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ABSTRACT 
 

The theoretical fundamentals of software stability were elaborated on the basis of software dynamic theory. The 
concepts of internal and external equilibrium have been introduced and the condition of reliability has been proved. The 
law of defect flow equilibrium has been formulated. The existence of unknown before mutual dependences among the 
defect flows in software has been revealed.  
 
 
 
1  INTRODUCTION 
 

Methods of mathematical modeling are widely used to determine the software systems (SS) 
reliability. The objective of software reliability modeling indexes is the assess of the amount of 
defects left in the system and forecasting of time and dynamics of their detection. This task is not 
new. But methods of its solving cannot be considered to be thoroughly studied. Thus, for example, 
the authors (Kharchenko 2004) note “It should be emphasized that so far the theory of software 
reliability cannot be regarded as an established science ….the existence of considerable 
discontinuity between theory (mathematical models and methods) and practice.”  

Theory of software systems dynamics (SSD), as it is shown in (Maevsky 2011) and (Maevsky 
at al. 2012) and confirmed in practice (Maevsky 2012), allows to eliminate this gap and make the 
first step to approach the science of software reliability to the definition "established science”. 

In the SSD theory the process of defect detection in SS and introduction of new secondary 
defects in it are regarded as the interaction process of two flows. The first outgoing flow removes 
the defects from the system; the second – incoming – brings the secondary defects in it. 

Due to the existence of two oppositely directed defect flows in SS the detailed study of this 
influence and phenomena accompanying flows is vital. This article is thus devoted to the above 
study. 

 
2 PHASE TRAJECTORIES OF DEFECTS. STATE OF EQUILIBRUM 
 

As shown in (Maevsky at al. 2012), the behavior of SS from the point of view of appearance 
and development of defect flows is described by dynamic system (1): 
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To research the behavior and quality analysis of dynamic system of SS, specified by the 
equations (1), let’s set up its phase trajectory (phase plane). 
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Definition 1. Let state vector of SS be vector 

2f,fu 1 ,      (2) 
where f1 and f2 are state variables at a point in time t. 

Definition 2. Let’s consider the space state (phase space) to be the subset X = U  R+ with 
coordinates (2), where R+ = {N R : N ≥ 0}. 

Each phase trajectory corresponds to the definite particular solution of the system (1) on the 
definite initial conditions. In case of SS and defect flow research, the values  f1 and f 2 determining 
the number of defects of incoming and outgoing flows, should be chosen as the coordinates of 
phase space. To build up the phase trajectories of SS, it would be necessary to obtain the 
dependency f2(f1). Differential equation, binding f2 with f1, can be received from the system (1), 
dividing the second equation by the first. We obtain: 

2211
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fAfA
fAfA

df
df
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


 .     (3) 

Herewith it is taken into account, that in accordance with (Maevsky at al. 2012),     
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Taking into consideration these correlations, the equation (3) can be rewritten as following:  

tshAAtchAA
tshAAtchAA

df
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 . 

By dividing nominator and denominator of this fraction by A1 ≠ 0 and introducing coefficient 
k=A2/A1 we obtain: 

tshAktchA
tshAtchAk

df
df

22
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1

2



 .     (5) 

The equation (5) represents the linear non-homogenous differential equation, which includes 
time t on its right side. After accomplishing the numerical solution we get phase plane of SS, see 
Figure 1. 

 
Figure 1. Phase trajectories of SS 
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Phase plane is built up for SS with the following characteristics: number of defects at t=0 – F0 
= 100, coefficient value A1 = 0,01day -1, coefficient k is changed from 0 to 1.1. 

Let’s clarify the formation of phase trajectories. The pair of values (f1, f2) corresponds to each 
point on the trajectory (generating point). Movement of generating point occurs from the initial 
state (with t→0) to its end state (with t→∞). In our case, the initial point on the X-axis corresponds 
to the initial state f1 = F0, f2 = 0. The generating point moves from right to left (shown by arrows, 
see Figure 1). 

It can be seen in the picture, that at k < 1  all trajectories converge to equilibrium whereby the 
speed of flow changes become equal to 0. To this state correspond the equilibrium of SS, when the 
defects are absolutely absent in it, what leads to the absence of flows. In Figure 1 the point (0,0) 
corresponds to this state. 

