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ABSTRACT 
 

In Accelerated life testing if the accelerated test stress level is not high enough then many of the test items will not 
fail during the available time and one has to be prepared to handle a lot of censured data. To avoid such type of 
problems, a better way is step-stress ALT. In Step-stress ALT all test items are first tested at a specified constant stress 
for a specified period of time and then Items which are not failed will be tested at next higher level of stress for another 
specified time and so on until all items have failed or the test stops for other reasons. In this paper simple step stress 
pattern of ALT assuming that the lifetime of a product at any constant level of stress follow a two parameter Pareto 
distribution is considered. The maximum likelihood and asymptotic confidence interval estimate of the parameters are 
obtained. Optimal step stress ALT plan is proposed by minimizing the asymptotic variance of the MLE of the 100 thP  
percentile of the lifetime distribution at normal stress condition. A simulation study is also performed to analyse the 
performance of parameter estimates. 

KEYWORDS: Cumulative Exposure Model; Maximum Likelihood Estimation Method; Fisher Information Matrix; 
Asymptotic Confidence Intervals; Simulation Study. 
 

1  INTRODUCTION 
 

Accelerated life testing (ALT) is a quick way to obtain information about the life distribution of 
a material, component or product. In Accelerated life testing (ALT) items are subjected to 
conditions that are more severe than the normal ones, which yields shorter life but, hopefully, do 
not change the failure mechanisms. Some assumptions are needed in order to relate the life at high 
stress levels to life at normal stress levels in use. Based on these assumptions, the life distribution 
under normal stress levels can be estimated. Such way of testing reduces both time and cost. 

Three types of stress loadings are usually applied in accelerated life tests: constant stress, step 
stress and Progressive-stress. Constant stress is the most common type of stress loading. Every item 
is tested under a constant level of the stress, which is higher than normal level. In this kind of 
testing, we may have several stress levels, which are applied for different groups of the tested items. 
This means that every item is subjected to only one stress level until the item fails or the test is 
stopped for other reasons. In Step-stress loading, the test items are subjected to successively higher 
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levels of stress at pre-assigned test times. All items are first subjected to a specified constant stress 
for a specified period of time. Items that do not fail will be subjected to a higher level of stress for 
another specified time. The level of stress is increased step by step until all items have failed or the 
test stops for other reasons. Progressive-stress loading is quite like the step stress testing with the 
difference that the stress level increases continuously. 

Failure data obtained from ALT can be divided into two categories: complete (all failure data 
are available) or censored (some of failure data are missing). Complete data consist of the exact 
failure time of test units, which means that the failure time of each sample unit is observed or 
known. In many cases when life data are analysed, all units in the sample may not fail. This type of 
data is called censored or incomplete data. Due to different types of censoring, censored data can be 
divided into time-censored (or type I censored) data and failure-censored (or type II censored) data. 
Time censored (or type I censored) data is usually obtained when censoring time is fixed, and then 
the number of failures in that fixed time is a random variable. Failure censored (or type II censored) 
data is obtained when the test is terminated after a specified number of failures, and then time to 
obtain that fixed number of failures is a random variable. 

Simple step-stress ALT, where only one change of stress occurs, proposed by Nelson (1980) 
has been widely studied and referred as the Cumulative Exposure (CE) model. Many studies 
regarding SSALT planning based on the CE Model, have been performed. Miller and Nelson (1983) 
presented the optimum simple SSALT model. Bai et al. (1989) and Bai and Chun (1991) extended 
this model to the case where a prescribed censoring time is involved. Many authors also have 
provided the studies for statistical inference model for SSALT based on CEM; e.g., see Xiong 
(1998), Watkins (2001), Zhao and Elsayed (2005), Balakrishnan el al. (2009), Yeo and Tang 
(1999), Xiong and Ji (2004) and Xiong and Milliken (1999). Khamis and Higgins (1998) proposed 
a new model for SSALT as an alternative to the CEM, which is based on a time transformation of 
the exponential CEM. Most of works using the K-H model are concentrated on the optimal design 
plan for SSALT. Alhadeed and Yang (2002) provided the optimal plan for a simple SSALT using 
K-H model when the shape parameter is unknown. 

