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ABSTRACT 
 

This paper aims at bringing out the usefulness of Chebyshev- and Markov- type inequalities in 
structural engineering design decision making.  By examining whether the bounds arising from 
Chebyshev - type inequality (associated with these are weak upper bound probabilities) enclose the 
respective experimental values for deflections of six ferrocement I-beams and web shear fatigue life of a 
steel plate girder it is inferred that the bounds and the associated probabilities estimated are realistic and 
hence can be used in structural engineering design decision making. The paper also presents some 
recent developments in application of Markov type inequalities (which are due to Steliga and Szynal 
(2010)) for estimation of bounds on probability of an event sought.  The importance of such bounds in 
structural engineering applications is brought out.  It is shown from the results of Monte Carlo 
simulation that the bounds on probability of an event, estimated using the method presented by Steliga 
and Szynal, are sharp.  One of the important advantages of the bounds presented by Steliga and Szynal 
(2010) is that the original (hidden/internal) random variable need not have well defined moments. 
Possible engineering applications are also pointed out. 
 
Keywords: Chebyshev inequality, Markov inequality, deflection, fatigue life 
 

 
1  CHEBYSHEV INEQUALITY- SOME PRELIMINARIES 
 

Let X be a random variable representing an action or response quantity.  Example of action 
quantity can be load (or loading intensity), external bending moment or external traction force.  The 
response quantity can be deflection, rotation, warping, strain, crack width.  In most engineering 
applications we may not be knowing the actual probability density function (pdf) of X; yet, we will 
be asked to answer questions like P[g(x) ≥ r]=?.  It may be noted that g(X) is a function of random 
variable and r is a specified value.  Such decision making probabilities are required in limit state 
design of structural components (viz. Bolotin, 1969). 

In the face of non-availability of pdf of X can we make probabilistic inferences about P[g(X) 
≥ r].  It can be shown that (viz. Gnedenko, 1976) 
 

     
r

XgErXgP       (1)

 

 
 

Let   222 σz =r  ; µ]-[x =  g(x)  where µ and  are mean and standard deviation of X.  According 
to Chebyschev’s inequality this probability computed from (Gnedenko, 1976) 
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Therefore, Chebyshev’s inequality gives weak upper bound on the desired probability. We 

note from Eq.(2) that z should be greater than or equal to 1  since if z < 1 (though positive) the 
interpretation as the value of probability will not be proper.  Also, since we are not having any 
information on type of pdf of X the bounds will be weak.  Efforts have been made in the literature to 
sharpen the bounds and to determine two-sided bounds and also, to determine bounds for 
multivariate case (with- and without- correlation effect).   

While Eq. (2) gives the one-sided bound, let us consider two-sided case.   When the 
distribution is symmetrical about the mean, the symmetrical bounds around the mean are given by 
(Steliga and Szynal, 2010), 

 
   (3) 

 
When the pdf of the random variable is not symmetrical about the mean, the bounds are given 

by, 
 

    (4) 
 
 
Where 2

2121 )k)(k(;kk    
 
 

2  APPLICATIONS  
 
In this section two example problems demonstrating the use of Chebyshev inequalities in 

determining the weak upper bound probabilities, those required for engineering decision making, 
are presented.  One of the highlights of these examples is, to infuse confidence in engineering 
applications, to compare the results with the respective experimental values. 

Example 1: In this example an attempt has been made to estimate the weak upper bound 
probabilities on random central deflection of ferrocement I-beams used for roofing in low-cost 
housing.  This example is considered since the test data on central deflection, at different stages of 
loading, was available for six specimens.  These specimens were tested at the structural engineering 
laboratory of Indian Institute of Science, Bangalore, in 1980s.  The details of tests and the test 
results are available in (Prakash Desayi and Balaji Rao (1988), Prakash Desayi and Balaji Rao 
(1993), Balaji Rao (1990)).  Also, an effort was made to determine statistical properties of 
deflections using Monte Carlo simulation technique.  More details about basic random variables 
considered and details of simulation are presented in Balaji Rao (1990).  The final results of 
simulation (viz. mean and standard deviations of deflection) for six specimens considered here, at 
different stages of loading, are presented in Table 1.  Also presented in this table are experimental 
values of central deflections.  The weak upper bound probabilities associated with bounds of 
lengths 2.25, 2.5, 2.75 and 3  are computed using Chebyshev inequalities.  These probabilities 
are computed for two conditions : (a) assuming that the pdf of deflection, at different stages of 
loading, are symmetrical about the mean, and, (b) assuming that the pdf of deflection is unknown or 
unsymmetrical about the mean.  The values of the bounds and their corresponding probabilities are 
presented in Table 1 typically for first two interval lengths.  Since a bound of length 3  is very 
often used in engineering decision making, the same are compared for the cases (a) and (b) in Figs. 
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1 – 6 for the specimens considered.  Also shown in these figures are the experimentally observed 
deflections.  From these figures it is observed that at almost all stages of loading, the estimated 
bounds contain the observed deflection suggesting that the estimated weak upper bound 
probabilities are acceptable and can be used in engineering decision making.  If it is felt that the 
length of interval of 3  is high, from Table 1 it is noted that, at higher stages of loading, even 
though the lengths of interval are small, the bounds enclose the experimentally observed 
deflections.  It may be noted that the weak upper bound probabilities for the two intervals presented 
in Table 1 vary between 20 to 21% (which is small though).  These observations suggest that the 
Chebyshev’s inequalities can be used for engineering decision making. 
 
