realization is known as a simulation cycle, a trial or a run. Using many simulation cycles we get the 
overall probabilistic characteristics of the problem, particularly when the number of cycles N is 
sufficiently large. Simulation, using a computer, is an inexpensive way (compared to laboratory 
testing) to study the uncertainty in a problem.  

The primary components of a Monte Carlo Simulation include the followings: 
(i) Probability distribution function (or probability density function): The physical (or
mathematical) system must be described by a set of probability distribution functions.
(ii) Random number generator: A source of random numbers uniformly distributed on the unit
interval must be available.
(iii) Sampling rule: A prescription of sampling from specified distribution function, assuming the
availability of random numbers on the unit interval.
(iv) Scoring (or tallying): The outcome must be accumulated into overall tallies or scores for the
quantities of input.

 In this paper except exponential distribution we have not used uniformly distributed random 
numbers, rather obtained random numbers following particular distribution directly from 
MATLAB.  

In Section 2, we have estimated reliability of an n-standby system (n=1, 2, 3), through 
Monte Carlo Simulation technique. Simulation is performed for exponential stress-strength, normal 
stress-strength and gamma stress-strength. In Section-3 we have considered fitting of normal 
distribution to estimated reliability in each case, for different true values of the parameters. The 
goodness of fit is tested by K-S one sample test (Seigel [18]). Since we have taken a small sample, 
20, only, when using 2 test, the number of classes becomes too few, due to pooling. We have 
considered the fitting of normal distribution to check whether normal approximation is good enough 
for a small of 20.   

Some literatures on the topic which we have come across are: 
Kamat and Riley [8] presented MCS for a complex system for time to failure (TTF) models. 
Some of the others studies of reliability estimation using MCS for TTF models includes 

Pulido et.al. [15], Goel [5], Hong and Lind [6], Landis et.al. [10], Tunak et.al. [23], Naess et.al. 
[13], Wu et.al. [24] etc. 

Stancampiano [21] applied simulation to interference models. Manders et.al. [11], Aldrisi 
[1], Stumpf and Schwartz [22], Zhang et.al. [25] have simulated stress-strength. Paul and 
Borhanuddin [14], Rezaei et.al. [17] estimated reliability of stress-strength model, using MCS. 
Ahmad et.al.[2] obtain Bayes estimates of P (Y< X) using MCS. Borhanuddin et.al. [3] estimated 
reliability for multicomponent system using MCS. Rao et al [14] compared reliability estimates for 
multicomponent systems evaluated by different methods such as method of moments, modified ML 
method and Best Linear Unbiased Estimator through MCS technique. 

Kakati and Sriwastav [7] and Sriwastav [20], used simple simulation by taking random 
exponential numbers to represent stress-strength. They considered very small samples. From these 
samples they first estimate the parameters and substituting these in the expressions of reliability 
they get estimated reliability. 

2 Reliability Estimation through Monte Carlo Simulation: 
Let us consider an n-standby system. Let X1, X2,…,Xn be the strengths of the n components 

in the system arranged in the order of activation. Let Y1, Y2,…,Yn be the stresses faced, 
respectively, by 1st, 2nd,…,nth component, when they are activated; Xi’s and Yi’s are all 
independent. For a detailed description of such a system one may refer (Sriwastav and Kakati, [19]). 

The reliability Rn of an n-standby system for a single impact of stress is given by, 
 Rn = R(1) + R(2) +    …   + R(n),                                                                       (2.1) 
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where R(i) is the increment in the system reliability due to the ith component, defined as 
   ii1i1i2211 YX,YX,...,YX,YXPiR    (2.2) 

Here, we have assumed that all the components are having the same strength distributions 
and are working under the same environment (stress), i.e. all Xi’s and Yi’s are i.i.d. with probability 
density functions (pdf’s) f(x) and g(y), respectively. 

 In this section, we use MCS to estimate reliability. The programs are developed in 
MATLAB, separately for exponential, normal and gamma. First a set of 5000 values of the 
particular r.v. viz. (exponential, normal or gamma) are generated for a particular value of the 
parameter(s). Using these values an estimate of the parameters involved is obtained. Substituting 
this estimate(s) in the expression of reliability we get an estimate of the reliability. This process is 
repeated j times to give j estimates of the parameter(s) and subsequently j estimates of reliability. 
The whole process is repeated for different true values of the parameters; for a particular true value 
of the parameter(s) j is the sample size. 

