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OPTIMAL REDUNDANCY IN SYSTEMS WITH MULTI-LEVEL UNITS 
 

Igor Ushakov 
 

 
ABSTRACT 

 
Method of Universal Generating Function (UGF) was introduced in [1]-[5] and got further 
fundamental developing in [7]-[8]. Here we give an example how method of UGF can be 
implemented to solution problems of optimal redundancy for systems consisting of multi-level units. 

 
 
 The Method of Universal Generating Functions (U-functions) was introduced in [1]-[5].  
Before detailed consideration of this method, let us remark that applying to the optimal redundancy 
problem this method represents a modification of the Kettelle’s Algorithm [1] conveniently arranged 
for calculations with the use of computer. 
 Detailed description of the UGF method can be found in [1]-[5] and [5]. 
 For the Reader’s convenience, we begin with a numerical example that can explain the idea of 
the problem solution more transparently than general arguing. The final description of the algorithm is 
given at the end. 
 Example. Consider a simplest series system of two units (see figure below).  

 
Figure 1. Series system consisting of two units. 

 
However, each unit itself is not a simple binary element but multistate element that is 

characterized by several levels of performance.  Performance may be measured various physical 
values. Effectiveness of such system operation depends on levels of performance of Unit-1 and 
Unit-2.  
 Let units are characterized by the following parameters: 
 
Unit-1 

Level of performance (W1) 
Probability p1 

 
 

Cost of a single unit 
100% p11=Pr{ W1=100%}=0.9  

c1=1 
70% p12=Pr{ W1=100%}=0.05 
40% p13=Pr{ W1=100%}=0.04 
0% p14=Pr{ W1=100%}=0.01 

   
Unit-2 

Level of performance (W1) 
Probability p2 

 
 

Cost of a single unit 
100% P21=Pr{ W2=100%}=0.8  

c2=2 
80% P22=Pr{ W2=80%}=0.18 
20% P23=Pr{ W2=20%}=0.01 
0% P24=Pr{ W2=0%}=0.01 

   
 Assume that performance effectiveness of each unit can be improved by using simple 
redundancy and that each moment of time unit performance is equal to the performance of the best 
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component of the redundant group. Thus, behavior of Unit-1, consisting of the main component and 
single redundant element, can be depicted as in Figure 2. 
 

 
Figure 2. A realization of stochastic behavior of Unit-1, consisting of two elements, main and 

redundant. The shadowed  area denotes the behavior of the Unit-1. 
 
For Unit-2 analogous process is presented in Figure 3. 
  

 
Figure 3. A realization of stochastic behavior of Unit-2, consisting of two elements, main and 

redundant. The shadowed  area denotes the behavior of the Unit-2. 
 
  Further, assume that the entire system (series connection of  Unit-1 and Unit-2) is 
characterized by the worst level of effectiveness of its units at each moment of time. In Figure 4, 
one can see the system behavior for the case when both units consist of a single main element. 
 

 
Figure 4. A realization of stochastic behavior of the entire system when both its units consist of a 

single main element. The shadowed  area denotes the behavior of the system. 
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Let the problem is to find optimal redundant elements allocation for solving two optimal 
redundancy problems: 

(1) Direct problem: Find such an allocation of redundant elements than delivers average level of 
the system performance not less than W0 with minimum possible cost of redundant 
elements; 

(2) Inverse problem: Find such an allocation of redundant elements than delivers maximum 
possible level of system performance under condition that the total expenses on redundant 
elements do not exceed C0 units of cost.  

Now consider construction of dominating sequence during the optimization process. (For details 
about dominating sequence, see [1] or [2].) In principle, one has to construct a table of type that 
presented below and choose members of dominating sequence. 
 
Table 1. Construction of dominating sequence. 