Table 1. Bounds of different interval lengths and their comparison with experimental results 
 
Specimen 
designation 

Applied 
load 
(kN) 

Exp. 
deflection 
(mm) 

Results of Monte Carlo 
simulation, Balaji Rao 
(1990) 

Bounds – symmetrical 
(length of interval =2.25 

)1 

Bounds – 
unsymmetrical (length 
of interval = 2.25)2 

Mean, 
 (mm) 

Standard 
deviation,   
(mm) 

Lower 
bound (  – 

1.125) 
(mm) 

Upper 
bound ( + 

1.125) 
(mm) 

Lower 
bound (  

–  ) 
(mm) 

Upper 
bound ( 
+ 1.25) 

(mm) 

 
 
MI1 

2 0.038 0.015 0.004 0.011 0.019 0.012 0.019 
4 0.069 0.033 0.020 0.010 0.056 0.012 0.058 
8 0.216 0.317 0.157 0.140 0.493 0.160 0.513 

10 0.407 0.555 0.184 0.348 0.762 0.371 0.785 
15 0.9 1.154 0.246 0.878 1.431 0.908 1.462 

 
 
MI2 

1 0.035 0.024 0.005 0.018 0.030 0.018 0.035 
1.5 0.075 0.036 0.009 0.026 0.046 0.027 0.054 
8 1.273 1.542 0.378 1.117 1.967 1.164 2.297 

10.41 1.965 2.336 0.460 1.818 2.854 1.876 3.257 
13 2.809 3.190 0.549 2.370 4.013 2.641 4.287 

 
 
MI3 

2 0.021 0.015 0.003 0.011 0.019 0.011 0.020 
4.5 0.065 0.035 0.018 0.015 0.055 0.018 0.058 
10 0.261 0.422 0.204 0.192 0.651 0.217 0.677 
15 0.728 1.047 0.270 0.743 1.350 0.777 1.384 

17.62 1.02 1.375 0.304 1.033 1.717 1.071 1.755 
 
 
MI4 

1 0.036 0.020 0.005 0.015 0.025 0.015 0.026 
1.5 0.05 0.030 0.007 0.023 0.038 0.023 0.039 
8 1.4 1.083 0.363 0.675 1.491 0.720 1.536 

9.9 1.45 1.645 0.419 1.173 2.116 1.225 2.169 
10 1.63 1.673 0.423 1.196 2.148 1.249 2.201 

 
 
MI5 

3 0.04 0.020 0.005 0.015 0.025 0.016 0.026 
4 0.062 0.027 0.007 0.012 0.034 0.020 0.035 

15 0.645 0.699 0.286 0.378 1.021 0.413 1.057 
16 0.701 0.820 0.299 0.483 1.156 0.520 1.193 

17.79 0.825 1.035 0.321 0.674 1.396 0.714 1.436 
 
 
MI6 

2 0.077 0.035 0.008 0.026 0.045 0.027 0.045 
3 0.12 0.053 0.013 0.038 0.068 0.040 0.070 
9 0.73 0.731 0.478 0.193 1.268 0.253 1.328 

9.6 0.932 0.915 0.516 0.334 1.496 0.399 1.560 
14 2.8 2.356 0.678 1.593 3.119 1.677 3.204 

 
Note: 1,2 – associated weak upper bound probabilities are 0.21 and 0.20, respectively 
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Figure 1. Load versus deflection plot for specimen MI1 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
 