2.1 (a) Exponential Stress-Strength: 
Let us assume that the component’s strength follows exponential distribution with mean   

and the stress on it follows exponential distribution with mean strength unity, without loss of 
generality. Then the marginal reliability expression due to the n th component is, (ibid) 

R(n) = R(n) = 
n 11

1 1

  
     

 (2.3) 

So, R1 = 
1

 

 (2.4) 

R2 = R1 + (1 – R1) R1,  (2.5) 
R3 = R1 + (1 – R1) R1+ (1 – R1)2 R1.  (2.6) 

For MCS, let U be the uniform r.v. over (0, 1). Then by following inverse transformation we 
can generate exponential random variable with mean as: 

 Let  U = F(x) = 1 – exp (–x / ) 
       X = –  log (1 – U) 

Now if U is uniform over (0, 1), (1 – U) is also uniform over (0, 1). So 
X = –  log (U)  (2.7) 

 From uniform r.v. U we can generate exponential r.v. with parameter  using the above 
transformation (2.7). We generate 5000 of U. Then from (2.7), for each U, – log U gives a value of 
the exponential r.v. X with mean unity. Thus we get 5000 values of X. Multiplying each of these 
5000 values of X by ( 0.5,2,3)  we get 5000 values of exponential r.v. (say X1) with mean  . The 
mean of these 5000 values give an estimate of   for a particular true value of  . Substituting these 
estimates in (2.4), (2.5) and (2.6) we get an estimate of R1, R2 and R3, respectively. For each true 
value of  the whole process is repeated j times there by giving j estimates of   and R’s for a 
particular true value of . Here, we have taken j = 20.   

(b) Normal Stress-Strength: In case of normal stress-strength let X  2σμ,N and stress   Y ~N (0,
1) by without loss of generality. The reliability expressions are (ibid)

R (n) = [1 – 
21

 
 

  
] n – 1

21
    

.  (2.8) 

R1= 21
    

,  (2.9) 

and R2 and R3 are given by (2.5) and (2.6), respectively. 
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For generating normal random numbers for particular true values of   and 2 , we first
generate standardized normal numbers (Z) by the MATLAB. Next by the following transformation 
we generate normal random numbers particular true values of  and 2 .

X =  + Z   where Z ~ N (0, 1). 

We estimate 


μ  and 


2  from the sample of X of size 5,000. Substituting these estimates in 
R1, R2 and R3, given above, we get estimates of the system reliabilities R’s. This process is repeated 
j times for a particular set of set of true values of  and 2 . We have taken (  , ) = (-1, .5), (0, .5), 
(1, .5),  (2, .5), (-1,1), (0, 1), (1, 1), (2, 1), (-1, 2), (0, 2), (1, 2), (2, 2) and j = 20. 

(c) Gamma Stress-Strength: We assume that the strength X   m,1 and stress Y  k,1 .
Then if m and/ or k is an integer (ibid)

R(n) =
n 1m 1

m k i 1
i 0

(m k i 1)1
k(m i 1)!2



  


    
     


m 1

m k i 1
i 0

(m k i 1)
k(m i 1)!2



  


   

  
  (2.10) 

So,  R1 = 
m 1

m k i 1
i 0

(m k i 1)
k(m i 1)!2



  


   

  
  (2.11) 

  Here also R2 and R3 are given by (2.5) and (2.6).  
  If m and k are not necessarily integers (Kapur and Lamberson, [9]) 

R(n) =  n 1
1/ 2 1/ 21 Beta(m, k)Beta (m, k) Beta(m, k)Beta (m,k)                    (2.12)

where Beta (. , .) is Beta function and Beta1/2(. , .) is incomplete beta function, with 
parameters m and k. 

So, R1 = 1/ 2Beta(m, k)Beta (m,k)   (2.13) 
and then R2 and R3 are given by (2.5) and (2.6). 

Here also, by MATLAB, we directly generate gamma random numbers X for strength 
population and Y for stress population, of sizes 5000 each with different true values of the 
parameters m and k.  Substituting these estimates in the above expressions of R’s we get a 
reliability estimate of the systems. This process is repeated j times for a particular set of true values 
of m and k. Then for each set of true values of m and k the above process is repeated. We have 
taken (m, k) = (1,1), (1,2), (2,1), (2,2) and j = 20. 

3. Fitting of Normal Distribution to Systems Reliability:
 From different expressions of reliability in Section-2 we have obtained the estimates of 

reliability substituting the estimated values of the parameters in respective cases. To these estimated 
values of reliability for different cases we have fitted normal distribution and tested the goodness of 
fit by one sample K-S test. The tabulated value of D for sample size 20 at 5% level of significance 
is 0.294 (see Seigel [18]).   

Let us first consider the case of exponential stress-strength. For each ( 0.5,2,3)   j =20, the 

values of 1R


, 2R


 and 3R


 are obtained by substituting the corresponding values of 


λ  obtained in 
Section-2, in the expressions (2.4), (2.5) and (2.6). Then for each value of true , mean and s.d. of 

1R


, 2R


 and 3R


 are calculated. In each case normal distribution is fitted and the goodness of fit is 
tested by K-S test. The values are tabulated in Table-3.1. True values of R1, R2, and R3 are also 
given in the same table for comparison. 

For K-S test, if calculated value is of D < 0.294, the fit is good. From Table- 3.1, columns 5, 

9, 13 it is clear that normal distribution gives good fit to the values of 1R


, 2R


 and 3R


. 



