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Abstract 

This paper is a review integrating, amending, and developing the approach applied in authors’ previous works 
devoted to the tensile and fatigue reliability analysis of unidirectional composite material considered as a series system 
the links of which are, in general case, complex parallel systems with redistribution of load after failure of some items. 
By processing experimental data it is shown that the models based on the Markov chains  (MCh) theory  allow (1) to 
describe connection of cdf of tensile strength of fibers (strands) and a composite specimen, (2) to perform nonlinear 
regression analysis of fatigue curve and prediction of its changes due to a change of tensile strength characteristics of 
the composite components, (3) to predict the fatigue life at a program loading, (4) to estimate  the cdf of the residual 
strength and residual life after a preliminary fatigue load. 
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1. INTRODUCTION 
The distribution of static strength, the fatigue curve, and the accumulation of fatigue damage 

under a program loading are often described by poorly interconnected hypotheses. The distribution 
of static strength is usually analyzed by the Weibull or lognormal distributions, while the fatigue 
curve is described by formal regression dependences. The accumulation of fatigue damage under a 
program loading, as a rule, is carried out by using the Palmgren-Miner hypothesis or its 
modifications. Here we consider the application of the Markov chain (MCh) theory for a unified 
approximate solution of the mentioned problems. Application of the Markov process theory for 
specific problems is discussed in several publications (see, for example, [1]-[2] as the most 
interesting) but the idea of connection of cdfs of tensile strength, fatigue life, residual strength and 
residual fatigue life (after some preliminary fatigue loading) with the cdf of tensile strength of a 
composite material component is relatively new. First steps in that direction were made in 1980 [3]. 
This paper is a review integrating, amending, and developing the approach applied in authors’ 
previous works [4-7] “furnished” with examples of solution of the above-mentioned problems for 
unidirectional fibrous composite within the framework of some specific case of unified 
mathematical model.  

 Actually  this paper is an addition  to [4]. The main new idea of the paper is to show that 
nearly the same type of MCh model  can be used  for the case of tensile strength, as well as for the 
case of fatigue life analysis of a composite material. A new idea of using random Daniels sequence 
is discussed also. 

2. MODEL OF A UNIDIRECTIONAL FIBER-REINFORCED COMPOSITE MATERIAL. MAIN IDEAS 
We consider the composite specimen as a series system with Ln  links, a random number of 

which, LK , 1 L LK n   have defects. We call them weak micro-volumes (WMV). Contrary to a 
general set of probability structure (ps) for a single fiber (strand), described in [4 ], in which the 
failure of both types of links (with defect and without defect)  can be the cause of failure of 



Yu. Paramonov, R. Chatys, J. Andersons, V. Cimanis, M. Kleinhofs - MARKOV MODELS  FOR  TENSILE AND FATIGUE RELIABILITY ANALYSIS OF 
UNIDIRECTIONAL FIBER COMPOSITE 

 
RT&A # 03 (26)  

(Vol.7) 2012, September 
 

 

54 

specimens here we suppose that failure of the specimens can be only as the consequence of failure 
of some WMV. This assumption is equivalent to the assumption that the strength of links without 
defects is equal to infinity or very large. 

 

 
Fig.1. Model of the weak microvolume of a composite  

under a load and after removal of the load . 
 

We suppose that in general case the WMW consists of Cn  perfectly elastic (brittle) 
longitudinal items (LI) (fibers or strands) and a matrix where plastic deformations are accumulated 
if cyclic loading takes place (Fig.1). We assume that, except for the LIs, the plastic part includes all 
other composite components, i.e. the matrix itself and all the layers with stacking different from the 
longitudinal one! And we assume finally that, if the number of LIs in the WMV decreases by Rr
items, the elastic part of the specimen breaks down, which is followed by the failure of the 
specimen as a whole. The total number of LIs in one WMV, Cn , in general case can be more than 

Rr  but  we suppose that failure of ( / )R Cr n -th part of elastic LIs of WMV is considered as failure of 
elastic part and the whole WMV also by definition. The value of /C R cf r n  is a parameter of the 
model. The slanted hatching in Fig.1 symbolically points to the possibility of accumulating an 
irreversible plastic strain. If it exceeds some critical level YC , the failure of the WMV and the 
specimen as a whole takes place also. We emphasize that this graphic image, as applied to a 
composite, should be understood symbolically. It is more suitable for metals, where the 
accumulation of plastic strains is associated with some “act of flow” (for metals - a shift over slip 
planes). We assume that one act of flow leads to the appearance of a constant plastic strain 1Y . The 
failure of WMV takes place after the accumulation of a “critical” number of such acts, Yr , i.e., after 
the accumulation of a critical plastic strain, YC , for which the relation YC = 1Y Yr  is valid, where 

YC  and  Yr   are model parameters. Since the elastic and plastic parts are integrated in a unit, the 
accumulation of plastic strains (irreversible deformation of the plastic part) leads to the appearance 
of residual stress: tension in the elastic and compression in the plastic part of the specimen [4]. 

