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ABSTRACT 

Dependability assessment is typically based on complex probabilistic models. Markov and semi-Markov 
models are widely used to model dependability of complex hardware/software architectures. Solving such 
models, especially when they are stiff, is not trivial and is usually done using sophisticated mathematical 
software packages.  

We report a practical experience of comparing the accuracy of solutions stiff Markov models obtained 
using well known commercial and research software packages. The study is conducted on a contrived but 
realistic cases study of computer system with hardware redundancy and diverse software under the 
assumptions that the rate of failure of software may vary over time, a realistic assumption. We observe that the 
disagreement between the solutions obtained with the different packages may be very significant. We discuss 
these findings and directions for future research.  
 
1. INTRODUCTION 
 
Dependability of computer systems is evaluated using probabilistic models in which the 

measure of interest is typically reliability, availability, etc. Often Markov chains are used in this 
process [1, 2, 3].  
System modelers are often interested in transient measures, which provide more useful information 
than the steady-state measures. As models grow in size, closed-form solutions of transient measures 
become infeasible and in practice the models typically are solved using numerical methods. 

Accurate dependability assessment of complex computer systems is an important issue. In 
many cases the accuracy of the assessment, e.g. in safety critical applications or in applications 
when poor dependability may lead to huge financial losses, is an essential part of the development 
process. The assessment methods and tools must provide high confidence in the assessment results 
and in many cases various regulation bodies would require the tools used in development to be 
certified to meet stringent quality requirements. To the best of our knowledge no such requirements 
(for software quality) are not in place for the software packages used in assessment. The 
modelers/assessors of complex computer systems are left with the choice – either to use the most 
accurate assessment algorithms, typically developed by researchers, and use an implementation of 
those in specific assessment or instead use the solutions available out of the box in the best known 
off-the-shelf mathematical packages available on the market. The first option – own implementation 
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of research results is not ideal because of the poor quality of the software code that one should 
expect from a prototype implementation. The second option for achieving accurate assessment – 
using off-the-shelf math software – is the focus of this paper. 

Among the best known off-the-shelf math packages are Maple (Maplesoft), Mathematica 
(Wolfram Research) and Mathcad (PTC). These math packages enjoy high reputation among the 
respective customers earned over several decades by providing a wide range of solutions, and good 
support with regular updates. 

The difficulties with transient numerical analysis of Markov chains have been studied 
extensively in the past – we survey the important related research. The main difficulty in analysis is 
the stiffness of the models. Given the extensive work on the issue in 80s and 90s would expect that 
the availably software packages used by modelers would provide accurate solution to stiff Markov 
chains. Surprisingly, this does not seem to be the case as this paper illustrates.  

The paper is organized as follows:  in section 2 we state the problem formally and describe a 
contrived example of fault-tolerant computer system which we use to compare several well known 
mathematical packages. In section 3 we present the results obtained. In section 4 we discuss the 
findings and their implication. Section 5 provides a survey of the important results on solving stiff 
Markov chains reported by others. Finally, in section 6 we conclude the paper and suggest ways 
forward.  

 
2. PROBLEM STATEMENT 
 
In this paper we study the accuracy of popular mathematical packages likely to be used in 

the dependability assessment of complex fault tolerant computer systems. The method of study used 
is as follows: 

- Define a model of the system to be used in comparison; 
- Develop solutions for system dependability, e.g. transient system’s availability in the 

interval [0,t], using the instruments available by the chosen packages. As a benchmark 
solution to compare the solutions obtained with off-the-shelf software packages we used a 
highly specialized software utility, EXPMETH, which is an implementation of a method for 
solving stiff Kolmogorov equations [4]; 

- Compare the obtained solutions.  
EXPMETH was developed more than 15 years ago and validated extensively on a range of 

models [5]. It was developed in Pascal program language and used to assess availability of a chosen 
system model. We have chosen a system described by a stiff Markov chain: the ratio between the 
rates of failure and repair ranges between 4 and 8.   

The system we chose in the study is a fault-tolerant computer system with two hardware 
channels each executing software control as shown in Figure 1. 

