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ABSTRACT 

 
Inliers in a data set are subset of observations not necessarily all zeroes, which appears to be 
inconsistent with the remaining data set. They are either the resultant of instantaneous or early failures 
usually encountered in life testing, financial, clinical trial and many other studies. We study the 
estimation of inliers in Normal distribution. The masking effect problem for correctly identifying the 
inliers is also discussed. An illustration and a real life example is presented with detailed discussions.                                               
  
Key Words: inliers; optimal estimating equations; mixture distribution; MLEs; asymptotic distribution; 
early failures; Schwarz’s Information criterion; modified likelihood test.  

 
 
1.  Introduction 
 

The normal distribution is a very important statistical model occurring in many natural 
phenomena, such as measurement of height, blood pressure, lengths of objects produced by 
machines, etc. Usually normal distributions are symmetrical with a single central peak at the mean 
(average) of the data. But many times we may get normal distribution as mixture of two groups. For 
example the life time of an electronic item will have two sets of observations, where one set of data 
may have zero or small life times due to instantaneous or early failures (together called inliers) and 
the other set contains positive life times called target life times. This may create two symmetrical 
curved graphs, where the mean of inliers group is much less than the mean of target group. Such 
failures usually discard the assumption of a unimodal distribution and hence the usual method of 
modeling and inference procedures may not be accurate in practice. Usually, these situations are 
handled by modifying commonly used parametric models suitably incorporating inconsistent 
observations. The modified model is then a non-standard distribution and we call such models as 
inliers prone models.   

Normal mixture distributions are arguably the most important mixture models, and also the 
most technically challenging. The likelihood function of the normal mixture model is unbounded 
based on a set of random samples, unless an artificial bound is placed on its component variance 
parameter. There has been extensive research on finite normal mixture models, but much of it 
addresses merely consistency of the point estimation or useful practical procedures, and many 
results require undesirable restrictions on the parameter space. 

The first formal treatment for inliers is discussed in Muralidharan and Lathika (2004). Some 
recent studies on inlier model related problems in exponential distribution   are by Kale and 
Muralidharan (2000), Muralidharan and Kale (2007, 2008) and Muralidharan and Arti (2008) and 
the references contained therein.   
   The object of this paper is to consider the problems associated with the inliers detection in 
normal distribution as given in (1.1) as the distribution has many potential applications in life 
testing experiments with instantaneous and early failures. A two parameter normal family has the 
probability density  
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In section 2, we present various inlier prone models and their estimation belonging to (1.1). 

Section 3 deals with an illustrative example, where the estimates of the parameters under various 
models are discussed. The inliers detection using information criterion is presented in Section 4. In 
section 5 we list down two statistical tests useful to detect whether all observation belong to single 
normal population or  they belong to mixture of two normal populations. The masking effect of the 
inliers is presented in the last section.   
 
2.   Inlier(s) prone models and estimation 
 
2.1   Normal with instantaneous failures 
 
   In a parametric model for Failure time distribution (FTD) we start with a family of FTD  = 
{F(x, ), x  0,    } where the form of the distribution function (df) is known except for 
labeling parameter, m dimensional   and F is absolutely continuous function with probability 
density function (pdf),  ,f x   with respect to Lebesgue measure. The basic problem is to infer 

about unknown   or a suitable functions thereof say    ,  on the basis of a random sample of 
size n on the observable random variable say . The occurrence of instantaneous 
failures when some items put on test giving = 0 is quite common in electronic component and 
life testing situations. Note that because of the limited accuracy of measuring failure time it is 
possible that we record = 0 for some units although  0 | 0iP X   . To accommodate such 

instantaneous failures, the model  is modified to model G   , , , 0, ,0 1G x p x p      , 
where  

   

   
1 , 0

, ,
1 , , 0

p x
G x p

p pF x x




     
                                                            (2.1) 

  
where  ,F x   is according to normal distribution and p  is the mixing proportion. The estimation 
of parameters in the above model is straight forward and depends on only the positive observations 
in the model.   
 