For description of the process of failure of WMV using MCh theory we should provide the 
description of  space of states of MCh and its connection with the structure of the composite WMV, 
the corresponding structure of the matrix of transition probabilities and its connection with the cdf 
of mechanical characteristic of the component of WMV, the process of loading. 

2.1.     Probability description of WMV 

2.1.1.     Description of space of states and transition probability matrix  
As it was already mentioned, a set of probability structures (ps)  for description of fiber 

(or strand) as series system is considered in [4]). Now we consider probabilities structure of 
specimen but, first, ps of one WMV.  

    Let us, in general case, associate the process of gradual failure of a WMV with an 
absorbing MCh the set of states of which is determined by the number of broken LIs and the 
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number of acts of flow. The matrix of transition probabilities is presented as a totality of ( Yr +1) 
blocks with ( Rr +1) states within each of them. Then, the indices of input and output states, i and j, 
can be expressed in terms of the corresponding local indices  , ,Y R Yi i j and Rj : RYR iiri  )1)(1( ;  

RYR jjrj  )1)(1( . 
Table 1 shows an example of (symbolic) filling of the matrix for the case where Yr = Rr =2 for 

independent failure of LI and act of flow. In this case the destruction of a specimen occurs if two 
LIs fail (event A), or two acts of flow are accumulated (event B), or events A and B take place 
simultaneously. The absorbing states of the MCh correspond to these events. In the example 
considered, there are ( Yr +1)( Rr +1) = 9 states. The symbols pR0, pR1, … designate the probabilities 
of failure of the corresponding numbers of elastic (rigid) elements; pY0, pY1, … are the probabilities 
of the corresponding numbers of acts of flow (yielding). 

TABLE I 
EXAMPLE OF THE TRANSITION PROBABILITY MATRIX 

  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the local order number of state is defined by the number of failed LIs, it is connected 
also with the local stress in intact LIs. The set of states of MCh can be connected  also not only  
with the number intact LIs but with the set of corresponding values of local stress. For tensile test it 
is more convenient to use the connection with the intact (or failed) LIs. For fatigue test it is more 
convenient to consider the connection with the local stress (see the definition of Daniels’ sequence 
in the following).  

 Consider now the simplest special case (the most interesting for tensile test of a 
unidirectional composite) when there are only Cn  LIs (fibers or strands). Equality R Cr n  is used for 
the definition of failure of WMV, and the existence of composite matrix  is not taken into account. 
In this case the WMV is a parallel system with ( C Cn K ) LIs, where Cn is a constant (initial number 
of LIs without any defect), CK , 0 C CK n  , is the number of failures of LIs  in the link. Note that in 
this case the equality C CK n  means the failure of link (WMV)  and the specimen also.  

 jY 1 2 3 
jR 1 2 3 1 2 3 1 2 3 

iY iR i \ j 1 2 3 4 5 6 7 8 9 

1 

1 1 
pR0pY

0 
pR1pY

0 
pR2pY

0 
pR0pY

1 
pR1pY

1 
pR2pY

1 
pR0pY

2 
pR1pY

2 
pR2pY

2 

2 2 0 
pR0pY

0 
pR1pY

0 
0 

pR0pY

1 
pR1pY

1 
0 

pR0pY

2 
pR1pY

2 

3 3 0 0 1 0 0 0 0 0 0 

2 

1 4 0 0 0 
pR0pY

0 
pR1pY

0 
pR2pY

0 
pR0pY

1 
pR1pY

1 
pR2pY

1 

2 5 0 0 0 0 
pR0pY

0 
pR1pY

0 
0 

pR0pY

1 
pR1pY

1 

3 6 0 0 0 0 0 1 0 0 0 

3 

1 7 0 0 0 0 0 0 1 0 0 

2 8 0 0 0 0 0 0 0 1 0 

3 9 0 0 0 0 0 0 0 0 1 
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Note also, that for this type of WMV there is only one block in the transition probability 
matrix P  corresponding to 0Yr  , R Cr n . The number of states of MCh is equal to ( 1Rr  ).  