 

Number of redundant elements for  Unit-1 
0 1 2 … 

Number of redundant  
elements for  Unit-2 
 
 
 
 

 
0 

X=(0, 0) 
P(0, 0) 
W(0,0) 
C(0, 0) 

X=(1, 0) 
P(1,  0) 
W(1, 0) 
C(1, 0) 

X=(2, 0) 
P(2, 0) 
W(2, 0) 
C(2, 0) 

… 

 
1 

X=(0, 1) 
P(0, 1) 
W(0,1) 
C(0, 1) 

X=(1, 1) 
P(1,  1) 
W(1, 1) 
C(1, 1) 

X=(2, 1) 
P(2, 1) 
W(2, 1) 
C(2,  1) 

… 

 
2 

X=(0, 2) 
P(0, 2) 
W(0, 2) 
C(0, 2) 

X=(1, 2) 
P(1,  2) 
W(1, 2) 
C(1, 2) 

X=(2, 2) 
P(2, 1) 
W(2, 2) 
C(2, 2) 

… 

… … … … … 
 

     
 Further discussion will be provided in terms of Universal Generating Functions. As one 
sees, in this case we deal with quadruplets of type: 
 
{Vector of units’ variants; Discrete distribution of performance levels; System cost}. 
 

The problem complicates due to necessity of calculations because Probabilities of 
performance levels and Performance levels are not numbers but vectors that needed special 
calculations. This aspect will be demonstrated below. Here we would like to note that there is no 
necessity to calculate quadruplets for all cells of Table 1. Fortunately, we can use the property of 
Kettelle Algorithm:  members of dominating sequences are located around table’s diagonal and 
corresponding cells form simply connected area. It allows to use “dichotomy tree” procedure, i.e. 
avoid unnecessary calculations by cutting non-perspective branches (see Figure 5).  

Indeed, consider bordering cells around simple connected area (they marked with sign “x”.). 
There is no dominating cells in area located upper the right border, and there is no dominating cells  
in area located lower the left border. 
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Figure 5. Example of excluding non-perspective branches. Black arrows are members of 

dominating sequence, Grey arrows are trial test that led to non-perspective variants marked by  “x”. 
All cells marked with dark grey cannot contain dominating quadruplets. 

 
Thus, in this case calculations occur to be sufficiently compact. However, as we mentioned 

above some special calculations for each redundant group have to be done. 
Let us consider a numerical example. 

 In accordance with described above calculating procedure, one has to consider first variant 
(0, 0), i.e just Unit-1 and Unit-2 with no redundancy at all, and find quadruple, In this case resulting  
solution will be: 
 
{0;  [(p11, W11), (p12, W12),  (p13, W13), (p14, W14)]; c1}{0;  [(p21, W21), (p22, W22),  (p23, W23), 

(p24, W24)]; c2} =  {0

  0;  [(p11, W11), (p12, W12), (p13, W13), (p14, W14)]

UGF
 {0;  [(p21,W21), (p22, 

W22), (p23, W23), (p24, W24)];  c1

c2 }. 

Here we use the following operators: 


   is an operator of forming a vector, i.e. ),( kjkj 


; 

UGF
  is an operator equivalent to the U-function, i.e. 

























kj

WW

kj
Bk

W
kUGFAj

W
j

kjkj zppzpzp
,

min , 

where, in turn,  Wj min
 Wk = min(Wj, Wk); c1


c2 is operator of summation, i.e. c1


c2 = c1+ c2. 

Numerical results are presented in Table  2. 
 
This leads to the following final result: 
P(0.0)(Wsyst=100%) =0.72; 
P(0.0)(Wsyst=80%) =0.171; 
P(0.0)(Wsyst=70%) =0.04+0.0095=0.0495; 
P(0.0)(Wsyst=40% =0.032+0.0076=0.0396; 
P(0.0)(Wsyst=20%) =0.009+0.0005+0.004=0.0099; 
P(0.0)(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201. 
 
Cost of additional units in this case equals 0. As one can easily calculate, the average level of the 
system performance is equal to 

.9092.02.00095.05.00396.07.00497.08.0171.072.0)0,0( systW  
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Table 2. Step 1 of the process of optimization 
 

 
(0, 0) 

Unit-2 
p21=0.8 

)0(
21W =100% 

p22=0.18 
)0(

22W =80% 
  

p23=0.01 
)0(

23W =20% 
p24=0.01 

)0(
24W =0% 

 
 
 
 