With k = 1, i.e. in case of intensity equilibrium of incoming and outgoing flows the 
generating point moves from right to left along the straight-line segment (f1 is equal to f2 in each of 
its points). The system reaches the equilibrium state and zero speed of flow changes at the finishing 
point of this straight line. This point has coordinates – f1=F0/2, f1=F0/2, i.e. at achieving this value 
by amount of introduced and eliminated defects the flows stop changing. 

In case k > 1 the generating point moves along phase trajectory tending to infinity. However, 
thus, as we can see in Figure 1, first the point comes to the straight line f1 = f2. The number of the 
defects in the system will be growing continuously and the flow change speed will never achieve 
zero. At the same time analyzing Figure 1 we can draw even more important conceptual 
conclusions. 

Conclusion 1. All phase trajectories tend to the strait line f1 = f2, i.e. with the time the number 
of defects brought into the system equalize with those taken out of the system. It can be said, that 
SS acquires internal equilibrium with time among the flows existing in it. After achieving 
equilibrium the two flows become the same both in amount of defects, forming the flow, and in the 
speed of flow changes in time. The appearance of equilibrium has been unknown before and needs 
though studying. 

Conclusion 2. There are points in the phase plane of SS, where the software system itself as a 
whole achieves equilibrium with its external environment: the flows stop changing. Such points we 
will call the states of external equilibrium. According to the theory of dynamic systems 
(Samoilenko 1989), these points are called stationary. The stationary point with k < 1 is the origin 
of coordinates. Herewith the steady state (recall the transient processes) of SS will be considered to 
be the achievement of its equilibrium with the surrounding medium (object area), i.e. absolute 
absence of defects in SS. 

With k = 1 the stationary point, corresponding the intensity of direct and reversed flows, 
appears as well. Besides, as it has been said, this conclusion absolutely corresponds to the expected 
result. Unlike both examined cases when k > 1, i.e. with the exceeding of intensity of incoming 
flow over the outgoing one, the stationary points are not observed. Thus phase curves extend at 
infinity, what corresponds to the expected results. Nevertheless, let’s turn our attention to the fact, 
that SS first achieve the state of equilibrium, and after that both flows simultaneously extend to 
infinity. It gives ground to suggest that achievement of internal equilibrium state is the necessary 
condition for all SS in any correlations between incoming and outgoing flows. Let’s prove this 
assumption. 

 
3  INTERNAL EQUILIBRUM OF SOFTWARE SYSTEM 
 

In the process of research of SS internal equilibrium phenomenon it is necessary to answer 
the following questions: 

1. Will any SS always achieve the internal equilibrium state? 
2. Is the internal equilibrium steady? 
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3. At what point of time the internal equilibrium will appear with the given SS parameters? 
 Before considering these questions let’s give a formal definition to the internal equilibrium 

state. 

Definition 3. The internal equilibrium of SS will be refered to as the establishment of 
equilibrium between incoming and outgoing flows in it, whereby their intensity and number of 
defects coinside. 

While answering the first question we should determine whether the internal equilibrium 
phenomenon is random or it is common to all software systems. The existence of the internal 
equilibrium phenomenon for any SS is proved in the theorems 1 and 2. 

Theorem 1. (First theorem of equilibrium). There exists such value of time, that for all t > tʹ 

the condition |f1(t) – f2(t)| ≤   holds for no matter how small . 

Proof of theorem 1. Taking into consideration that the remainder f1(t) – f2(t) is taken modulo, 
we should pay attention to probable correlations between values f1(t) and f2(t). First it should be 
noted that in the expressions (4) the  product A2t is always positive. Therefore we can state, that 
chA2t ≥ shA2t wherefrom f1(t)  ≥  f2(t). With such correlation modulus |f1(t) – f2(t)|, according to 
modulus property can be changed for the remainder f1(t) – f2(t). On this basis let’s form the 
equation: 

02  )t(f)t(f1 .      (6) 

The theorem will be proved, if the value t = tʹ  satisfying the equation is found. Using the 
expressions (4), the equation (6) can be rewritten as: 

     0221   tAshtAcheF tA
0 . 

Disclosing the hyperbolic functions after transformations we get 
    tAA

0 eF 21  .      (7) 

The equation (7) is solvable related to t with any positive ߝ. In fact, after taking the logarythm 
we obtain: 

 
10

2 F
lntAA1


 . 