 

 
Figure 1. Reliability block diagram of the chosen fault-tolerant system 
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We assume that software run of the two hardware channels is diverse [5], i.e. non identical 
but functionally equivalent software copies are deployed, which offers protection against software 
design faults. In addition, we assume that the rates of failure and repair of software will vary over 
time, e.g. as a result of executing the software in partitions as discussed in [6].   

The model to be used in the study is shown in Figure 2. We omit a more detailed 
justification of the chosen model as this is outside the scope of this paper as the focus of the study is 
the accuracy of the solutions provided by off-the-shelf math packages. Yet, we would like to stress 
that the model is plausible. Two channel configurations is very widely used in many safety-critical 
application, e.g. in instrumentation of nuclear plants. The variation of failure rates and repair is also 
a plausible concept – software may well perform different tasks with different importance, which 
would justify different degree of testing, hence different rates of failure and repair in the respective 
partitions.   

 

 
 

Figure 2. Model of the system to be studied. A 2-hardware channels, 2-software versions fault tolerant computer 
system with a variation of the rates of software failure and repair. 

 
Informally, the operation of the system is as follows. Initially the system is working 

correctly – both hardware and software channels deliver the service as expected. If during the 
operation one of the hardware channels has failed the system operation will be failed over to the 
second channel until the first channel is “repaired”. Similarly, a software component may fail, in 
which case a failover will take place, etc.  

An important feature of the model is that as a result of software repair (e.g. restart of the 
failed channel) we assume that the rate of software failure of both channels will deteriorate by a 
small constant d. Clearly this is just an assumption which might be unrealistic in many cases and 
its justification might require a detailed analysis of the application that software implements. 
However, the assumption captures a plausible phenomenon – variation of software failure rates 
which is well accepted in practice: various software ‘aging effects’ are indeed modeled by an 
increased rate of software failure. We conclude therefore, that the model is adequate for our 
purposes in this paper – a study of the accuracy of the solutions to stiff Markov chains offered by 
off-the-shelf math packages. 

 
3. MODEL PARAMETERS  

The model parameters are defined next: 
- p and p – hardware failure and repair rates;  
- d and d – software initial failure rate and a step of failure rate decrease after software 
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recovers from failure; 
-  d and d – initial software repair rate and a step of software repair rate decrease after 

software recovers from failure. 
 System’s behavior is modelled as a Markov process (Markov chain) that has a number of 
states, and the transition probabilities between these, Pk

(i), depends only on the current state, i.e. 
 

                                  

   
        

  0

1 1 1 1

... i i

i i i i
k kx x x

P x x P x x     
                                               (1) 

 
The reader can notice that the model presented in Figure 2 is built with a set of similar 

fragments – the model fragments are topologically identical and only differ in terms of the values of 
model parameters.  

From the model (Fig. 2) we can derive the following system of Kolmogorov equations: 
For the initial fragment these are:  
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For the internal fragments these are: 
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And for the final fragment these are: 

     3 1
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           3 2
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With the following initial conditions: 

1 2 3 3 1 3 2(0) 1, (0) 0, (0) 0,..., (0) 0, (0) 0i iP P P P P        
  3 3 3 1 3 2(0) 0,..., (0) 0, (0) 0.i k kP P P                                     (10) 

 
The availability function is defined as the sum of probabilities that system is in one of the 

states for which at least one of the channels is working, which is defined by the following sum: 
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4. RESULTS 
 

Figure 2 represents a stiff Markov chain, characterized by the fact that some of the 

eigenvalues of Jacobean matrix  f
y



 are large in absolute value with negative real part, while some 

other eigenvalues are with small positive real part. Getting an accurate solution requires selecting a 
very small integrating step, which limits the distribution of the error. In such circumstances the 
classical implicit Runge-Kutta methods provide incorrect result even if a small step of integration is 
used. The error is caused by the rounding errors which accumulate over the large number of small 
steps. We consider only the implicit Runge-Kutta methods, because the explicit Runge-Kutta 
method can provide correct solution even if the system is stiff. In case of solving stiff ordinary 
differential equations (ODE) the numerical method have to satisfy the following condition: 