Unit-1 

p11=0.9 
)0(

11W
=100% 

p21· p11= 0.72 
),min( )0(

11
)0(

21 WW
=100% 

p22· p11= 0.171 
),min( )0(

11
)0(

22 WW
=80% 

  

p23· p14= 0.009 
),min( )0(

11
)0(

23 WW
 

=20% 

p24· p14= 0.009 
),min( )0(

11
)0(

21 WW
 

=0% 

p12=0.05 
)0(

12W
=70% 

p21·p12= 0.04 
),min( )0(

12
)0(

21 WW  
=70% 

p22·p12=0.0095 
),min( )0(

12
)0(

22 WW
=70% 

  

p23· p14= 0.0005 
),min( )0(

12
)0(

23 WW
 

=20% 

p24· p14= 0.0005 
),min( )0(

11
)0(

21 WW
 

=0% 

     
· · 

p13=0.04 
)0(

13W
=40% 

p21· p13= 0.032 
),min( )0(

13
)0(

21 WW =40% 

p22·p13=0.0076 
),min( )0(

13
)0(

22 WW
=40% 

  

p23· p14= 0.0004 
),min( )0(

13
)0(

23 WW
 

=20% 

p24· p14= 0.0004 
),min( )0(

11
)0(

21 WW
 

=0% 

       

p14=0.01 
)0(

14W
=0% 

p21· p14= 0.008 
),min( )0(

14
)0(

21 WW  
=0% 

p22· p14= 0.0019 
),min( )0(

14
)0(

22 WW  
=0% 

  

p23· p14= 0.0001 

%0
),min( )0(

14
)0(

23


WW

 

p24· p14= 0.0001 

%0
),min( )0(

14
)0(

23


WW

 
 
 
Now let’s make trial steps to the neighbor cells: check cells (1, 0) and (0, 1). Let us start with cell 
(1, 0) in accordance with Figure 4. First find performance levels distribution for Unit-1 consisting 
of two elements, main and redundant.  
 
 
Table 3. Forehand calculation of performance levels distribution for Unit-1, consisting of two 
elements, main and redundant. 

 Element-1 
 
 

 
 
 
Element-

1 

 

p11=0.9 
)0(

11W =100% 
p12=0.05 

)0(
12W =70% 

p13=0.04 
)0(

13W )=40% 
p14=0.01 

)0(
14W =0% 

p11=0.9 
)0(

11W
=100% 

(p11)2=0.81 
)0(

11W =100% 
p12 ·p11=0.045 

),max( )0(
11

)0(
12 WW

=100% 

p13 ·p11=0.036 
max ( )0(

13W , )0(
11W ) 

=100% 

p14 ·p11=0.009 
max ( )0(

14W , )0(
11W ) 

=100% 
p12=0.05 

)0(
12W

=70% 

p11·p12=0.045 
max ( )0(

11W , )0(
12W ) 

=100% 

(p12)2=0.025 
max( ,)0(

12W ))0(
12W

=70% 

p13· p12=0.002 

max ( )0(
13W , ))0(

12W  
=70% 

p14 ·p12=0.0005 

max ( )0(
14W , ))0(

12W ) 
=70% 

p13=0.04 
)0(

32W
=40% 

p11·p13=0.036 

max ( )0(
11W , )0(

32W ) 
=100% 

p12·p13=0.002 
max ( )0(

12W , )0(
32W ) 

=70% 

(p13 )2=0.0016 
)0(

32W =40% 
p14· p13=0.0004 

max ( )0(
14W , )0(

32W ) 
=40% 

p14=0.01 
)0(

14W =0% 

p11·p14=0.009 

max ( )0(
11W , )0(

14W ) 
=100% 

p12·p14=0.0005 

max ( )0(
12W , )0(

14W ) 
=70% 

p13 ·p14=0.0004 
max ( )0(

13W , )0(
14W ) 

=40% 

(p14)2=0.0001 
)0(

14W =0% 

 
  



V M Chacko and M. Manoharan  – MEAN RESIDUAL LIFE CRITERIA OF FIRST PASSAGE TIME OFSEMI-MARKOV PROCESS 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

46 

On the basis of this table, one gets for Unit-1 the following distribution 
%}100Pr{ )1(

1 W = 푃( )= (p11)2+2p11·( p12+ p13+ p14) = 0.81+2· (0.045+0.036+0.009)=0.99; 
 %}70Pr{ )1(

1W  푃( )=(p12)2+2 ·p12 · (p13+ p14)=0.025+2·0.025 (0.002+0.0005)=0.0075; 
 %}40{Pr )1(

1W   푃( )=(p13 )2+2p13· p14=0.0016+2·0.0016·0.0004≈0.0016: 
 %}0{Pr )1(

1W 푃( ) = (푝 ) =0.0001. 
Using these results, one can  compile Table 4 that gives performance levels distribution for 

the system characterized by vector of redundant elements X = (1, 0).  
  