 

 
 

Figure 2. Load versus deflection plot for specimen MI2 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
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Figure 3. Load versus deflection plot for specimen MI3 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
 
 

 
 
 

Figure 4. Load versus deflection plot for specimen MI4 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
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Figure 5. Load versus deflection plot for specimen MI5 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
 
 

 
 
 

Figure 6. Load versus deflection plot for specimen MI6 with ( -1.5,  +1.5 ) symmetrical 
bounds (associated minimum probability 0.56) and ( - ,   + 2.0 ) for unsymmetrical bounds 

(associated minimum probability 0.44) with experimental values 
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Example 2: This example shows how Chebyshev’s inequality will help in fatigue resistant 
design of steel plate girders of a plate girder bridge.  More details of this problem can be found in 
Balaji Rao and Anoop (2013). 

The basic equation used in predicting the fatigue life using S – N approach is given by, 
 

  b
f CN         (5) 

where Nf is the number of load cycles to the fatigue limit and  is the applied stress range, C and b 
are the material parameters, known as the fatigue strength coefficient and the fatigue strength 
exponent, respectively. 

It is known that the number of cycles to failure (i.e. fatigue life, Nf), at a given applied stress 
range is a random variable.  A typical plot showing the same is presented in Fig. 7.  It may be noted 
that the nature of pdf and the statistical properties of Nf may depend on stress range.  While it is 
desirable to establish the nature of these probability distributions using fatigue tests, it is expensive 
and time consuming.   The median and the 5% and 95% fractiles of fatigue life computed using the 
transformation of variable technique, at different applied stress ranges are shown in the figure.  
More details of the probabilistic analysis of the fatigue life of the plate girder are presented in Balaji 
Rao et.al. (2013).  Also shown in this figure are experimental fatigue lives reported in literature.  
Except in few cases, experimental scatter is enclosed by the estimated bounds.  Let us apply the 
Chebyshev’s inequality to determine the bounds on fatigue life. At the applied stress range of 270 
MPa the mean (µ) and standard deviation () of Nf are respectively 7.471E+05 and 3.447E+05.  
Assuming the bounds to be symmetrical and (k2-k1) = 3, the probability that the fatigue life will be 
between (2.3005E+05, 12.6415E+05) is equal to or greater than 0.556.  On the other hand if the 
distribution is unsymmetrical about the mean, even though we may keep (k2-k1) = 3, assuming the 
bounds to be (4.024E+05, 14.365E+05), that satisfies the conditions associated with Eq. (4), then 
the probability that the bound will contain actual life will be equal to greater than 0.444.  This value 
of probability is less than the case when the bounds are symmetrical for the reason that in order to 
assume that the bounds are symmetrical we should have had more justification/confidence and this 
gets embedded in our predictions. 
 

 

 
 

Figure 7. Comparison of results of probabilistic analysis with experimentally observed values of 
fatigue life for plate girders reported in literature 
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2  SOME RECENT DEVELOPMENTS  
 
Extension of Markov-type inequalities to a class of random variables without moment 

condition requirement was proposed by Steliga and Szynal (2010).  This is a flexible formulation 
that enables the computation of bounds on probabilities for the random variable which does not 
have well defined moments.  Some of the examples of random variables that belong to this category 
are alpha stable random variables.  These random variables have fractional moments and the 
existence of the order of moments depends on the value of the exponent.  Recent R&D at CSIR-
SERC has revealed that for describing the variations in some of the engineering quantities, alpha-
stable distributions are more appropriate (Balaji Rao and Anoop, 2012).  Hence, the results of 
Steliga and Szynal (2010) are important and the same are considered further. 

 
Steliga and Szynal (2010) assumed the following conditions: (1) X is a positive random 

variables (X   0 a.s.), (2) G is a class of all positive, strictly increasing functions g with g(0) = 0.  
Let N be set of integers.  Making use of Markov inequalities, the following inequality has been 
proved by them. 

For a given  > 0 and k in N  
 





































)X)1k((g)kX(g
)kX(gE2

]X[I
)X)1k((g)kX(g

)kX(gE2]X[P]X[I
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)kX(gE









   (6) 

 
Where I[.] denotes the indicator function.  The above bounds are valid only when X is a 

positive random variable.  The computation of bounds does not require moments of X.  However, 
we should know the functional form (strictly increasing) of g(.) and an idea about the realizations of 
X.  We should also be in a position to determine the expected values of g(.).  The strictly increasing 
function g(.) can be formulated based on phenomenological modeling involving X.   