Whence we have the value t = tʹ : 

2AA
F

ln
t

1

0




 .     (8) 

The “minus” sign on the left part (8) results from the statement that whatever smallest 
value ɛ < F0, therefore ln(ɛ /F0) < 0. Thus  the value t = t' exists and with  t > t' the left part (8) will 
become less than ɛ. 

The theorem 1 is proved.  
To consider the intensity of flows let’s analyze theorem 2. 

Theorem 2. (The second theorem of equilibrium) There exists such value of time tʺ that for 
all t > t'   


dt
df

dt
df1 2  

is fulfilled for any whatever smallest values  ɛ. 
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Proof of the theorem 2. While proving theorem 2, taking into consideration the property of 
remainder modulus as well as in the previous theorem proof, all possible cases should be observed. 

First, it should be noted that the equilibrium state between the flaws is possible only when 
their intensities (speed changes in time) have similar signs. The equilibrium is not possible, when 
one flow is increasing and the other one is decreasing. 

Secondly, it is necessary to consider separately the possible correlations between speed 
changes of the flows, i.e. the case, when 

dt
df 

dt
df 21   

or case when 

dt
df 

dt
df 21  . 

Therefore, let’s consider this two cases. 
Case 1. Herewith, as it is resulted from the modulus properties, remainder modulus can be 

changed by the common difference 

dt
df
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dt
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dt
df 11 22  . 

Taking into account (4) we’ll obtain  
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or: 

 tAtAtA1 eAeAeF
dt

df
dt
df 221 12

102 22
2

  . 

From this we can obtain equation: 

    t)AA(eAAF 211210 .    (9) 

With A2 > A1 the value t satisfying this equation exists, with the increase of t the left part 
becomes smaller than ɛ. For the case 1 theorem 2 is proved. 

Case 2.  For this case 

0 
dt
df 1 , 0 

dt
df 2 , 

dt
df 

dt
df 21  . 

Herewith it follows from the modulus properties that 
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or after transformation of similar mentioned in case 1: 

    t)AA(eAAF 212110 .    (10) 

With A2 > A1 the value t satisfying this equation exists, with the increase of t the left part 
becomes smaller than ɛ. For the case 2 theorem 2 is proved. 

Case 3. For this case: 

0
dt
df 1 , 0 

dt
df 2 , 

dt
df 

dt
df 21  . 

With such correlation the remainder modulus can be changed for 

dt
df

dt
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dt
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dt
df 11 22  . 

Taking into consideration (4) we get: 
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or after transformations 
    t)AA(eAAF 212110 .    (11) 

The expression (11) is identical to that received in case 2, expression (10), but only with 
A1 > A2. It means that with any correlations between A1 and A2, the value t, satisfying this 
correlation exists; besides with the increase of t the left part becomes smaller than ɛ. For the case 3 
theorem 2 is proved. 

Case 4. For this case 

0
dt
df 1 , 0 

dt
df 2 , 

dt
df 

dt
df 21  . 

Therewith, proceeding form modulus properties, it can be rewritten as 

dt
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dt
df

dt
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dt
df 21 12  . 

With the regard to (4) we obtain 
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or after transformations: 
    t)AA(eAAF 211210 .    (12) 

The expression (12) is identical to the obtained one in case 1, expression (8), but with 
A2 > A1. 
It means that with any correlations between A1 and A2, the value t satisfying this equation exists, 
besides with the increase of t the left side becomes smaller than ɛ. For the case 4 theorem 2 is 
proved. 

Thus, in all possible cases there exists such value t, which satisfy the equation 


dt
df

dt
df1 2 , 

moreover with the increase of time t the left part becomes smaller than ɛ.  
The theorem 2 is proved. 
Let’s consider the question of stability of internal equilibrium state. It should be found out 

whether SS can spontaneous come out of balance. If the answer is positive, it means that internal 
equilibrium is a temporal event. At a certain time it is reached, but subsequently the system comes 
out of the condition itself and the flows cease to be concerted. If the equilibrium state is stable, the 
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system cannot come out of it itself and the flows constantly remain concerted. They either decrease 
to zero or increase infinitely synchronously.  

Stability of internal equilibrium state is proved by the theorem 3. 