2.2 Normal with early failures  
 

If early failures are nominally reported as X =  then the distribution function of the 
modified model G  is given by    

 

 1

0,
( , , ) 1 ( , ),

1 ( , ),

x
G x p p pF x

p pF x x


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        (2.2) 

 
The corresponding probability density function is given by 
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The likelihood of this model can be written as 

 

     ( , )( , , ) 1 ( , ) 1 ( , )
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x
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F

                     (2.4) 

 
That is, the likelihood of the sample under  G  is the product of the likelihoods of  r  and 

the conditional likelihood of the sample given r  which is same as the likelihood of  n r  
observations coming from the truncated version of  f   (or 1g  G ) restricted to (, ).  Since r  
is binomial with probability of success given by  1 ,p pF    , the distribution is complete for 

fixed  and  0,1p . Therefore, the optimal estimating equation for   ignoring p  is the 

conditional score function given r  or ln 0






rL  , where  
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1 ,
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 . Maximum likelihood 

(ML) equations corresponds to two parameter normal models are given as 
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and 
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Here equations (2.7) and (2.8) may be solved simultaneously. The above equations give 

reasonably good estimates of the parameters for δ fixed.  
 

 
2.3    Normal with nearly instantaneous failures 
 
 Let  F x and    R x = 1- F x denote the cumulative distribution function and the survival 
function of the mixture, respectively. The component distribution functions and their Survival 
functions are  iF x and    i iR x = 1- F x  respectively, i =1,2. The failure rate of a lifetime 

distribution is defined as    
 

f x
h x  = 

R x
  provided the density exists. Instead of assuming an instant 

1g 1
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or an early failures to occur at a particular point, as in the original model of Lai et.al. (2007), we 
now represent this model as a mixture of the generalized Dirac delta function and the 2-parameter 
normal as opposed to a mixture of a singular distribution with normal. Thus the resulting 
modification gives rise to a density function: 

   
2

11

1 1exp , 1, 0 1
22d 0

xf x = pδ x - x q p q p


            
            (2.9) 

                                                                           0 ,1        
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       ,                                         (2.10) 

for sufficiently small d. Here p is the mixing proportion and 0p  .  Also note that  
 

   


0 0δ x - x = δ x - xlim dd 0
                                                       (2.11) 

 
where (.)  is the Dirac delta function. We may view the Dirac delta function as approximately 
normal distribution having a zero mean and standard deviation that tends to 1 (see Strichartz (1994) 
and Li and Wong (2008) for details). For fixed value of d, (2.10) denotes a uniform distribution 
over an interval  0 0,x x d  so the modified model is now effectively a mixture of a normal with a 
uniform distribution. Instead of including a possible instantaneous failure in the model (2.10) allows 
for a possible “near instantaneous” failure to occur uniformly over a very small time interval. Note 
that the case x0 = 0 corresponds to instantaneous failures, whereas x0 ≠ 0 (but small) corresponds to 
the case with early failures. The survival function and failure rate functions can be obtained as 
follows: Since      1 2f x p f x q f x   and      1 2F x p F x q F x  . We have,      
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and the corresponding failure rate function as 
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and            2 2 0( ) 1R x F x x x d                     (2.15) 
 

Similarly, the failure rates for each component is given by 
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and 

   

2

11
2

2

1 1exp
22

1

x

h x
F x




        


                                                     (2.17) 

 
Consider the special case of model (2.9) whereby 0 0.x  The model may be called the 

normal with “nearly instantaneous failure” model. In this case, (2.16) can be  simplified as   
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and (2.14) simplifies to 
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Thus the normal model with “nearly instantaneous failure” occurring uniformly over [0, d] has 
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respectively.  The plots for reliability and failure functions are presented in figures 1 to 3 below. 
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         Figure 1. Density function                                           Figure 2. Reliability function  

 
 
 

 
 

Figure 3. Failure distribution for µ = 4 and σ = 2 
 
 

3. An illustrative example 
 

This example is due to Vannman (1991). A batch of wooden boards is dried by a particular 
chemical process and the object of the experiment is to compare two processes as regards the extent 
of deformation of boards due to checking. The measure of damage to the board is the checking area 

x defined as 100
0hl

dlx  , where l is the length of the check, d  is the mean depth of the check, h is 

the thickness of the board area and 0l  is the length of the board. Thus x is the check area measured 
as percentage of the board area. The boards are dried at the same time under different schedule and 
under some climatic conditions. When drying boards not all of them will get the checks and a 
typical sample of wood contain several observations with ix = 0 or ix  > 0 but relatively small 
compared to the rest of the checks. These observations will correspond to instantaneous failures or 
early failures. Note that the larger the number of instantaneous failures better is the process. We 
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below reproduce the data of Schedule 1 and 2 of Experiment 3. The estimates are presented in Table 
1.   