Possible structural engineering application: For example, the average (smoothed) roof load-
displacement curve of a moment resisting frame subjected to lateral loads, obtained using pushover 
analysis, over the range of engineering design interest, can be considered as strictly increasing 
function of load.  In a gravity controlled experiment, the variations observed in roof displacements 
of nominally similar frames can be attributed to the variations in dimensions and strengths of 
materials.  These variations can be aggregated into overall rigidity/compliance of the frame (X, 
which is always positive, and thus satisfying the condition required to estimate the bounds using the 
above equation).  We can always assign an acceptable probability distribution to the deflection, 
generate random values of deflection following the assigned pdf and indirectly estimate the rigidity 
and examine the indicator function.  This exercise would circumvent us from directly generating 
random realizations of X (as already indicated this random variable may not have well defined 
moments).  Still we will be able to compute the bounds on the required probability with regard to X.  
This also suggests that the formulations presented by Steliga and Szynal (2010) can be used in an 
inverse problem to characterize, probabilistically, the internal variable.  However, the condition 
kN may perhaps need to relaxed through proper formulations.     

Computation of bounds on probability of required event using Eq. (6) requires X to be 
positive.  Let X be the random variable which is real valued.  Then, the bounds presented above for 
positive random variables can be used by substituting │X│ in the place of X.  Let us consider some 
special cases wherein does X take on negative values whose moments may or may not exist and a 
strictly increasing function of X, g(X), is observable and whose distribution is known (in such a case 
X can be considered as a hidden/internal variable whose value is inferred based on a physical 
relationship g(.) and X).   
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The following functional form is assumed for  >0. We will now consider special cases and 
provide necessary bounds for P(X  ). 





r0,x)x(g)b(

Nm,x)x(g)a(
r

m

 

In order to compute denominator in Eq. (6), we need the following bounds (Gut, 2005), whenever x 
> 0 and y > 0, 












 1rfor)yx(2
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The following are the bounds derived by Steliga and Szynal (2010).  These would be useful in 
engineering applications some of which are pointed out in the next section. 
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The predictive power of the above equations, characterised by sharpness of bounds, for g(x) = 
│x│r, when the underlying random variable is following normal and lognormal distributions are 
presented in Tables 1 and 2, respectively, for different values of k and r. To estimate the lower and 
upper bounds, Monte Carlo simulation technique involving 105 simulation cycles are used.  The 
actual probabilities whose bounds are being estimated are presented in foot note of these tables.  
From the results presented in these tables it is inferred that the bounds developed by Steliga and 
Szynal are tight and can be used in the engineering applications for making probability statements 
about the internal variable which is responsible for generating the random observable g(X).  
However, it should be noted that the assumptions made in deriving the bounds should be satisfied.  
As stated earlier, one of the limitations, perhaps, in engineering application would be the need 
imposed by kN. 

Possible structural engineering application: In many engineering problems, X may take 
negative values and also moments of X may not exist.  For example, recent studies by Balaji Rao 
and Anoop (2012), at CSIR-SERC, have shown that the description of evolution of surface strain 
field of a reinforced concrete flexural member follows a Levy process.  Accordingly, at any stage of 
loading, the fluctuations in surface strains may be described using an alpha-stable distribution.  It is 
known that handling such random variables can be difficult and may be desirable to make 
probabilistic inferences of these variables based on the probabilistic variations in observables such 
as deflections and/or crackwidths which are functions of internal variables such as strains.  This 
study is being furthered at CSIR-SERC. 
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Table 2. Results of simulation (N = 105 cycles) for the bounds on P[X≥2]* for X being normally 
distributed with mean = 0.0 and standard deviation = 1.0; g(x) = xr 
 

k            r ¾ ½ ¼ 1/9 1/16 
1 LBI(k;r;) 