Theorem 3. (Third theorem of equilibrium). Internal equilibrium phenomenon is stable with 
all influence coefficient meanings  

Proof of the theorem 3. Assume that the internal equilibrium isn’t stable. It means that after 
obtainment the same number of defects of incoming and outgoing flows at the moment of time t’ 
with t > t’ the equilibrium will be disturbed, i.e. with t > t’ f1(t)>f2(t). Inequality of defects number 
of both flows after achieving equilibrium is possible, only if the speed changes of incoming and 
outgoing flows differ. But it comes into conflict with theorem 2, which proves the speed equality of 
flow changes after achievement of internal equilibrium. Supposition is not true, therefore, theorem 3 
is proved. 

Thus, the stability of SS internal equilibrium state is proved. Let’s define the time, at which 
the system achieves this condition. For this purpose we will use the results, received while proving 
theorems 1 and 2. 

The time value, whereby the software system achieves the state of equilibrium of defects 
number is determined by the expression (8). In practice, taking into consideration the fact that the 
defect number can always be a whole number, we can assume that 1 = ߝ, i.e. it corresponds the least 
distinguished number of defects. Than we obtain from (8): 

21

0
AA

Flnt


  .      (13) 

To determine the time at which the equlibrium reaches the flow speed, let’s use the formulae 
(9) and (10). The formula (9) can be used with correlation of infuence coefficients A2 > A1. Here the 
time, necessary to achieve the speed equilibrium is defined as: 

                            
21

012
AA

FAA
ln

t





 .     (14) 

When analysing the equation (8) it was assumed that 1 = ߝ, as the number of defects can only 
be a whole number. For analysis and interpretation (14) it is necessary to assess the possible value ߝ 
in this equation. For this purpose, let’s refer to the system (1) and define the intensity of both flows 
with t = 0 for initial conditions f1(0)=F0 and f2(0)=0 

0
1 FA

dt
df

 ; 02
2 FA

dt
df

 . 

Therefore, with the absolute error not more than 1/F0, we can take ߝ = A2 – A1.. With such 
meaning (14) ߝ can be rewritten as: 

2AA
lnFt
1

0


 .      (15)  

Comparing (13) and (15) we can state that t’’ = t’ i.e. both conditions of internal equilibrium 
are achieved simultaneously. We can come to the same conclusion, analyzing the case A1 > A2.. 

Theorems 1 and 2 state that the inevitability of appearance of internal equilibrium is achieved 
simultaneously. It gives grounds to formulate the law of flows equilibrium in the software systems. 

Law of flows equilibrium. In any software system input and output flows always achieve the 
internal equilibrium. The time of achievement the internal equilibrium is directly proportional 
to the initial number of defects and inversely related to sum of influence coefficient. 
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Thus, to summarize the obtained results, we can state that the condition of internal 
equilibrium is inherent to all software systems and is stable. Such conclusions of SS dynamics 
theory are new and require the detailed study and experimental validation. 

 
4  EXTERNAL EQUILIBRUM AND STABILITY OF SOFTWARE SYSTEM 

 
The phase trajectories of SS contain important information about their asymptotic conditions, 

on the basis of which we can deduce the concept of external equilibrium. 
Definition 4. As external equilibrium position of SS (stationary points) we will take such 

points of phase space u*=f1
*, f2

*, that: 











0

0

1112

2211
**

**

fAfA

fAfA
. 

It is evident that u* is the system (1) solution with 

0
dt

du*
. 

Definition 5. The external equilibrium position of SS can be defined as stable, if for any 0 < ߝ  
there exist such δ > 0, that for any u0 , |u0  – u*|<   the inequality |u(t,u0 ) – u*|<  δ  is satisfied with 
all t > 0. 

Definition 6. The external equilibrium position of SS can be defined as asymptotic  stable if 
during fulfillment of conditions of the definition 5, the condition  |u(t,u0 ) – u*|  0 is additionally 
satisfied with all t  . 

Let’s consider the external equilibrium position of SS, which dynamics is defined by the 
equation (1). The software system comes into the state of external equilibrium with its surrounding 
medium (object domain), when the defect flows stop varying in time. It's noteworthy, that the 
equivalence to zero of only speed of flow changes is mentioned here. The values f1 and f2 
themselves in the general case can be other than zero. Only in the particular case, when k < 1, we 
obtain at the limit f1 = 0 and f2 = 0. 