 
Note again, that it is not necessary to connect the failure of WMV with equality C CK n  .  

We can in general case to define the failure of unidirectional WMV as the event when the intact part 
of LIs becomes less than some critical  value Cf : ( ) /C Ci c cn K n f  . In this case [ ]R C Cr f n +1, 
where [ x ] is the integer part of x . 

For the considered type of WMV the four main versions (hypotheses) of the structure of 
matrix P , denoted as aP , 

CanP , bP  and cP , are considered in [4]. Matrix aP  corresponds to the 
assumption that, in one step of MCh, only one LI can fail, and it is the nearest one to the already 
failed LIs (in some way this corresponds to development of a crack); 

CanP corresponds to the failure 
of the weakest item in the considered WMV(cross section); bP  corresponds to a binomial 
distribution of the number of failures at every step of MCh; cP  corresponds to the case when the 
stress concentration function is known.  

Total initial load  of this type of WVM is equal to CSn , where S is the initial stress (load of 
one LI). For the three first types of matrix a uniform distribution of load between intact LIs is 
supposed. Then, if the number of failed  LIs is equal to i , the stress in the still intact LIs will be 
equal to / ( )C CSn n i . For the matrix of type cP the function of stress distribution across the cross 
section of WMV should be known (see the details in [4]). This connection of the local stress and the 
number of states of MCh should be taken into account for calculation of matrix of transition 
probabilities. 

The corresponding set of states can be used also for modeling of fatigue test (again, see 
details in [4]). But in [6,7] the set of MCh states  is connected with the random Daniels’ sequence 
(RDS). The components of RDS, , correspond to the random process, a realization of 
which has the following form: 1 ,

€/ (1 ( )),   0,1,2,...,
s Ci X n i Cs S F s i n    ,   where 0 ,s S S is the initial 

stress (initial load of one LI), ,
€ (.)

s CX nF is the estimate of cdf of strength of a LI, which is defined by 
some sample 1( ,..., )

Cs snx x  of observations of Cn  random variables (random strength  of Cn  LIs) with 
the same cdf ( )

sXF x . Here we use the following definition: ,
€ ( ) ( ) /

s CX n CF x k x n , where ( )k x  is the 
number of observations which are lower  than x . or equal  to x .So here   1( ,..., )

Cs snx x  is a vector of 
observations of random strengths, 1,...,

Cs snX X , of components of some WMV, 1 / (1 ( ) / )i i Cs S k s n   , 
0,1,2,..., 1ci n  . In following we suppose that 1( ,..., )

Cs snx x  is the vector  of ordered statistics: 

1 2 ...
Cs s snx x x   . 

The increase of local stress corresponds to decreasing of local cross section (reduction of the 
number of intact components of WMV). Let us again define that the failure of WMV takes place if 
local cross section become less than some value Cf  (initial total cross section area of WMV is equal 
to one). Here Cf  is a constant, a parameter of the considered model. Then critical local stress 
corresponding to this event, *

UTS , is defined as minimum of stress, s ,  for which the part of LIs with 
strength less than s   is more than Cf : *

UTS = 0 1 2
€min{ : ( ) ,   { , , ,...}}

sX Cs F s f s s s s  , where   is 
RDS. The random number *

0 1 2max{ : ,   { , , ,...}}RDS i UT iN i s S s s s s   , we call as RDS  fatigue life  
(RDSFLf) at stress S . Here is  is an item of RDS (for specific S , for specific realization 

,1 1( ,..., )
C Cs n s snx x x   of random vector of ordered statistics ,1 1( ,..., )

C Cs n s snX X X  ). 

,...},,{ 210 sss

,...},,{ 210 sss
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Let us define the random function ,1( , )
CDFLm S s nS k x  the value of which is equal to the maximum 

value of S  for which in RDS with 0 Ss k S  and specific ,1 Cs nx  there is some i for which 

1 2 ....i i is s s     = 0 1 2max( , , ,...)s s s = *
,1( , , )

CS s ns S k x    . Growth of stress in RDS is stopped after it 
reaches *

,1( , , )
CS s ns S k x   which is the solution of the equation €/ (1 ( ))

sS Xx k S F x   or €(1 ( ))
sS Xk S x F x  . 