MBI(k;r; ) 
0.04852617 
0.05764368 

0.04759212 
0.067207573 

0.04665248 
0.078375767 

0.04612905 
0.085371748 

0.04594573 
0.087966528 

2 LBI(k;r; ) 
MBI(k;r; ) 

0.04702721 
0.05591246 

0.04658857 
0.065866515 

0.04614941 
0.077596523 

0.04590531 
0.08499524 

0.04581986 
0.087748455 

4 LBI(k;r;) 
MBI(k;r; ) 

0.04634894 
0.05511564 

0.04613601 
0.0652417 

0.04592302 
0.077229053 

0.04580468 
0.084816504 

0.04576326 
0.087644691 

9 LBI(k;r; ) 
MBI(k;r; ) 

0.04598943 
0.05469043 

0.04589629 
0.064906321 

0.04580315 
0.07703066 

0.0457514 
0.084719696 

0.04573329 
0.087588427 

16 LBI(k;r; ) 
UBI(k;r; ) 

0.04586632 
0.05454438 

0.04581421 
0.064790817 

0.04576211 
0.076962149 

0.04573316 
0.084686215 

0.04572303 
0.087568958 

25 LBI(k;r; ) 
MBI(k;r; ) 

0.04580979 
0.05447725 

0.04577653 
0.064737677 

0.04574326 
0.076930597 

0.04572478 
0.084670787 

0.04571832 
0.087559985 

36 LBI(k;r; ) 
MBI(k;r; ) 

0.0457792 
0.05444092 

0.04575613 
0.064708895 

0.04573307 
0.076913499 

0.04572025 
0.084662424 

0.04571577 
0.08755512 

 
Note: * Actual probability value = 0.0455 
 
Table 3. Results of simulation (N = 105 cycles) for the bounds on P[X≥3]* for X being lognormally 
distributed with mean = 2.0 and standard deviation = 0.50**; g(x) = xr 
 

k            r ¾ ½ ¼ 1/9 1/16 
1 LBI(k;r; ) 

MBI(k;r; ) 
0.03954956 
0.04701278 

0.0390874 
0.055247321 

0.03862401 
0.064931017 

0.03836626 
0.071029536 

0.03827603 
0.07329724 

2 LBI(k;r; ) 
MBI(k;r; ) 

0.03882517 
0.04616696 

0.03860355 
0.054587084 

0.03838181 
0.064544453 

0.03825858 
0.070841976 

0.03821545 
0.073188447 

4 LBI(k;r; ) 
MBI(k;r; ) 

0.03848589 
0.04576672 

0.03837727 
0.054272124 

0.03826864 
0.064358563 

0.03820829 
0.070751383 

0.03818716 
0.073135818 

9 LBI(k;r; ) 
MBI(k;r; ) 

0.03830327 
0.04555033 

0.03825551 
0.054101171 

0.03820776 
0.06425727 

0.03818123 
0.070701911 

0.03817194 
0.073107056 

16 LBI(k;r; ) 
MBI(k;r; ) 

0.03824028 
0.04547556 

0.03821352 
0.054041991 

0.03818676 
0.06422214 

0.03817189 
0.070684736 

0.03816669 
0.073097067 

25 LBI(k;r; ) 
MBI(k;r; ) 

0.03821129 
0.04544111 

0.0381942 
0.054014712 

0.0381771 
0.064205936 

0.0381676 
0.07067681 

0.03816427 
0.073092457 

36 LBI(k;r; ) 
MBI(k;r; ) 

0.03819559 
0.04542245 

0.03818372 
0.053999923 

0.03817186 
0.064197148 

0.03816527 
0.070672511 

0.03816297 
0.073089956 

Note : *Actual probability value = 0.0382;  **parameters of lognormal: - lamda = 0.66261654; 
exi = 0.246068276;  

 
 
3  SUMMARY  

 
This paper aims at bringing out the usefulness of Chebyshev- and Markov- type inequalities in 

structural engineering design decision making.  By examining whether the bounds arising from 
Chebyshev - type inequality (associated with these are weak upper bound probabilities) encloses the 
respective experimental values for: (a) prediction of central deflection of six ferrocement I-beams, 
and, (b) fatigue life of a steel plate girder of a plate-girder bridge, against the limit state of web 
shear buckling, it is inferred that the bounds and the associated probabilities estimated are realistic 
and hence can be used in structural engineering design decision making. The paper also presents 
recent developments in determination of inequalities of the type of Markov, which are due to 
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Steliga and Szynal (2010).  The importance of such bounds in structural engineering applications is 
brought out.  It is shown from the results of Monte Carlo simulation that the bounds on probability 
of an event sought, estimated using the method presented by Steliga and Szynal, are sharp.  One of 
the important advantages of the bounds presented by Steliga and Szynal (2010) is that the original 
(hidden/internal) random variable need not have well defined moments. Possible engineering 
applications are also pointed out. 
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