More recently Lu and Rudy (2002) have dealt with the Weibull CE model under the inverse 
power law in the simple SSALT. McSorley, Lu and Li (2002) have shown the properties of the 
maximum likelihood (ML) estimators of parameters in the Weibull CE model with a log-linear 
function of stress on three-step SSALT data. Gounu, Sen and Balakrishnan (2004) tackled the 
optimal stress change points for multiple-step SSALT based on minimizing the asymptotic 
confidence interval of MLE of the mean life at design stress. Wu, Lin and Chen (2006) discussed 
the ALT with progressively Type-I group-censored exponential data. Balakrishnan and Han (2008) 
considered modification for censoring scheme in small sample sizes. Fan, Wang and Balakrishnan 
(2008) discussed the maximum likelihood (ML) estimation and Bayesian inference in group data 
ALT models under the relationship between the failure rate and the stress variables is linear under 
Box-Cox transformation. Al-Masri and Al-Haj Ebrahem (2009) derived the optimum times of 
changing stress level for simple step-stress plans under a cumulative exposure model assuming that 
the life time of a test unit follows a log-logistic distribution with known scale parameter by 
minimizing the asymptotic variance of the maximum likelihood estimator of the model parameters 
at the design stress with respect to the change time. Hassan and Al-Ghamdi (2009) obtained the 
optimal times of changing stress level for simple stress plans under a cumulative exposure model 
using the Lomax distribution for a wide range of values of the model parameters. Xu and Fei (2012) 
introduced and compared the four basic models for step-stress accelerated life testing: cumulative 
exposure model (CEM), linear cumulative exposure model (LCEM), tampered random variable 
model (TRVM), and tampered failure rate model (TFRM). Limitations of the four models are also 
introduced for better use of the models. 

In this paper the two-parameter Pareto distribution as a lifetime model under simple-step-stress 
ALT is considered.  Maximum likelihood estimates of parameters and their asymptotic confidence 
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intervals are obtained. The performance of the estimates is evaluated by a simulation study with 
different pre-fixed values of parameters. 

 

2 THE MODEL 
 
2.1 The Pareto Distribution 
 

The concept of this distribution was first introduced by Vilfredo Pareto (1897) in his well-
known economics text “Cours d’Economie Politique”. 

The two parameter forms of Pareto probability density function (pdf), cumulative distribution 
function (CDF), the reliability function (RF) and the hazard rate (HR) with shape parameter   and 
scale parameter    given respectively by 
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The hazard rate (HR) is a decreasing function as 0t  and an increasing function as 0t . 
 
 
2.2 Assumptions and Test Procedure 
 

1. There two stress levels 1x  and 2x  )( 21 xx  . 
2. The failure time of a test unit follows a two-parameter Pareto distribution at every stress 

level. 
3. A random sample of n  identical products is placed on test under initial stress level 1x  and 

run until time , and then the stress is changed to 2x  and the test is continued until all 
products fail.  

4. The lifetimes of the products at each stress level are i.i.d. 
5. The scale parameter is a log-linear function of stress. That is, ii bxax )(log , 2,1i  

where a and b are unknown parameters depending on the nature of the product and the 
test method. Therefore, the lifetime of a test product at lower stress 1x  is longer than at 
higher stress 2x .  

6. The Pareto shape parameter   is constant, i.e. independent of stress. 
7. A cumulative exposure model holds, that is, the remaining life of test items depends only 

on the current cumulative fraction failed and current stress regardless of how the fraction 
accumulated. Moreover, if held at the current stress, items will fail according to the CDF 
of stress, but starting at the previously accumulated fraction failed, for more detail on CE 
Model see Nelson (1990). According to cumulative exposure model the CDF in step-stress 
ALT are given by 
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where the equivalent starting time, ' , is a solution of )'()( 21  FF   solving for ' ,  then 






1

2'  and now the CDF is of the form
 






















ttF

ttF
tF







,

0),(
)(

1

2
2

1

                  (2.5) 

and corresponding pdf is obtained as as 
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From the assumptions of cumulative exposure model and the equation (2.2), the CDF of a test 

product failing according to Pareto distribution under simple step-stress test is given by 
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The PDF corresponding to (2.6) becomes 
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2.3 Objective of Study 
 

For pre-fixed sample size n  and the testing stress levels 1x  and 2x , the first objective is 
estimating the parameters ba , and  in a simple step-stress accelerated life test. The second 
objective is to obtain the optimal stress changing time   which minimizes the asymptotic variance 
of the MLE of the thP  percentile of the lifetime distribution at normal stress condition )( 0xt p . 
 
3 ESTIMATION PROCEDURE 
 
3.1 Point Estimates 
 

Here the maximum likelihood method of estimation is used because ML method is very robust 
and gives the estimates of parameter with good statistical properties. In this method, the estimates 
of parameters are those values which maximize the sampling distribution of data. However, ML 
estimation method is very simple for one parameter distributions but its implementation in ALT is 
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mathematically more intense and, generally, estimates of parameters do not exist in closed form, 
therefore, numerical techniques such as Newton Method, Some computer programs are used to 
compute them. 