A.N.  Patowary, J. Hazarika AND G. L. Sriwastav. - ESTIMATION OF RELIABILITY IN INTERFERENCE MODELS USING MONTE CARLO SIMULATION RT&A # 02 (25)  
(Vol.7) 2012, June 

82 

Table -3.1: Exponential Stress-Strength 

True 
  

True 
R1

Mean 

1R


SD 

1R


D 
for 

1R


True 
R2 

Mean 

2R


SD 

2R


D 
for 

2R


True 
R3

Mean 

3R


SD 

3R


D 
for 

3R


.5 .333 .333 .003 .090 .555 .556 .004 .067 .704 .704 .004 .116 
1 .500 .500 .003 .072 .750 .750 .003 .072 .875 .875 .002 .075 
2 .667 .667 .003 .076 .889 .889 .002 .063 .926 .963 .001 .063 
3 .750 .750 .003 .071 .938 .948 .001 .088 .953 .984 .000 .023 

N.B.: The entry .000 in the SD column indicates that the SD is very small. This is the situation for
all the tables.

Next let us consider the case of normal stress-strength. The above procedure is repeated for 
different set of ( 2,  ) and their corresponding estimated values from Section-2 are used in 
expressions (2.9), (2.5) and (2.6). The results are tabulated in Table- 3.2. From values of D (see 
Seigel [18]) in column 6, 10, 14 we see that normal distribution gives good fits to the distributions 

of 1R


, 2R


 and 3R


. 

Table -3.2: Normal Stress-Strength 

Here we would like to point out that for   = 0 and  = 0.5, the fit is not good. 
Similarly for gamma stress-strength, for different sets of true values of stress-strength 

parameters (m, k) and taking their corresponding estimates from Section-2 and using this in 
expressions (2.11), (2.5) and (2.6) we obtain estimates of R1, R2, and R3 in different situations and 
calculate D statistics in each case. All these values are tabulated in Table- 3.3. Comparing the 
values of D in columns 6, 10 and 14 with the tabulated values (ibid) we see that normal distribution 
gives good fit to reliabilities of systems for gamma stress-strength also. 

True
  

True 


True 
R1

Mean 

1R


SD 

1R


D 
for 

1R


True 
R2 

Mean 

2R


SD 

2R


D 
for 

2R


True 
R3

Mean 

3R


SD 

3R


D 
for 

3R


.5 -1 .212 .186 .001 .073 .379 .337 .002 .117 .510 .460 .003 .119 
0 .500 .500 .003 .800 .750 .750 .003 .080 .875 .875 .002 .091 
1 .788 .814 .002 .083 .955 .966 .000 .073 .991 .994 .000 .149 
2 .945 .963 .001 .037 .997 .999 .000 .021 .999 .999 .000 .058 

1 -1 .308 .240 .003 .141 .522 .424 .004 .115 .669 .561 .004 .205 
0 .500 .501 .005 .064 .750 .751 .005 .064 .875 .876 .003 .077 
1 .692 .760 .004 .047 .905 .942 .002 .043 .971 .986 .000 .026 
2 .841 .922 .002 .123 .975 .994 .000 .105 .996 .999 .000 .129 

2 -1 .421 .327 .004 .077 .665 .547 .006 .044 .805 .695 .006 .088 
0 .500 .501 .005 .061 .750 .751 .005 .039 .875 .876 .004 .055 
1 .579 .672 .004 .107 .823 .892 .003 .078 .926 .965 .001 .129 
2 .655 .813 .005 .075 .899 .965 .002 .082 .977 .993 .001 .097 
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Table-3.3: Gamma Stress-Strength (m and/ or k are Integer) 

When neither m nor k is an integer then the corresponding estimates of R1, R2, and R3 are 

obtained by substituting the values of 


m and 


k  from Section-2 in the expressions (2.13) etc. and the 
corresponding values are tabulated in Table-3.4. 

Table- 3.4: Gamma Stress-Strength (m and K are not necessarily Integer) 

True 
m 

True 
k 

True 
R1

Mean 

1R


SD 

1R


D 
for 

1R


True 
R2 

Mean 

2R


SD 

2R


D 
for 

2R


True 
R3

Mean 

3R


SD 

3R


D 
for 

3R


1 1 .500 .499 .007 .090 .750 .749 .007 .090 .875 .874 .006 .076 
2 .250 .250 .005 .092 .438 .438 .007 .005 .579 .579 .008 .065 

2 1 .750 .750 .005 .069 .938 .938 .002 .060 .984 .984 .001 .071 
2 .500 .500 .006 .095 .750 .750 .006 .070 .875 .875 .004 .096 

  Conclusion: In this paper, we have estimated the reliability through MCS. We have seen that 
normal distribution is fitted to the data sets of estimated reliability obtained by MCS. Once we 
know the distribution it is easy for us to obtain the other characteristics of the reliability data sets. 
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