We call ,1( , )
CDFLm S s nS k x   the Sk -RDS-fatigue-limit ( Sk -RDSFLm)) because if initial stress, S , is 

lower its value then corresponding Sk -RDSFLf (for 0 Ss k S and specific ,1 Cs nx  ) is equal to infinity. 
Existence of Sk -RDSFLm explains the phenomenon of random fatigue limit.  

 

Solution of the equation  €(1 ( ))
sS Xk S x F x   exists  if €max (1 ( ))

sS Xk S x F x  . In accordance with 
Daniels [8,9] the strength of a parallel system of Cn  LIs is random variable DS = €max (1 ( ))

sXx F x  
with asymptotically normal distribution 2( , )D DN   , where parameters D  and D  are defined  by 
the cdf of strength of LI .  By fitting the fatigue life data by Sk -RDS-MCh model we can find an 
appropriate estimate parameters of the model including Sk . Then  we can make estimate the 
probability that Sk -RDSFLf is equal to infinity: 

 inf ,1( | ) ( ( , )) ( ) /
CC DFLm S s n S D Dp P T S P S S k x k S          . 

Example of Monte Carlo calculation of “normalized” RDS, ( (1/ )Sk , 
*

,1( , , )
CS s ns S k x    and infp for  different Sk  and 10 random realizations of ,1 Cs nx   was  provided in [7] . 

Similar result for the same initial data is shown in Fig.  2.    
 

 
 

 
 

Fig. 2. Examples of ‘normalized’ RDSs  and estimates of infp for fatigue test of carbon-fiber 
composite [5] for S = 290.1 MPa and different Sk (see [7]) 
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If for calculation RDS we use  1Sk   then  RDSFLfs are very small, RDSFLm is very high 
(see [4,6,7]).  So although the use of RDS provides a qualitative explanation of fatigue failure of a 
composite material and can also explain the phenomenon of fatigue limit, the quantitative prediction 
is very poor.   

 But the possibility of explanation of the existence of phenomenon of fatigue limit is very 
attractive. The very high value of RDSFLm can be explained by existence of local stress 
concentration, i.e. instead of equality 0s S  (see [6]) the   initial stress in RDS should be defined by 
equality 0 ,Ss k S where Sk  is a local stress concentration coefficient. The probability characteristics 
of fatigue life and appropriate description of fatigue curve in the framework of this model can be 
fitted to the real characteristics of fatigue life using the theory of MCh with space of states based on 
RDS.  

For this type of MCh the first r  states of state space are related with the items of RDS,
0 1 1{ , ,..., }rs s s  , rs  is connected with the absorbing state . In Fig.2 we see two types of RDS. For RDS 

of first type items of RDS grow up to infinity. For this type of RDS-MCh model, absorbing state is 
connected with the event that the local stress is equal or larger than *

UTS . For the second type of 
RDS there is a final limit and absorbing state should be connected with *

,1( , , )
CS s ns S k x  . In the 

simplest case it can be assumed that only transitions to the nearest ‘senior’ state can take place. So 
the following simple matrix of transition probabilities can be considered:  

 

, 

 
where ( 1) ( 1)( ( ) ( ) / ( ( ))i i i C ip k s k s n k s    , 1i iq p  . Note that here P is a realization of random matrix  

,1( , )
Cs nP P x X   . It is a function of load x  and random vector of strength of Cn  LIs, 

,1 ,1 ,( ,..., )
C Cs n s s nX X X  .  So all results of calculation using this matrix will be random if Cn  is not 

large enough.  In order to get mean results the Monte Carlo method can be used. But if Cn  is large 
enough then, for example, if there is normal  distribution, 2

0 1( , )N   , of logarithm of strength of LI 
then the items of matrix P , approximately, can be  defined in following way  : 

1 0 1((log( ) ) / )Sp k S     ; 2 1/ (1 )Ss k S p  ; ( 1) ( 1)( ) / (1 )i ic i c i cp p p p    , 
 
where 0 1((log( ) ) / )ic ip s     ,  ,  1 / (1 )i S ics k S p   , 1,2,...,i r . 
        
and the corresponding nonrandom matrix P  can be used. A numerical example for this special case 
is considered in [6].  