For obtaining the MLE of the model parameters, let ijt , inj ,2,1 , 2,1i  be the observed 
failure times of a test unit j  under stress level i , where 1n  denotes the number of units failed at the 
low stress 1x  and 2n denotes the number of units failed at higher stress level 2x . Therefore, the 
likelihood function for two-parameter Pareto distribution for simple step stress pattern can be 
written in the following form 

 


































21

1
1

2
1

2
2

2

1
1

11

1
2,1

1
)(

),(
n

j
j

n

j j
t

t
L 

















      (3.1) 

 
The log-likelihood function )log( Ll   corresponding to equation (3.1) can be rewritten as 
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where 21 nnn  . 

 
Now by using the relation ibxax )(log ,  2,1i  for the scale parameter , in (3.2), the likelihood 
function becomes,  
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Differentiating (3.3) partially with respect to ba , and , we get 
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From (3.6) the maximum likelihood estimates of   is given by the following equation: 



Mustafa Kamal, Shazia Zarrin, Arif-Ul-Islam - STEP STRESS ACCELERATED LIFE TESTING PLAN FOR TWO PARAMETER PARETO DISTRIBUTION 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

35 

)()( 221121 bxanbxan
n





        (3.7) 

where, 




 
1

1

1
11 ][log

n

j
j

bxa te , 




 
2

122

1
2

)(
2 ])1(log[

n

j
j

xxbbxa tee  .     

By substituting for  into (3.4) and (3.5), the system equations are reduced into the following 
two non-linear equations: 















































2

122

1

1

1

1

1 2
)(

221121

1 1221121

221121

2

])1([
1

)()(

][
1

)()(

)()(

n

j j
xxbbxa

bxa

n

j j
bxa

bxa

tee
e

bxanbxan
n

te
e

bxanbxan
n

bxanbxan
n

a
l







  (3.8) 

   

 


























































2

122

122

1

1

1

1 2
)(

)(
122

221121

1 1

1

221121

2211
221121

])1([
)(1

)()(

][
1

)()(

)()(

n

j j
xxbbxa

xxbbxa

n

j j
bxa

bxa

tee
exxex

bxanbxan
n

te
ex

bxanbxan
n

xnxn
bxanbxan

n
b
l










   (3.9) 

 
Since (3.8) and (3.9) are non linear equations, their solutions are numerically obtained by using 

Newton Raphson method. They are solved simultaneously to obtain a  and b . Then by substitution 
in (3.7) an estimate of   is easily obtained. 
 
 
3.2 Interval Estimates 
 

According to large sample theory, the maximum likelihood estimators, under some appropriate 
regularity conditions, are consistent and normally distributed. Since ML estimates of parameters are 
not in closed form, therefore, it is impossible to obtain the exact confidence intervals, so asymptotic 
confidence intervals based on the asymptotic normal distribution of ML estimators instead of exact 
confidence intervals are obtained here. 

The Fisher-information matrix composed of the negative second partial derivatives of log 
likelihood function can be written as 
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The elements of information matrix F are: 
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The asymptotic variance-covariance matrix of ba

, and   is obtained by inverting the Fisher-
information matrix that is 
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Now, the two-sided approximate %100  confidence limits for population parameters ba
, and   

can be constructed as 
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4 OPTIMAL TEST PLAN 

 
The optimum criterion here is to find the optimum stress change time . Since the accuracy of 

ML method is measured by the asymptotic variance of the MLE of the 100 thP  percentile of the 
lifetime distribution at normal stress condition )( 0xt p , therefore the optimum value of the stress 
change time will the value which minimizes the asymptotic variance of the MLE of )( 0xt p . 

The 100 thP  percentile of a distribution )(F is the age pt  by which a proportion of population 

fails Nelson (1990). It is a solution of the equation )( ptFP  , therefore the 100 thP  percentile for 
Pareto distribution is 
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Now the asymptotic variance of MLE of the 100 thP  percentile at normal operating conditions is 
given by 
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The optimum stress change time   will be the value which minimizes ))(( 0xtAVar p

 . 