 
E-3, S-1: 0ix , i=1,2,…,13 and the other positive observations arranged in increasing order are 
0.08, 0.32, 0.38, 0.46, 0.71, 0.82, 1.15,1.23, 1.40, 3.00, 3.23, 4.03, 4.20, 5.04, 5.36, 6.12, 6.79, 7.90, 
8.27, 8.62, 9.50, 10.15, 10.58 and 17.49. 

 
E-3, S-2: 0ix , i=1,2,…,17 and the other 20 positive observations arranged in increasing are 0.02, 
0.02, 0.02 0.04, 0.09, 0.23, 0.26, 0.37, 0.93, 0.94, 1.02, 2.23, 2.79, 3.93, 4.47, 5.12, 5.19, 5.39, 6.83 
and 8.22. 
  

Table 1: Estimation for instantaneous failure, early failures and nearly instantaneous 
 

Schedule Instantaneous Early failures Nearly  instantaneous 
 

1 (δ=1.5) 
€  4.867917 7.352 5.076087 

1€  4.398309 3.745867 4.374601 

 
2 (δ=0.9) 

€  2.43900 3.919167 3.042500 

1€  2.606334 2.390099 2.581076 

 
 

4. Inliers detection using Information criterion 
 
        Denoting the parameter of X by , 1,2,......i i n   . We consider the following model of no 
inliers in the Model as    
 

                                 Model(0): , 1,2,......i i n                                                        (4.1) 
 
and the model with r inliers as                         

  , 1
Model r :     

, 1i

i r
r i n





 

    
                                                 (4.2) 

 
where r, 1≤ r ≤ n-1, is the unknown index of the inliers. Model(0) may also be interpreted as having 
all observations from the target distribution F with common parameter  θ.    
 
 Suppose that the life times of      1 2, ,..., nX X X  is sequence of independent random variables 
with normal distribution having unknown mean  . According to the procedure, the model(0) is 
selected with no inliers if    

1 1
0 min

r n
SIC SIC r

  
 . And the model(r) is selected if 

   
1 1
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r n

SIC SIC r
  

  Here SIC is the Schwartz Information criterion.  Thus we have 
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and 
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The estimate of inliers say r is such that    

1
min
 


k n

SIC r SIC k . The above procedure is 

implemented through other information criteria’s like the Bayesian Information criterion:

   0.5pln
ln

n
BIC L

n
     and the Hannan-Quinn criterion given by:

    HQ= ln  p ln lnL n      , where  L   the maximum likelihood function and p is the 
number of free parameters that need to be estimated under the model. The method is illustrated 
through numerical examples in the later sections. 
 
5.  Testing of hypothesis  
 
 Here we are interested to test the hypothesis that, whether sample observations belong to 
inliers population from  2

0,N     against the hypothesis that it belongs to target population from 

 2
1, ,N    assuming 0 1.      Equivalently, the hypothesis can be written as H0: μ = ϕ versus 

H1: μ = θ. Below we discuss two computationally simple test procedures to detect inliers in a 
model.  
 
5.1   Modified likelihood ratio test 
 

The study of the modified likelihood approach to finite normal mixture models with a 
common and unknown variance in the mixing components and a test of the hypothesis of a 
homogeneous model versus a mixture on two or more components were done by Chen and 
Kalbfleisch (2005).   

 
We define  ),(~/)(: 2

1 NxxFM , That is, all observations come from target population 
and  )()()1()(: 212 xpFxFpxFM  , That is, the observations comes from a mixture of two 
normal distributions, with  1F x and  2F x  are distribution functions of inliers and target 
populations respectively, as defined in previous sections. 