2.1.2.     Description of the process of loading. CDF of tensile strength and fatigue life of 
WMV 

By renumbering the states, the matrix of transition probabilities of any absorbing MCh can be 
reduced to the form 


























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00

0000
000
00
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











rr pq

pq
pq

pq
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









I
RQ

P
0

, 

where I is the unit matrix and 0 is the matrix consisting of zeros.   
 

As it was told already the matrix P is a function of loading stress, x .  Loading process in 
tensile test is described by an ascending up to  infinity sequence 1 21 { , ,..., ,...}tx x x x  . The cdf  of the 
number of steps up to absorption, AT ,  is defined by matrix P , a priori probability distribution on 
MCh states,  , and by an sequence of loads, x1∞ : 

1

( ) ( ( ))
A

t

T j
j

F t P x u


  , 1 2{ , ,..., ,...}j tx x x x                                       (1) 

 where vector-column '(0,0,...,1,...,1)u  has only zeros and units (for absorbing states). By the 
choice of  we can model different levels of a priori quality of tested specimens (for example, the 
modified binomial distribution of initial number of intact LIs in one WMV can be modeled). 

The load corresponding to the time to absorption, 
ATx  is a random tensile strength. If ( )tx g t , 

where (.)g  is monotonicaly increasing function for which there is the inverse function 1(.)g , then 
cdf of random variable 

ATX x  is  
 

 1( ) ( ( ) ) ( ( ))
AX A TF x P g T x F g x   ,   1x x  .                              (2a)   

For fatigue test for estimation of fatigue life at a stress level x , all items in the sequence 
1 21 { , ,..., ,...}tx x x x  are equal: 1 2 3 ....x x x x     where x  is some parameter of cycle (for example, 

x is a maximum stress of pulsating cycle). Then fatigue life (cycle number up to failure) is equal to 
C m AT k T  cycles, where mk , 0mk  , is a scale factor, i.e. it is the number of cycles corresponding to 

one MCh step. In this case 
1

( ) ( )
t

t
j

j

P x P x


  and ( ) ( )
A

t
TF t P x u , 0,1,2,...t  . Cdf of the number of 

cycles up to failure, CT , is defined by equation 
/( ) ( / ) ( )m

C A

n k
T T mF n F n k P x u  ,  0, ,2 ,3 ,...m m mn k k k                             (2b ) 

Note again that we have random results of equations (1, 2a, 2b) if  we have random matrix 
,1( , )

Cs nP P x X   (if MCh state space is defined by RDS) but using Monte Carlo method (or if Cn is 
large enough) we can get approximately determined results. 

Examples of equations for calculation of P  for fatigue loading by pulsating cycle taking into 
account presence of the plastic part of WMV are given in [4].  A version of “translation” of any 
cycle  with any other asymmetry into a pulsating cycle is given in [5]. 

Let us denote by nS  the conditional fatigue limit at n cycles of load. Then cdf of nS  is  
[ / ]( ) ( | ) ( )m

n

n k
S CF x P T n S x P x u    , 

where P is defined by stress x , [ ]x is the integer part of x , and u  are the same as previously. 
It is worth to note that probability that fatigue life is larger than n  at stress S  is defined by 

equation [ / ]( | ) 1 ( )mn k
CP T n S x P x u    .  This probability we can estimate relatively easy.  But it is 

very difficult to estimate function ( )
nSF x . 

As it was shown already, using RDS models we can estimate the probability that fatigue life  
at a stress level S is equal to infinity.  

 

Let us denote 
0

t tt Q R
P

I
 

  
 

. Different columns of the matrix ( )t t tB I Q R  define the 

probabilities of absorption (failure) in different absorbing states for different initial states (rows). 
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For example, matrix element in the right upper corner of tB corresponds to probability of failure of 
the WMV as consequence of failure of all LIs  (or, in general case,  for the composite matrix the 
relation YC = 1Y Yr  is reached) at MCh step number t  if the initial state 1i   (see Table 1). 