1. convergence (the method has to converge to ODE);  
2. special requirements for stability;  
3. the method must pass successfully certain calculation tests.  
The software utility EXPMETH implements a special numerical method of solving stiff 

differential equations – the “exponential” method, studied by O. Arushanyan and S. Zaliotkin [4]. It 
is based on an accurate representation and calculation of the matrix exponent. The results obtained 
with EXPMETH were used in the study as a reference solution (to compare the results obtained 
with the tools/methods). The exponential method was implemented step by step in each of the math 
packages included in the comparison: Mathcad 15, Maple 15 and Mathematica 8.0.1. We also used 
the standard solution built in the respective math packages for solving ordinary differential 
equations as detailed below:  

1. In Mathcad 15 we used the built-in function Stiffr(P,0,10000,D,J), with arguments:  
- Р – the initial state vector of differential equations system; 
- 0, 10000 – time interval on which system availability was computed; 
- D – the system of differential equations (defined above); 
- J – eigenvalues of the respective Jacobean matrix.  

2. In Maple 15 we used the built-in function DSolve (odesys, numeric, vars, options), 
where: 

- odesys – is the set of ODE(s) and the initial/boundary conditions;  
- numeric – a parameter used to instruct dsolve to find a numerical solution; 
- vars - (optional) can be any indeterminate function of one argument, or a list of them 

such functions, representing the unknowns of the ODE problem; 
- options - equations of the form “keyword = value”. In our case this parameter was 

used to select specify the method of integration, e.g. (stiff=true,method=rosenbrock) 
were used to set the stiff property to true and select the Rosenbrock method of solving 
the system of differential equations.  

3. In Mathematica 8.0.1 we used the built-in function - NDSolve{ODE},{t,1,10000}, 
Method->{“ExplicitRungeKutta} , where: 

- {ODE} –  defines the set of ODE(s) and the initial/boundary conditions;   
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- {t,1,10000} –  indicates that the solution in time domain is sought on the interval  
[1,10000];  

- Method->{“ExplicitRungeKutta”} – the explicit Runge-Kutta method was used. 

 
  Figure 3, 4 and 5 show the results obtained for system availability using each of the 3 math 

packages with the methods described above together with the results obtained using the exponential 
method computed both in the respective package and using EXPMETH utility.   

 
 

 
 

Figure 3. Availability function plots the results obtained with Mathematica 8.0.1 vs. EXPMETH. 
 

The explicit Runge-Kutta method generally follows the solution provided by EXPMETH, 
while the exponential method is hopelessly inaccurate – starts with gross overestimation of system 
availability and gradually declines to a significant underestimation of system availability.   

 
 

 
 

Figure 4. Availability function plots calculated with Mathcad 15 vs. EXPMETH. 
 
The explicit Runge-Kutta method performs worst than in Mathematica although it also 

generally follows the solution provided by EXPMATH. The exponential method again is very poor 
– starts with gross overestimation of system availability and gradually declines to a significant 
underestimation of system availability.   

Mathematica
Exponential Method

Mathematica explicit
Runge-Kutta method

Standard

Mathcad Exponential
Method

Mathcad explicit
Runge-Kutta

Standard
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Figure 5. Availability function plots calculated with Maple 15 vs. EXPMETH. 
 
It is really striking how inaccurate the Rosenbrock method is despite being explicitly said to 

target stiff Markov models. The exponential method shows the same pattern of poor accuracy – 
starts with gross overestimation of system availability which is gradually replaced by a significant 
underestimation of system availability.   

We also included in the study the simulation solver of the well known tool Mobius, 
developed and maintained by the Performability group at the University of Illinois at Urbana 
Champaign (UIUC). Since this solver differs in nature from the other three, we will provide a more 
extensive description of how the system model shown in Figure 2 was developed using the SAN 
(stochastic activity networks) formalism of Mobius.    

The fragments of the system model discussed above were explicitly specified as atomic 
models: the system model consists of 7 fragments (the initial fragment, 5 internal fragments and the 
final final fragment). Figure 6, 7, 8 and 9 illustrate of initial, two of the internal fragments and the 
final fragment build using the Mobius SAN formalism.   