 
Table 4. Step 3 of the optimization process. 
 

(1, 0) 
 Csystem=푐 = 1 

Unit-2 
p21=0.8 

)0(
21W )=100% 

p22=0.19 
)0(

22W )=80% 
p23=0.01 

)0(
23W )=20% 

p24=0.01 
)0(

24W )=0% 
 
 
 
 

Unit
-1 

푃( )=0.99 
)1(`

11W
=100% 

푝 ∙ 푃( )= 0.792 
min ( )0(

21W , )1(`
11W

) 
=100% 

푝 ∙ 푃( )= 0.188 
min( )0(

22W , )1(`
11W

) 
=80% 

푝 ∙ 푃( )≈0.01 
min( )0(

23W , )1(`
11W

) 
=20% 

푝 ∙ 푃( )≈0.01 
min( )0(

24W , )1(`
11W

)) 
=0% 

푃( )=0.0075 
)1(`

12W =70% 

푝 ∙ 푃( )= 0.006 
min( )0(

21W , )1(`
12W ) 

=70% 

푝 ∙
푃( )≈0.0014 

min( )0(
22W , )1(`

12W
) 

=70% 

푝 ∙ 푃( )≈0.0001 
min( )0(

23W , )1(`
12W ) 

=20% 

푝 ∙ 푃( )=0.0001 
min( )0(

24W , )1(`
12W ) 

=0% 

푃( )=0.0016 
)1(`

13W =40% 

푝 ∙ 푃( )0.0013 
min( )0(

21W , )1(`
13W ) 

=40% 

푝 ∙
푃( )≈0.0003 

min( )0(
22W , )1(`

13W
) 

=40% 

푝 ∙ 푃( )≈0 
min( )0(

23W , )1(`
13W ) 

=20% 

푝 ∙ 푃( ) ≈ 0 
min( )0(

24W , )1(`
13W ) 

=0% 

푃( )=0.0001 
)1(`

14W =0% 

푝 ∙ 푃( )≈0.0001 
min( )0(

21W , )1(`
14W ) 

=0% 

푝 ∙ 푃( )≈0 
min( )0(

22W , )1(`
14W

) 
=0% 

푝 ∙ 푃( )≈0 
min( )0(

23W , )1(`
14W ) 

=0% 

푝 ∙ 푃( )≈0 
min( )0(

24W , )1(`
14W ) 

=0% 
 
This leads to the following final result: 
P(1.0)(Wsyst=100%) =0.792; 
P(0.0)(Wsyst=80%) =0.188; 
P(0.0)(Wsyst=70%) =0.006+0.0014=0.0074; 
P(0.0)(Wsyst=40% =0.0013+0.0003=0.0016; 
P(0.0)(Wsyst=20%) =0.01+0.0001=0.0101; 
P(0.0)(Wsyst=0%) =0.008+0.0019+0.0001+0.0001+0.0009+0.0005+0.0004= 0.0201. 
 
Cost of additional units in this case equals 1. Average system’s performance level equals 

.9502.02.00095.04.00396.07.00497.08.0188.0792.0)0,1( systW  
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Then try another neighbor cell, namely (0, 1). Beforehand, one has to perform an additional 
calculation of performance levels distribution for Unit-2 consisting of two elements, main and 
redundant. 
  
Table 5. Forehand calculation of performance levels distribution for Unit-2, consisting of two 
elements, main and redundant. 

 Element-2 
 
 

 
 
 
Element-

2 

 

p21=0.8 
)0(

21W =100% 
p22=0.19 

)0(
22W =80% 

p23=0.01 
)0(

23W =20% 
p24=0.01 

)0(
24W =0% 

p21=0.8 
)0(

21W =100% 

(p21)2=0.64 
)0(

21W =100% 
p22   p21=0.045 

max ( )0(
22W , )0(

21W ) 
=100% 

p23   p21=0.036 
max ( )0(

23W , )0(
21W ) 

=100% 

p24   p21=0.008 
max ( )0(

24W , )0(
21W ) =100% 

p22=0.19 
)0(

21W =80% 

p21   p22=0.152 
max ( )0(

21W , )0(
21W ) 