 
We want to test null hypothesis 0 : 1H p  against  0 : 1H p   or in other words a test of the 

hypothesis 1X M  versus 2X M  then ordinary LRT statistics is given by  
 

   
2 1, ,

ln 2 sup ln , , sup ln ,
X M X M

X X
 

   
 

 
                                                          (5.1) 

 
Due to non-regularity of the finite mixture models ln λ does not have usual chi-squared distribution.  
Therefore, we modify the likelihood as 
 

      ln , , ln , , ln 4 1m X X C p p                                          (5.2) 
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where C is a positive constant. The purpose of the penalty term   ln 4 1C p p  is to restore 

regularity to the problem by avoiding estimates of  p on or near the boundary. Let  





 X,ln

^
  

maximizes  Xm ,ln   for 1X M and 





 X,,ln

^^
  maximizes  ln , ,m X  for 2X M . Then the 

modified likelihood ratio statistic is 
 

  


















 XX ,ln,,ln2ln

^^^^
      (5.3) 

 
The null hypothesis is rejected for large values of €ln  , where €ln    follows  

2
2  distribution. 

 
 
5.3. Most powerful test 
 
          The most powerful test for testing 0 :  H  against 0 :  H  where    is the mean of 
normal population and p known is given by 
 

                      

 
 
 
 

1

0

1

0

1,

0,

P x
C

P x
x

P x
C

P x










 
 

                                                                        (5.4) 

 
where )(1 xP  and )(0 xP are likelihood functions under distribution of target population  and inlier 
population G respectively, and C  is such that    )(

0
xPH , where  α is the level of significance. 

We reject H0 for large values of the ratio  
 

1

0

P x
P x

. Also, the value of C  is obtained as 

  zC  , after some numerical computation.  
 
 
 
6. Simulation Study 
 
           To illustrate the method of identifying inliers model we have generated 15  independent 
random samples, where  5 of them are from normal distribution with mean  = 4 and 22

0  , and 
remaining ten observations from normal distribution with parameter  mean θ = 20 and 32

1  . The 
observations are 1.44852, 3.667636, 3.949972, 5.548854, 6.017887, 17.61194, 19.26654, 20.09814, 
20.23482, 20.36071, 20.64048, 21.08915, 21.26954, 22.53701 and 24.23439.  
 
 The identification is done as follows: Evaluate for each fixed r the maximum likelihood 
equation €

rL , and then consider €r  being that value of r for which likelihood is maximum. The 
estimates are presented in table 2. It is interesting to note that the likelihood is maximum 
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corresponds to r=5, which is expected. The corresponding estimates of the parameters are  €  = 
4.126574, 0 =1.80372 and €  =20.73427, 1 = 1.783219.  

 
Table 2: The Likelihood and Information criterions 

 
r L SIC BIC HQ 
2 -38.1951 69.8294 -3.4621 -2.6464 
3 -34.5019 62.4430 -3.3604 -2.5447 
4 -31.2064 55.8519 -3.2600 -2.4443 
5 -20.7104 34.8599 -2.8501 -2.0344 
6 -26.0540 45.5470 -3.0796 -2.2639 
7 -28.5460 50.5312 -3.1709 -2.3552 
8 -30.9970 55.4332 -3.2533 -2.4376 
9 -33.0941 59.6274 -3.3188 -2.5031 
10 -34.9391 63.3174 -3.3730 -2.5573 
11 -36.6837 66.8065 -3.4218 -2.6061 
12 -38.4748 70.3887 -3.4694 -2.6537 
13 -39.6796 72.7984 -3.5003 -2.6846 

   
 
 Clearly SIC(0) = 58.4562 >    

1
5 min 34.85999

r n
SIC SIC r

 
  . A similar conclusion can be 

drawn in the case of BIC and HQ. Next, we carried out an experiment with 1000 samples each of 
size 15 and number of inliers as 3, 4, 5 and 6 each with 3   and 6,9,12,15  . The table 3 
entitled power of SIC procedure presents the number of times the SIC procedure correctly identified 
the number of inliers as proportion to total number of samples. The values clearly indicate the 
effectiveness of the method in detecting the inliers.  
 