 But if we do not need this detailed information then instead of matrix P  we can use the 
matrix UP  in which all the absorbing states are united in one absorbing state. The number of states 
of matrix UP is equal to 1Y Rh r r  . The matrix UP  is useful for analysis of fatigue life in program 
loading. Cdf of fatigue life for a program loading defined by the sequence x1∞ corresponding to 
some specific program of loading  can be calculated again using equations (2a) and (2b). Consider 
specific two-stage fatigue loading: 

1 1 1 11 1 1 1 2 ( 1) ( 2) ( )1 { 1 , } {{ , ,..., },{ , ,..., ,...}}t t t t tx t x t xt x x x x x x      ;

11 2 ,..., I
tx x x x    ,

1 1 1( 1) ( 2) ( ),..., .... II
t t t tx x x x        , Ix  is the stress in the first fatigue loading 

stage, IIx  is the stress in the second fatigue loading stage. After preliminary loading  
11 1 21 { , ,..., }tx t x x x  an a priori distribution 0  is transformed into „a posteriori” distribution 

1

1 0
1

( )
t

t
j

P j 


  .  Using  
1t  instead of    in equations (2a) and (2b) we can get the cdf of both 

residual strength and residual fatigue life T  in two-stage fatigue loading. 
 It is necessary to note that usually we are interested in these characteristics only for the 

specimens which are still intact after the preliminary fatigue loading. The components of „a 
posteriori” conditional distribution for them are: 

1 1 1
( ) ( ) / (1 ( ))t c t tk k h     for 1,2,...,( 1)k h  , 

1
( ) 0t c h   . This distribution, matrix UP  and the second stage loading 

1 1 11 1 ( 1) ( 2) ( ){ , ,..., ,...}t t t txt x x x      
should be used in (2a) and (2b) instead of  , P  and x1∞  for calculation of cdf of residual step 
number AT  up to absorption (WMV failure).  Now the residual strength is rv 

1( )At Tx   (see also in 
[4] the definition  of the so called mk -residual strength which defines the stress of fatigue cycle 
which produces the  fatigue failure in mk  fatigue cycles which are equivalent to one step of MCh. 
Its cdf is defined by equation 

1 11
( ) ( )

x tS j t c jF x P x u , 

 where 
1 11 2{ , ,...}j t tx x x  ,

1 1
I

tx x  ,
1 11 2{ , ,...}t tx x  is an ascending up to  infinity sequence of stresses in 

“residual” tensile strength test) ,  

2.2. Probability description of a specimen 
We suppose that in the simplest case, neglecting the presence of composite matrix in a 

unidirectional composite  (sequence of links), there are two types of links: there are LK , 
1 L LK n   , links with defects  and ( L Ln K ) without defects. In damaged links, we call them as 
WMV, there are  only ( C Cn K ) LIs, 1 1C CK n   ; CK  LIs are failed. So now WMV  is a parallel 
system with ( C Cn K ) items. Recall that the equality C CK n  means the failure of WMV  and 
the specimen also. There are a priori probability mass functions (pmf) of random variables LK  
and CK  : 

LKp  and 
CKp . 

In general case some WMVs  can appear before but another during tensile or fatigue 
loading. 

 
2.2.1. All WMV appear before test 
 
 Let ( )CiK t , 0 Ci CK n  , be the number of failures of LIs  in the i-th link at the tensile load  

tx , 1 2{ , ,..., ,...}t tx x x x , 1 2 3 1... ...t tx x x x x       Load increases up to infinity. Then the number of 
steps of load increasing up to tensile failure of the i-th WMV  
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max( : ( ) 0)Ai C CiT t n K t   ,                                                         (3)                                                     
Two approaches for describing the second stage of total specimen failure can be considered: 

(1) the failure process development takes place in every WMV; (2) the failure process development 
takes place only in one WMV in which there is the maximum value of a priori  failed LIs  due to 
technological defects. 

For the first hypothesis, which is studied in [4] (see also reference in [4]), we have the 
following definitions of the number of steps of tensile loading up to failure of the specimen  

1 1
min min max( : ( ) 0)

L L
A Ai C Cii K i K t

T T t n K t
   

    .  

For corresponding  cdf we have  

1
1

( ) ( )(1 (1 ( )) )
L

A L A

n
k

T K T
k

F x p k F x


   , 

where 
1
( )

ATF x  is cdf of AT  of one WMV; 
LKp is pmf of rv LK  (modified ( 1LK  ) binomial or Poisson 

distribution; see [4] ).  In the following we call this hypothesis as MinMax hypothesis and the 
corresponding family of cdf (for different versions of MChs) as MinMax cdf family.  In the 
simplest case, if  ( ) 1L LP K n  ,  we have 

1
( ) (1 (1 ( )) L

A A

n
T TF x F x   .  