=100% 

(p22)2=0.0361 
)0(

22W =80% 
p23   p22=0.0002 

max ( )0(
23W , )0(

21W ) 
=80% 

p24  p22=0.0002 

max ( )0(
24W , )0(

21W ) 
=80% 

p23=0.01 
)0(

23W =20% 

p21   p23=0.008 

max ( )0(
21W , )0(

23W ) 
=100% 

p22   p23=0.0002 
max ( )0(

22W , )0(
23W ) 

=80% 

(p23 )2=0.0001 
)0(

23W =20% 
p24   p23=0.0001 

max ( )0(
24W , )0(

23W ) 
=20% 

p24=0.01 
)0(

24W =0% 

p21  p24=0.008 
max ( )0(

21W , )0(
24W ) 

=100% 

p222   p24=0.0002 

max ( )0(
22W , )0(

24W ) 
=70% 

p p23   p24=0.0001 
max ( )0(

23W , )0(
24W ) 

=20% 

(p24)2=0.0001 
)0(

24W =0% 

 
On the basis of this table, one gets for Unit-2, consisting of two elements, the following 

distribution 
%}100Pr{ )1(

2 W = 푃( )= (p21)2+2p21· (p22+ p23+ p34) = 0.64+2· 0.8· (0.045+0.036+0.008) ≈0.7709; 
 %}80Pr{ )1(

2W  푃( )=(p22)2+2 ·p22 · (p23+ p24)=0.0361+2·0.0361 (0.0002+0.0002) ≈ 0.0361; 
 %}20{Pr )1(

2W   푃( )=(p13 )2+2p13· p14=0.0001+0.0001+0.0001=0,0003: 
 %}0{Pr )1(

2W 푃( ) = (푝 ) =0.0001. 
After  such preparations, one can construct a table with system’s performance levels 

distribution for the system configuration characterized by vector of redundant elements X = (0, 1). 
This leads to the following final result: 
P(1.0)(Wsyst=100%) =0.6038; 
P(0.0)(Wsyst=80%) =0.0325; 
P(0.0)(Wsyst=70%) =0.0386+0.0018=0.0404; 
P(0.0)(Wsyst=40% =0.0308+0.0014=0.0322; 
P(0.0)(Wsyst=20%) ≈0.0003; 
P(0.0)(Wsyst=0%) =0.0077+0.0004+0.0001≈0.0082. 
 
Cost of additional units in this case equals 2 units of cost. Average system’s performance level 
equals 

.671.02.00003.04.00322.07.00404.08.00325.0.06038.0)1,0( systW  
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Table 6. Step 4 of the optimization process. 
 

(0, 1) 
 Csystem=푐 = 2 

Unit-2 
푃( )=0.7709 

)1(
21W =100% 

푃( )=0.0361 
)1(

22W =80% 
  

푃( )=0.0003 
)1(

23W =20% 

푃( )=0.0001 
)1(

24W =0% 
 
 
 
 

Unit-1 

p11=0.9 
)0(

11W
=100% 

푃( ) ∙ 푝 ≈ 0.6038 

min ( )1(
21W , )0(`

11W ) 
=100% 

푃( ) ∙ 푝 ≈ 0.0325 

min( )0(
22W , )1(`

11W ) 
=80% 

  

푃( ) ∙ 푝 ≈0.0003 

min( )0(
23W , )1(`

11W ) 
=20% 

푃( ) ∙ 푝 ≈0.0001 

min( )0(
24W , )1(`

11W )) 
=0% 

p12=0.05 
)0(

12W =70% 

푃( ) ∙ 푝 푝 푝 ≈0.0386 

min( )0(
21W , )1(`

12W ) 
=70% 

푃( ) ∙ 푝 ≈0.0018 

min( )0(
22W , )1(`

12W ) 
=70% 

  

푃( ) ∙ 푝 ≈0 

min( )0(
23W , )1(`

12W ) 
=20% 

푃( ) ∙ 푝 	≈ 0 

min( )0(
24W , )1(`

12W ) 
=0% 

       
p13=0.04 

)0(
32W =40% 

푃( ) ∙ 푝 푝 ≈0.0308 

min( )0(
21W , )1(`

13W ) 
=40% 

푃( ) ∙ 푝 ≈0.0014 

min( )0(
22W , )1(`

13W ) 
=40% 

  