In the theory of dynamic systems the so-called stationary (exceptional points) correspond the 
external equilibrium. Therefore the terms “external equilibrium point” and “stationary point” will 
be further used as synonyms. 

The conditions of appearance in the external equilibrium system are formulated in theorem 4. 

Theorem 4. (The fourth theorem of equilibrium). Provided that A1 > A2, the software system 
acquires stable asymptotic state of external equilibrium. 

Proof of the theorem 4. From the equations (1) for external equilibrium state let’s note down: 








0
0

2112

2211
fAfA
fAfA

.    (16) 

With A1 > A2, determinant of this system is det A = A1
2 – A2

2 > 0. Thus the system (16) can 
have only one solution f1 = f2 = 0, which corresponds the equilibrium state. 
Let’s prove the asymptotic reliability of this solution. To do this we consider the matrix of the 
system (16) 

12

21
AA
AA

A



  
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and find its eigenvalue from the correlation: 
02 2

2
2
1

2  AAA1 . 
Solving this equation we obtain eigenvalue 

21 AA1  , 212 AA  . 
According to Lyapunov theorem (Samoilenko 1989) a stationary point is asymptotically 

stable, if all eigenvalues have negative sign of real part. Root of  λ2 will be negative with any values 
of A1 and A2. The negative value of λ1 is possible only if A1 > A2. 

Theorem 4 is proved. 
Theorem 5. (The fifth theorem of equilibrium). Provided that A1 = A2 the software system 

acquires the stable external equilibrium. 
Proof of the theorem 5. With A1 = A2 determinant of the system (16) is det A = A1

2 – A2
2 > 0, 

thus this system can have infinite number of solutions. But taking into consideration the physical 
meaning, with equality A1 and A2, we obtain the solution to each equation only with f1 = – f2. 

Theorem 5 is proved. 
The minus sign in front of  f2, as we have seen, denotes the reverse direction of flows. At the 

same time, the total number of defects, contained in SS, as it was shown in (Maevsky at al. 2012), is 
always equal to f1 + f2. This fact allows to define the position of external equilibrium point with 
A1 = A2. Consider SS with t = 0. At this point in time f1 + f2 = F0, whence it follows that  
f1 = |f2| = F0 / 2. Thus, the external equilibrium with A1 = A2 is achieved at the level of half of initial 
number of defects in the software system. The state of equilibrium in this case is stable. 

It is interesting to research the SS reliability with A1 < A2.With such correlation of influence 
coefficients the determinant of matrix system (16) det A = A1

2 – A2
2 < 0, that states for the existence 

of one equilibrium position. Eigenvalues of matrix ǁAǁ, in this case λ1 > 0, λ2 < 0 according to 
(Samoilenko 1989), corresponds to the unstable point of “saddle” type. 

The possible types of software system equilibrium positions are presented in the table 1. 
 

Table 1. Possible types of equilibrium positions of a software system. 
 

Correlation A1 and A2 Position 
type 

More defects are removed than inserted 
21 A A  ; 00 21  ,  

Stable node 

More defects are inserted than removed 
21 A A  ; 00 21  ,  

Saddle 

The same number of defects is removed and 
inserted 

21 A A  ; 00 21  ,  

Stable node 

 

5 CONCLUSIONS 
 

In the article the SS phase plane is researched and the questions of reliability are considered. 
From the phase trajectories behaviour it was concluded about the existence of internal equilibrium 
in SS, when the same number of defects is removed and inserted and the speeds of their changes 
within the time are the same. The law of flows equilibrium is formulated. The possibility of 
existence of internal equilibrium state and necessity for its achievement by the system are proved by 
a number of theorems. 



Dmitry A. Maevsky – FUNDAMENTALS OF SOFTWARE STABILITY THEORY 

 
RT&A # 04 (27)  

(Vol.7) 2012, Decemder 
 

 

40 

One of such regularities is formulated in the law of flow equilibrium. The other very 
important regularity can be seen in the SS phase plane (1). This regularity becomes apparent in the 
increase of the number of secondary defects in the system. Indeed, it results from Figure 1, that with 
A1 > A2, even with steady decrease of defects number of the outgoing flow, the number of 
secondary defects in the system increases attains a maximum and only then, starts to decrease. The 
SS testers should consider this fact. 

The mentioned dependences allow to predict the time interval, where there is an increased risk 
of inserting the secondary defects, and to take appropriate measures for their reduction. 
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