Table 3. Power of SIC procedure 
 

/   
r 

2 3 4 5 

3 0.570 0.720 0.700 0.550 
4 0.460 0.480 0.490 0.440 
5 0.460 0.460 0.460 0.462 
6 0.410 0.420 0.430 0.410 

 
 
6.1. Numerical Example 
 
 We recall the Vannman (1991) data example discussed in section 3 to illustrate the 
identification of inliers using information criterions. The computed value SIC(0) = 99.45467 and 
below in Table 4, the value of likelihood,  SIC(r) and modified likelihood ratio for different values 
of  r are given for different information criterions.  
 
             Clearly, SIC(0) = 99.45467  > SIC(9) =  min SIC(r) = 53.87482. Also the likelihood is 
maximum for r = 9.  The corresponding estimates of the parameter are €  = 0.727778,    0  = 
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0.456858 and €  =7.352, 1 = 3.745867.  For modified likelihood ratio test also the maximum €ln   
is attained at r = 9. 
   
 One of the important problems while detecting the inliers is the masking effect, where 
masking effect is defined as the loss of power due to wrong detection of more than one inliers. This 
is discussed in the next section. 
 
 Table 4. Estimates of parameters for various values of r. 

r Likelihood SIC BIC HQ €ln    
2 -39.7964 85.94886 -3.55136 -2.52751 13.50582 
3 -36.1743 78.70478 -3.45593 -2.43208 20.74989 
4 -32.7564 71.86888 -3.35668 -2.33283 27.5858 
5 -30.8971 68.15026 -3.29824 -2.27439 31.30442 
6 -28.6342 63.62454 -3.22218 -2.19833 35.83014 
7 -27.5317 61.41942 -3.18292 -2.15907 38.03526 
8 -25.6430 57.64209 -3.11185 -2.08800 41.81259 
9 -23.7594 53.87482 -3.03556 -2.01171 45.57985 
10 -27.4743 61.30473 -3.18083 -2.15698 38.14995 
11 -28.1648 62.68569 -3.20565 -2.18180 36.76899 
12 -29.3104 64.97688 -3.24552 -2.22167 34.47779 
13 -29.6057 65.56758 -3.25555 -2.23170 33.88709 
14 -30.5163 67.38864 -3.28584 -2.26199 32.06603 
15 -31.1017 68.55955 -3.30484 -2.28099 30.89513 
16 -32.0722 70.50050 -3.33557 -2.31172 28.95417 
17 -33.2247 72.80552 -3.37087 -2.34702 26.64915 
18 -35.0261 76.40824 -3.42367 -2.39982 23.04643 
19 -36.5309 79.41796 -3.46574 -2.44189 20.03672 
20 -37.8073 81.97070 -3.50008 -2.47623 17.48397 
21 -39.3469 85.04991 -3.54000 -2.51615 14.40476 
22 -40.8648 88.08568 -3.57785 -2.55400 11.369 

 
 
7.   Masking effect on tests for inlier(s) 
 
         Suppose 1 2, .... nX X X  be sequence of n independent random variables with some known 
FTD. Under the null hypothesis 0H  these random variables are identically distributed with df F 
whereas under alternative hypothesis 1H , discordant observations (inliers) arise from population df 
G. The df of G is assumed to be of same form as that of F with a change in location or scale 
parameter by an unknown quantity λ. This parameter is called discordancy parameter, measuring 
the degree of discordancy. Under H1 it is assumed one of the observations follows df G. Let T(x) be 
a test statistics to detect a single discordant observation with critical region A(n,α).  Due to lack of 
information about the number of discordant observations present in the sample, however, the true 
situation may not be specified by H1 and more than one discordant observation may be present in 
the sample. In such cases a test statistics T(x) suggested for detection of a single discordant, may 
fail to detect a single inlier as discordant even when additional discordant observations are present 
in the sample. Such a phenomenon is called masking effect.  
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 All tests for detecting a single inlier, Ho against H1 are based on symmetric functions of 
observations or on functions of order statistics. In the k-inlier model,  the joint distribution of order 
statistics      1 2, ,.... nX X X  is same as that  under the exchangeable model introduced by Kale (1975) 
where it is assumed that any set 

1 2
, ,....

ki i iX X X has priori equal probability of being independent and 
identically distributed asG  and the remaining (n-k) observation are distributed as F, the 
distribution function of target population.  
 