푃( ) ∙ 푝 ≈0 

min( )0(
23W , )1(`

13W ) 
=20% 

푃( ) ∙ 푝 ≈ 0 

min( )0(
24W , )1(`

13W ) 
=0% 

       

p14=0.01 
)0(

14W =0% 

푃( ) ∙ 푝 ≈0.00771 

min( )0(
21W , )1(`

14W ) 
=0% 

푃( ) ∙ 푝 ≈0.0004 

min( )0(
22W , )1(`

14W ) 
=0% 

  

푃( ) ∙ 푝 ≈0 

min( )0(
23W , )1(`

14W ) 
=0% 

푃( ) ∙ 푝 ≈0 

min( )0(
24W , )1(`

14W ) 
=0% 

 
 

Thus, for vector (1, 0) one has additional cost equal 1 and 9502001 .W ),(
syst   and for vector (0, 1) 

corresponding values equal to 2 and 0.671, so system configuration (1, 0) is dominating over 
configuration (0, 1), since higher average performance level delivers with less expenses. It means that 
all vectors of type (0, k) are excluded from further analysis. 

 
The next cells, for which current trials have to be done, are cells (1, 1) and (2, 0) in accordance 

with self-explanatory Figure 6. 
 

 
 

Figure 6. Directions of further analysis of cells 
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The next cells under investigation are (2, 0) and (1, 1), one can see from Figure 7. 
 

 
 

Figure 7. Further development of checking cells 
 
  Avoiding simple, however cumbersome calculations, let us present only final results (see 
Table 5). 
 
Table 7. Costs and levels of performance  for different vectors of redundant elements. 

 Unit-1:  Number of redundant elements 
0 1 2 3 4 5 6 

 
 
 
 

Unit-2: 
 

Number 
of 

redundant 
elements 

0 C=0 
W= 
90.16 

C=1 
W= 
94.26 

C=2 
W= 
94.57 

   … 

1 C=2 
W= 
94.68 

C=3 
W= 
99.16 

C=4 
W= 
99.50 

C=5 
W= 
99.53 

  … 

2 C=4 
W= 
95.03 

C=5 
W= 
99.54 

C=6 
W= 
99.89 

C=7 
W= 

99.92 

 
? 

 …
 

3  C=7 
W= 

99.61 

C=8 
W= 

99.95 

 
? 

  … 
.
 

4       … 
.
 

… … … 
.
 …

 
…

 
…

 
…

 
…

 

Legend: light grey color – dominated cells, dark grey color – non-prospective variants. 
 

Probably, the last table needs some explanations. System without redundant elements initially 
has average level of performance (W) equals 90.16%. Next phase of calculation is checking neighbor 
cells to cell (0, 0), i.e. (1, 0) and (0, 1). After adding a redundant element of the 1st type, one gets W= 
94.26% and after adding a redundant element of the 2nd  type, one gets W= 94.68%. Both cells contain 
dominating vectors of redundant elements. Next phase of trials are vectors (2, 0), (1, 1) and (0, 2). 
Vectors (1, 1) gives W=94.57 with total cost of redundant elements C=3. Vector (2, 0) is dominated by 
vector (0, 1) since possesses lower value with the same expenses for redundant elements. Therefore all 
vectors of type (3, 0), (4, 0) and so on, are excluded from further trials. Vector (1, 1) is dominating. 
 Next phase is trial of neighbor cells to the currently existing cells with dominating vectors, 
These cells are (2, 1), (1, 2) and (0, 3) (Remind that vector (3, 0) is excluded as dominated one.) As one 



V M Chacko and M. Manoharan  – MEAN RESIDUAL LIFE CRITERIA OF FIRST PASSAGE TIME OFSEMI-MARKOV PROCESS 

 
RT&A # 01 (28)  

(Vol.8) 2013, March  
 

 

50 

can see from Table 5, vector (2, 1) dominates over vector (0, 2), so all vectors of type (0, 3), (0, 4) and 
soon are excluded from further trials. Vectors (1, 2) and (2, 1) belong to the dominating sequence of 
vectors.  

Such trials and selection of dominating vectors continued until appearance of first vector with 
the average level of performance higher than required value of Wo  for the direct problem of optimal 
redundancy, or until total expense of all redundant elements are nor exceed given value  Co for the 
inverse problem. These comments become absolutely transparent if one take a look on Figure 8. 