5 SIMULATION STUDY 
 
To evaluate the performance of the method of inference described in present study, several data 

sets with sample sizes n = 0200,...,50 100,  are generated for from two-parameter Pareto distribution. 
The values for true parameters and stress combinations are chosen to be 2.0,5.0  ba  5.1  and 

)5,3(),4,2(),( 21 xx . The estimates and the corresponding summary statistics are obtained by the 
present Step Stress ALT model and the Newton iteration method. For different given samples and 
stresses combinations with 2.0,5.0  ba  and 5.1 , the ML estimates , asymptotic variance, the 
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asymptotic standard error )(SE , the mean squared error )(MSE and the coverage rate of the 95% 
confidence interval for ,a b  and  are obtained.  Table-1 and 2 summarize the results of the 
estimates for  ,a b  and . The numerical results presented in Table-1 and 2 are based on 1000 
simulation replications. 
 
Table1:  Simulations results based on Step stress with 2.0,5.0  ba 5.1 and )4,2(),( 21 xx  
 

Sample 
Size n Parameter MLE Variance SE MSE 

95% 
Asymptotic 

CI 
Coverage 

 a  0.51069 0.01349 0.01368 0.01360 0.94282 
100 b  0.20353 0.00084 0.00083 0.00085 0.95030 

   1.52507 0.04789 0.04737 0.04851 0.94984 
 a  0.50734 0.00614 0.00653 0.00619 0.95866 

200 b  0.20098 0.00038 0.00040 0.00038 0.95766 
   1.50620 0.02194 0.02290 0.02198 0.95595 
 a  0.50339 0.00425 0.00428 0.00426 0.94789 

300 b  0.20132 0.00027 0.00027 0.00027 0.95075 
   1.50997 0.01561 0.01527 0.01571 0.95090 
 a  0.50258 0.00302 0.00318 0.00303 0.95290 

400 b  0.20096 0.00019 0.00020 0.00019 0.96192 
   1.50735 0.01095 0.01141 0.01100 0.96200 
 a  0.50323 0.00239 0.00255 0.00241 0.95795 

500 b  0.20059 0.00015 0.00016 0.00015 0.95595 
   1.50444 0.00895 0.00908 0.00897 0.95595 

 

Table2:  Simulations results based on Step stress with 2.0,5.0  ba 5.1 and )5,3(),( 21 xx  

Sample 
Size n Parameter MLE Variance SE MSE 

95% 
Asymptotic 

CI 
Coverage 

 a  0.51740 0.01333 0.01404 0.01363 0.94964 
100 b  0.20057 0.00040 0.00040 0.00040 0.95066 

   1.50444 0.02299 0.02258 0.02301 0.95159 
 a  0.50652 0.00793 0.00888 0.00797 0.94478 

200 b  0.20171 0.00027 0.00027 0.00028 0.94979 
   1.51273 0.01582 0.01521 0.01598 0.94887 
 a  0.50692 0.00578 0.00633 0.00583 0.95030 

300 b  0.20072 0.00020 0.00020 0.00020 0.94726 
   1.50522 0.01152 0.01133 0.01155 0.94736 
 a  0.50487 0.00443 0.00501 0.00446 0.96146 

400 b  0.20067 0.00015 0.00015 0.00015 0.95740 
   1.50506 0.00872 0.00900 0.00874 0.95740 
 a  0.50257 0.00279 0.00298 0.00279 0.95595 

500 b  0.20084 0.00011 0.00011 0.00011 0.95682 
   1.50453 0.00555 0.00568 0.00557 0.95095 
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6 SUMMARY AND CONCLUDING REMARKS 

 
This paper deals with parameter estimation of Pareto distribution under simple step stress ALT 

plan. The MLEs of the model parameters were obtained. The MLEs, the asymptotic variance and 
covariance of model parameters were obtained. Based on the asymptotic normality, the coverage 
rate of 95% confidence intervals of the model parameters are obtained. Optimal plan for step stress 
ALT is also determined by minimizing the asymptotic variance of the MLE of the 100 thP  
percentile of the lifetime distribution at normal stress condition. 

From results in Table 1 and 2, it is observed that ba
, and  estimates the true parameters ,a b  

and   quite well respectively with relatively small mean squared errors. The estimated standard 
error also approximates well the sample standard deviation. For a fixed ,a b  and   we find that as 
n  increases, variance, standard error and the mean squared errors of ba

, and  get smaller. This is 
because that a larger sample size results in a better large sample approximation. It is also noticed 
that the coverage probabilities of the asymptotic confidence interval are close to the nominal level 
and do not change much across the five different sample sizes. In short, it is reasonable to say that 
the present step stress ALT plan works well and has a promising potential in the analysis of 
accelerated life testing. 
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