In this paper we consider the second hypothesis: the failure process development takes place 
only in one WMV in which there is a minimum of intact LIs,  min( (0))Cmn C Cii

N n K  , where 

(0)CiK is the initial number of (technological) defects in i-th WMV.   Then 
* *max( : min( (0)) ( ) 0) max( : ( ) 0)A C Ci CmnCi Cii

T t n K K t t N K t      
 

where * arg min( (0))C Cii
i n K   is the index of link corresponding to minimum intact LIs. This 

hypothesis we call as MaxMin hypothesis (MaxMin distribution family can be introduced also). 
Obviously, instead of calculation of cdf of rv CmnN  it is more convenient to calculate cdf of rv 

1
max( (0))

i

L

Cmx C Cmn C
i K

K n N K
 

    for which we have  
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K K K
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

  , 1,2,..., 1Cm n  , 

where (0)
1

( ) ( )
C C

m

K K
k

F m p k


  , (.)
CKp  is a priori pmf of rv (0)CK .  Then for Cmn C CmxN n K   we have 

the cdf  ( ) ( ) ( ) 1 ( )
Cmn CmxN C Cmx C Cmx K CF m P n K m P n m K F n m          

and pmf  ( ) ( ) ( 1),
Cmn Cmn CmnN N Np m F m F m   2,..., 1Cm n  , 

0 0
(1) (1)

C CN Np F . 

But for  *max( : ( ) 0)A Cmn CiT t N K t    we have  
0

1

|
1

( ) ( ) ( )
C

A C A C

n

T N T n m
m

F t p m F t





  , 

where | ( )
A CT n mF t  is cdf of AT  of one WMV for Cn m  (see (1)). 

Of course, we can reach the tensile failure of any specimens by increasing of load. So in every 
specimen there is at least one WMV and rv LK is an integer which is larger or equal to one, more 
exactly:  1 L LK n  . Let rv K have a binomial or Poisson cdf (if Ln  ). Then for rv LK  the 
conditional cdf of K under condition K >0 or definition LK =1+ K  can be used.  

Recall that connections between AT , tensile strength, X , and number of cycles up to fatigue 
failure, CT , are defined by (2a) and (2b). 
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2.2.2. The initiation of WMVs takes place during the process of loading 
 
For tensile test it can be assumed that the number of WMV depends on the load. So the 

parameter of the binomial distribution can be taken equal to ( )F x  where (.)F  is cdf of tensile 
strength of one LI, x  is load (see details in [4]). 

For fatigue test in [5] it is supposed that WMVs do not originate simultaneously but in 
accordance with a Poisson process. Then the number of WMVs is a random function of time. It 
increases during fatigue loading with intervals iX , 1,2,3,...i  .  So 1X , 1 2X X , 1 2 3X X X  , ... 
are the time moments of initiation of new WMVs. Let us denote by jT  fatigue life of   j-th specific 
WMV. Then the life of specimen  

 
1 2 1 3 1 2min( , , ,...)Y T T X T X X    . 

 
                                                                                       

                                                              Y 
 
 
 
 
 
 
 
  
 X1 X2  T3 
                       
                                                                                            T2 
 

T1 
 
 
 
 
 
 
 

Fig. 3 . Definition of Y . 
 

This equation can be written in the form 1 1 1min( , )Y T X Y  ,  where 
1

( ) ( )Y YF y F y . 
We have the following solution of this equation   for the exponential distribution with a 

parameter   of all  independent random variables  1 2 3, , ,...X X X   (mean value of X  is equal to 
1/  )  

0

( ) 1 (1 ( ))exp( ( ) )
C C

y

Y T TF y F y F t dt     .   

where ( )
CTF t  is cdf of fatigue life of one WMV (see (2b),  time unit is one cycle). 

 
In [5] the example of using this approach for processing of test data is given.  
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Finally, we should mention that using results of fatigue test of glass fiber composite material 
example of the reasonably successful „ translation” of cycle with some positive assymetry into the 
pulsating cycle is also given in [5]. 

3. PROCESSING THE TEST DATA 
 In [4] there are examples of test data processing connected with MinMax approach. More 

exactly, there are examples of processing of results of fatigue tests (S-N curve and residual life) of 
carbon-fiber reinforced composite specimens using probability transition matrix of the form of 
Table 1 under assumption that there is only one WMV (see also reference in [4]). In [5] there is an 
example of processing glass-fiber reinforced composite specimen test data under assumption that 
different WMVs do not appear simultaneously but in accordance with the Poisson process. In both 
cases we have reasonable results of fitting test data and some prediction for different length and 
different stress ratio and examples of prediction of residual strength for two different preliminary 
loadings ( , ),   1,2i iS n i   : (292.53 МPа, 60 000), (390.05 МPа, 900).  