 
Figure 8. Depiction of the process of compiling the dominating sequence 

 
From Table 5, one can see that optimal solution for requirement  that the average level of  

system performance is not less than Wo =0.999 is delivered by vector (3,2), and the total expenses of 
redundant elements is 7  cost units. For the total expenses on redundant elements limited by Co ≤4 cost 
units, one gets maximum possible solution as vector (1, 2) that characterizes by W=99.54%. 

It is interesting what happens with the optimal solution if one changes costs of elements> Let 
us assume that for the same system cost of a single redundant element of the 1st type is c1=2 and the 
cost am element of the 2nd type c2=1.  
 
Table 8. Costs and levels of performance  for different vectors of redundant elements for new 
elements’ costs. 
 Unit-1:  Number of redundant elements 

0 1 2 3 4 5 6 
 
 
 
 

Unit-2: 
 

Number 
of 

redundant 
elements 

0 C=0 
W=90.156 

C=2 
W= 
94.26456 

    … 

1 C=1 
W= 
94.68072 

C=3 
W= 
99.16318 

C=5 
W= 
99.50462 

   … 

2 C=2 
W= 
95.02683 

C=4 
W= 
99.54058 

C=6 
W= 
99.88507 

C=8 
W= 

99.9156 

 
 

 …
 

3 C=3 
W= 
95.08558 

C=5 
W= 

99.60514 

C=7 
W= 

99.9502 

 
? 

  … 
.
 

4  C=6 
W= 
99.61784 

 
? 

   … 
.
 

… … … 
.
 …

 
…

 
…

 
…

 
…

 

Legend: light grey color – dominated cells, dark grey color – non-prospective variants. 
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In this case optimal solutions found from Table 6 are: For the direct problem vector (2, 3), for 
which W=99.95% and total expenses on redundant elements are equal to 7 cost units, and for inverse 
problem the solution is (1, 2), for which W=99.54% and total expenses C=4. For inverse problem, the 
solutions coincide with each other in both cases. 

Solution of optimal redundancy problems for system consisting of several multilevel units 
seems a bit cumbersome. However, let us note that all enumerative methods like dynamic 
programming practically unsolvable without computerizing calculations. Numerical example above 
was solved with the help of a simple programs using Microsoft Excel. 

For complex systems consisting of n multiple multistate units, one can compile a simple 
program for a mainframe computer. The algorithm should include the following steps. 

 

i. FIRST STEP 

1. Take an n-dimensional vector of redundant elements )0...,,0,0( )0()0(
2

)0(
1

)0(  nxxxX . 
2. Perform calculations to get initial pair of values ),( )0()0(

systsyst CW  (see Table.2).
 

3. Put calculated pair ),( )0()0(
systsyst CW

into list of dominating  solutions,
  

ii. SECOND STEP 
4. Generate vectors

 
)1(

iX such that each of them distinguishes from
 

)0(X  by changing number 

of elements of Unit-i on one, i.e. 
 )0...,,1...,,0,0( )0()0()0(

2
)0(

1
)1(  nii xxxxX .

 

iii. THIRD STEP 
5. For each ,,1,)1( niX i 

calculate new values of 
푃( ),  for all ki where ki is the number of 

performance levels of Uniy-I (see Tables  3 and 5). 
6. Perform corresponding calculations for getting  n pairs 

),,(,....),,(),,( )1()1()1(
2

)1(
2

)1(
1

)1(
1 nn CWCWCW

for all vectors (see Tables 4 and 6).
 

7. Analyze all pairs obtained in previous point to form a set G(1) that includes only dominating 
vectors )1(

iX .
 

8. 
Return to the 3rd step, using vectors  belonging to set 

G(1) 

 
Stopping rules: 
(a)

 For direct optimization problem, choose such a vector 
)(k

iX
among  G(k) that was obtained 

at the k-th step of the optimization process that delivers 
)1(

)(
min iGi

C
k for all 

0)( WW k
i  . 

(b)
 For inverse optimization problem, choose such a vector 

)(k
iX

among  G(k) that was obtained 

at the k-th step of the optimization process that delivers 
)1(

)(
max iGi

W
k for all 

0)( CC k
i  .. 
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