Tables 1 and 2 map the fragments to the atomic models: Table 1 shows the mapping 
between the states. Table 2 – shows the transitions between fragments.  

 
Table 1. Fragments to the atomic models 

 
                   fragment 
state Initial Internal 1 Internal 2-5 Final 

Both software 
components (SC) 
working 

sw_working sw_working sw_working sw_working 

Both hardware 
components (HC) 
working 

hw_working hw_working hw_working hw_working 

First SC failed - sw_fail sw_failure1 sw_failure1 
Second SC failed - - sw_failure2 sw_failure2 
First HC failed hw_w1 hw_w1_int1 hw_w1_int2 hw_w1 
Second HC failed hw_w2 hw_w2_int1 hw_w2_int2 hw_w2 
Both SC failed - syst_failed syst_failed syst_failed 
Both HC failed system_failed system_failed system_failed system_failed 

Maple Exponential
Method

Maple Method
Rosenbrock

Standard
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Table 2. Transitions between fragments 
 

                   fragment 
transition Initial Internal 1 Internal 2-5 Final 

First HC failed fail1 fail1_int1 fail1_int2 fail1 
Second HC failed fail2 fail2_int1 fail2_int2 fail2 
First SC failed - sw_fail sw_fail1 sw_fail1 
Second SC failed - - sw_fail2 sw_fail2 
Recovery after first 
HC elimination recov1 recov1_int2 recov1_int2 recov1 

Recovery after second 
HC elimination recov2 recov2_int2 recov2_int2 recov2 

Recovery after first 
SC elimination - sw_recovery1 sw_recov1 sw_recov1 

Recovery after second 
SC elimination - - sw_recov2 sw_recov2 

 
 

 
 

Figure 6. The atomic model of the initial fragment using Mobius SAN. 
 
 

 
 

Figure 7. The atomic model showing the transition from the initial fragment to the first internal fragment.   
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Figure 8. The atomic model with transitions between the internal fragments.  
 
 

 
 

Figure 9. The atomic model with transitions between the last internal and the final fragment. 
 
Figure 10 shows the system model using the SAN replication and joins. For further detail on 

the SAN syntax, the reader is encouraged to consult the SAN documentation. 
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Figure 10. The system model, shown as a SAN compound model using REP and JOIN formalisms built in SAN. 
 
System availability was computed via Monte Carlo simulation (simulation solver) with 

predefined confidence intervals. Figure 11 shows the results from the simulation solver with the 
respective confidence intervals against the reference availability obtained with the EXPETMETH 
utility.  

 
 

 
 

Figure 11. System availability calculated using SAN Mobius vs. EXPMETH. 
 
 
 
The results obtained with all packages included in the comparison are shown in Figure 12.  
 
 

Mean

Mean's Confidence +

Mean's Confidence -

Standard
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Figure 12. System availability function obtained with different tools/methods. 
 

5. DISCUSSION 
 

It is really striking how different the results obtained with different tools and methods are. 
The standard implementations built in the math packages for solving ordinary differential equations 
perform poorly: while the explicit Runge-Kutta method generally produce similar results (and 
generally follow those obtained with EXPMETH), the differences are non-negligible between 
Mathematica and Mathcad. The Rosenbrock method built in Maple to deal with stiff models seems 
to be an outlier – the availability it offers is too pessimistic.  

Somewhat surprisingly, the exponential method implemented with the standard math 
packages offer results which are very different from those obtained with EXPMATH despite the 
fact that the algorithm is the same. One wonders what cause such a significant discrepancy.  

The simulation solver seems to be close to the reference result obtained with EXPMETH – 
most of the time the EXPMETH computed availability is within the confidence intervals produced 
by the simulation solver.  

The conclusions from this empirical comparison are alarming – the accuracy of the solutions 
offered by the popular math packages do not inspire high confidence! If one is to make a decision as 
to which of the results to trust one would really have very little to base their decision on. Clearly, 
further investigation is needed into which of the results should really be trusted. 