In this paper a specific case of MaxMin approach is used for processing fatigue test   and 
tensile strength test results of composite specimens made of unidirectional glass-fibre composite 
(Udo UD ES 500/300 - SGL epo GmbH с  LH 160 of „Composites HAVEL”; [0/45/0])  for L= 60. 

Because of the specific structure of specimens, for processing of tensile and fatigue data we 
use specific structure of matrix aP  (see [4]) with 40Rr  , Yr =0 (there are only LIs); Cn =50.  
Lognormal distribution of LI tensile strength was assumed. For description of cdf of the rv (0)CK  
the conditional binomial cdf under condition that (0)C CK n  (recall, equality (0)CK = Cn  means 
failure of specimen) was used :  

(0) ( ) ( (0) | (0) )
CiK Ci Ci CF k P K k K n     

0

( , , ) / (1 ( , , ))
k

C C C C C
j

b j p n b n p n


 , 1,..., 1,Ck n  ( , , ) (1 ) !/ !( )!Cn ji
C C C C C Cb j p n p p n j n j   . 

For  simplicity, only the case L LK n  =100  was studied.  So cdf  

(0) (0)
1

( ) ( ) ( ) ( )
L

L
L C C

n
nk

Cmx K K K
k

F m p k F m F m


  , 1,2,..., 1Cw n  , was used. 

  The reasonable fitting of tensile (Fig. 4) and fatigue test results (Fig. 5) for mk =0.150 was 
reached at 0 6.59  , 1 0.2  . These parameter do not differ too significantly from their estimates 

0
€ 6.5869  , 1 0.3008 


 which are obtained processing tensile tests of strands (1200 fibers).  

 
 

 
 
 

Fig. 4. Fitting of results of tensile strength test of specimens (+ and ) 
and predicted tensile strength pmf . 
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Fig. 5. Fitting of test fatigue life (+) (symbols > and <  correspond to two sigma interval) 
 
 

CONCLUSION 
 For different types of composite material the different versions of general model  are 

applicable. As we see in Fig.3-Fig.5 and in conclusions of [4-7],  by processing of test results it is 
shown that the considered versions of models, based on using MCh theory and both MinMax and 
MaxMin approaches (for modeling of the scale effect),  can be used for nonlinear regression 
analysis in order to get fitting and some prediction of tensile and fatigue test results. For a general 
type of model a large number of parameters and specific type of a priori information should be 
known for corresponding numerical calculation. Clearly, for different types of composite material 
the different versions of general model are appropriate. Corresponding comparison analysis should 
be made and the best specific components of the general MCh model can be chosen for specific 
material (it is the subject of following papers). The components of the general MCh model are :  

 1.Type of cdf of mechanical characteristics (tensile strength, Young’s modulus, …) and its 
parameters (for example, 0  and 1  for  cdf with location and scale parameter) for LIs and matrix. 

2. Parameters of composite structure (number of LIs in one WMVs, LIs part of cross section 
of WMV, …) .  

3. Definition of failure of WMV (choice of Cf , YC ,…). 
4. Definition of distribution of initial state of WMV. 
5. Definition of distribution of number of WMV (links) in specimen as a series system. 
6. Definition of process of loading 1x   for tensile or for fatigue test. 
7. Criterion of quality of fitting and prediction of test data.  
  Some model parameters can be equated with (or can be  taken approximately equal to) the 

parameters of cdf of the tensile strength of composite components and the parameters of composite 
structure (for example, relative total cross section area of LIs) or just can be chosen  a priori (for 
example, the value of Cf  in definition of failure of WMV) . Simultaneous fitting of results of both 
tensile and fatigue test of specimens allows estimation of other model parameters.  
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Of course, the considered models are too simple to describe the actual basic physical process. 
The influence of some model components (for example, details of description of tensile loading) 
should be studied carefully before final statistical analysis conclusion should be made.    But the set 
of the model versions can be used as a wide field of study of composite material strength and 
fatigue life  not only for graduate work of students but and for some engineering applications: for 
approximate prediction of the effect of not too drastic changes of mechanical characteristics of 
composite material components and type of load process x1∞  . 
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