 In exchangeable model      1 2, ,.... nX X X  has minimum posterior probability of coming from 

G  such that 
G
F



 is the decreasing function in X. The limiting masking effect (Bendre and Kale 

1987) can be studied by assuming      1 2, ,.... kX X X   correspond to observation coming from 

 2,N     and then taking limit as . In the above condition, the joint probability is 
defined as 
 

   
        

     1 2

1 1

! !
, ....

1,2,3.......n

k n
i i

i i k

k n k
h x x x g x f x

k 
   


     ,                    (7.1) 

                                                                           1 2 .... nx x x     
 

 
Also f and g  are probability density functions of  2,N   and  2,N     respectively. Thus 
masking effect on any test statistics T(x) with critical region A(n,α), we have 
             

            

 
 11 2, ,......

,
lim , / lim .......n nsk

A n
P T x A n L h x x x dx dx

  


 
              (7.2) 

 
Thus under the labeled slippage model, Lsk as      1 2, , ,.....n k n k nx x x      behave as order 

statistics of a sample of size (n-k) from  2,N    and      1 2, ,..... kx x x  diverge to zero. However if 

      1 2, ,.... kT x x x  is a function whose distribution does not depend on λ then T converges in 

distribution to a proper random variable as  . 
 
 
7.1   Limiting masking effect 
 
 In line with Grubb’s test, for a single inlier, we propose the test 
 

  

  
   

2

2 2 1
2

1

1

n n n
ni i i

i i i
nn

i
i

x x x x
G where x and x

n n
x x

  





  




  



                           (7.3) 

 
and the maximum studentized residual T as  
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 

    
    

 
1

2 2

2

1

1

1i n

n

n
nT

x x n
nx x




      


                                                             (7.4) 

 
Since under 1sL  corresponds to the inlier observation coming from   2,N     and 

    
    

2

2

1

0i n

n

x x

x x





 in probability as   for i =2,3,4……..n and therefore 

1
21nT

n
    

 in 

probability as  . Hence as  ,   1lim 1GP   , where  1
GP   is the power function of 

Grubb’s test. To study     2 ,lim lim |G
n skP P T t L as        we write 

 

  

 
 

1

1
22

2
1 2 i

kY
nT
Y kY k
n n



 

  
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

                                                                    (7.5) 

where  

 

    
    1

1,2,......
i k

i

n k k

x x
Y i n

x x 


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 
                                          (7.6) 

With  1n kx  
   is the mean of       1 2, ,.....k k nx x x   and kx  is the mean of      1 2, , ..... kx x x .  Therefore 

  0iY   in probability for i =1,2…..k because the numerator of   iY  is a proper random variable, 

while denominator diverges to infinity. For i =1,2,……k,  we observe that  
    
    

1

1

1
i n k

i
n k k

x x
Y

x x
 

 


 


 is 

such that the numerator has a distribution independent of λ and therefore converges to a proper 
random variable, but denominator diverges to infinity and hence    1iY 

 
in probability as  

. 
   

 

 Therefore under Lsk    as  ,   
1
2n k

T
nk
 

  
 

 and      

         
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1
2

,
2

1,lim

0 . .

G n

n k
tP nk

o w



       


                                                               (7.7) 

Thus Grubb’s test is free from the limiting masking effect for 
 

1
2

,n

n k
t

nk 

 
 

 
 and the performance 

of the test depends on the sample size n and the number of inliers. In general ,nt   is a decreasing 
function of the sample size and hence for large n with moderate k the test is free from the limiting 
masking effect. Table 5, presents the maximum number of inliers in a sample of size n up to which 
Grubb’s test is free from the limiting masking effect. 
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Table. 5 Maximum inliers accommodated by Grubb’s test 

α n =10 n = 15 n = 20 n = 25 
0.01 1 1 1 2 
0.05 1 2 2 2 
0.10 1 2 2 3 

 
From the table, it is observed that for large sample size more number of inliers may be 
accommodated.  
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