 
6. RELATED RESEARCH 

 
An extensive discussion of several problems related to obtaining accurate transient solution 

for Markov chains is presented in [7]. These authors note that stiffness is due to a large ratio of the 
model parameters but also, an observation made earlier by others, may be caused by the “mission 
time” if there exists a solution component whose variation is greater than 1/t, where t is the mission 

Mathematica Exponential

Mathematica Explicit R-K

Mathcad Exponential

Mathcad Explicit R-K

Mobius

Mobius Mean's confidense -

Mobius Mean's Confidence +

Standard
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time. They propose an extension to the standard methods for solving Kolmogorov equations such as 
Runge-Kutta and TR BDF2 method which offer stability despite the stiffness of the model to be 
solved.  

Other relevant studies, [8] and [9], looked at the error of approximate methods of solving 
stiff Markov models using as a benchmark a M/M/1/k system, for which an exact solution is known.  

In [10] and [11] the authors present an approximate method for solving stiff Markov models 
in which aggregation of the states is used: the states in the original model are divided into fast (i.e. 
those that have at least one fast outgoing transition), slow and fast recurrent (i.e. with fast outgoing 
and incoming transitions). The authors suggest that a good approximation of cumulative measures 
can be obtained when the original model is reduced to a model with slow states only and this 
derived model is solved. The authors experimentally evaluated the accuracy of the proposed method 
and report acceptable results for the cases when a non-stiff model is derived as a result of the 
proposed aggregation.  

[12, 13] offer an empirical comparison of uniformisation methods of solving Markov chains. 
The authors point out that the standard uniformisation method proposed by Jensen performs poorly 
on stiff Markov models and concentrate on Adaptive Uniformisation. The problem is studied very 
extensively on complex contrived examples. 

An interesting empirical study of the accuracy of scientific software (i.e. developed to 
process complex dataset from deep shelf oil exploration) was conducted by Less Hatton and Andy 
Roberts [14], which in nature is very similar to the study presented here. The authors conducted a 
thoroughly controlled experiment and compared the results from 15 independently developed very 
complex software packages, developed to the same specification. They report on the results 
obtained with 9 of the packages included in the study. All packages were subjected to the same 
large datasets collected from complex array of sensors. The results observed from the packages 
disagreed dramatically. The authors discussed why scientific software is of so poor quality.  

 
7. CONCLUSIONS  

 
The analysis of the results on system availability obtained with different off-the-shelf math 

packages allows us to draw the following conclusions:  
- Each of the packages included in the study allows a modeler/assessor to evaluate 

system availability: each package either has a built in method which is appropriate for 
the task or allows one to build a routine (e.g. exponential method) to do so. The 
results obtained with the different packages, however, differ very significantly. 

- The greatest discrepancy between the reference solution (obtained with EXPMATH) 
is observed with Maple 15 package when Rosenbrock’s method for stiff Markov 
chains is used. The usage of the built-in function “dsolve” with 20 differential 
equations, leads to a large number of commands that are very similar in syntax, which 
greatly reduces the usability and seems to limit the scope for detecting and fixing 
faults. We scrutinized further the impact of model complexity on the accuracy of the 
solutions obtained with this method and observed that the accuracy deteriorates 
quickly with the increase of model complexity.   

- The results obtained with Mathematical 8.0.1 and Mathcad 15 with the explicit Rung-
Kutta method are closest to the reference solutions obtained with EXPMETH, which 
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is not surprising. We observed, however, that Mathematica 8.0.1 is sensitive to the 
initial period of operation: we observed a “drop” in availability at the beginning of the 
interval for which system’s availability is computed.  

- In terms of performance the packages performed as follows: Mathematica 8.0.1 took 
01:16.9 seconds to compute the solution, Maple 15 – 07:44.3 seconds and Mathcad 15 
– 00:25.34 seconds.  

- The satisfactory solution was obtained using the simulation package Mobius.  
In summary, if we are to rank the math packages included in the comparison, we would rank 

highest Mathematica 8.0.1 and Mathcad 15 (using the explicit Runge-Kutta solver) and the 
simulation solver of Mobius. 
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