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ABSTRACT

Parameter estimates, constructed by the minimum distance method, are briefly called the
MD-estimates. The minimum distance method has been proposed by Wolfowitz (1957). An
extensive bibliography was compiled and published by Parr (1981). In this paper the
effectiveness of the shift parameter estimation based on the use of Cramer - von Mises weighted
distance is discussed. The robustness of this kind of MD-estimates under various supermodels
describing deviations from the Gaussian model is considered. Numerical results are given for
the case of contaminated normal distributions.

Statement of the problem

Let us consider first a case when the statistical model (X,3,) is given in parametric form.
X ={x} denotes the sample space, the elements of which are realizations X = (x,,...,x,) of a random
vector X = (X, X)) 3y ={F:F(x,0),0 €0} is a parametric set of admissible probability
distributions for the experiment considered; X,,...,X, 1s a sequence of 1.1.d. random variables with

the  distribution  function  F(x,0) and the density f(x,0), xeR', 0€0O.

The functional form of the distribution is defined up to an unknown parameter (scalar or vector),
which belongs to a given parameter set ®. It is required to construct the estimate of an unknown
parameter 0 € ®@ based on a sample X ,...,X, from a distribution F(x,0).

The essence of the minimum distance method

If a distance p(F,G) between any two distributions, F,G € 3, is given, then parameter 6 may
be estimated by minimization of the distance between the empirical distribution function F,(x),
constructed from a sample X,,..., X, and the distribution function F,(x)=F,(x,0) adopted in the
model (X,3,). Thus, for a chosen distance p(F,G) MD -estimator for 0 is defined as

0= argmgn {p(F,, Fy)} . Various distances could be used for constructing MD -estimates (see Parr,

and Schucany (1980)). For instance, the maximum likelihood method is based on a distance
p(F,, Fy) = =[In f(x,0)dF, (x).

In this paper, we consider the estimates that are based on the weighted Cramer - von Mises
distance

Py (Fy, Fy) = [[F, () = Fy () Wy (x, Fy) dFy (x) (1
where W, =W (x,F,) is a certain weight function, which may depend on d.f. F, (or on density f;).
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Assuming that p, (F,,F,) a differentiable function of the parameter 0, its derivative is
iy r, (0) =0py, (F,, Fy)/ 06 . With this notations, the estimation 6, for parameter 6 based on the use
of weighted Cramer-von Mises distance (1) 1s a solution of the equation
L 0 =2[15,00 - RIS, 00dr 00 + [0 - AP S0 A0 @)
In this paper we consider the MD -estimation of the location parameter; in this case
F,(x)=F(x-0). Let a family of reference distributions be designated as
3, ={F: F,(x) = F,(x—0), 0 R'}, where Fjis a distribution with density f,. Rewrite (1) as
Pr, ., (0.77) = [[F,(x) = F, (x — O)F W (x - 0)dx. 3)
Note that the choice of the weight function W in the form of the density of reference
distribution, i.e., in the form W(x)= f,(x), corresponds to the Cramer-von Mises distance; the
choice of the weighting function W (x)= f,(x)/ F,(x)(1 - F,(x)) gives the distance of Anderson-
Darling (see for example, Boos (1981), Shulenin (1993a)). Assuming that p, . (6,//) is a

differentiable function of the parameter 6, its derivative is A, (0)=0p, . (0,W)/06. Then the

equation A, (8) =0 for the obtaining the MD -estimation, may be written in the form

24 2i—1
;,Z[

where X

— Fy (X, — 9)} WX, -90)=0, “4)

aysees X, the ordered statistics of the sample X,...,X .

Asymptotic normality of the MD -estimators

The asymptotic properties of MD -estimators were studied by several authors (see, for example,
Boos (1981), Wiens (1987), Shulenin (1992)). In this paper, we discuss the asymptotic properties of
estimators 0, of the parameter of location 0, which, for a given reference d.f. Fj, and given weight

function W, is a solution of equation (4). There are two variants of parameter estimating:
Version 1. The distribution function F' of the observations X|,..., X, 1s known and it coincides
with the reference distribution function F, that is F=F, (orF e 3J,).

Version 2. The distribution function of the observations is not known and it is not necessarily
the same as the reference distribution function, thatis F=F, (or F' ¢ 3,).

Note that the MD -estimator 0, of the location parameter 0 , which is the solution of

equation (4), can be written as a functional of the empirical distribution function, in the form of
0, =0(F) . Here the functional 6(F) is defined either by relation

minp, ;. (0,W) = py 5, (O(F). W),
or may be given implicitly (as functional 7'(F)=60(F)) by expression
2[[F(x + T(F)) = Fy ()L, W (x)dx = [[F (x + T(F)) = Fy(x)F W' (x)dx = 0. 5)
For studying the asymptotic properties of the MD -estimators 0, =0(F,) for the location
parameter 0, we use the approach of Mises (see Serfling, R. J. (1980), Shulenin (2012)). Let us
consider the expansion of the form
0(F,)=0(F)+V, + R, (6)
where V| is approximation statistics, and R, =0(F,)— 0(F) —V,, is the remainder of the expansion

(6). Let us start from defining approximation statistics ¥, and the remainder R, . It is necessary to
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compute the Gateaux differential of the first order d,7(F';G — F') for functional 7(F) defined by
(5). Let F, =F + MG - F), 0<A<1. Replacing the distribution function F in (5) by the d.f. F},
we obtain the expression
2[ {F(x+T(F))+MG(x +T(F,)) - F(x+T(F,))] = Fy(x)} f, ()W (x)dx -
~ [(F e+ T(F) + MG + T(E,)) = F(x + T(E )]~ Fy(x)} f, )W (x)dx = 0.

Differentiating the expression on A, setting A =0, and taking into account that
dT(F;G—-F)=0T(F,)/0\|,_y, T(F)|,_,.=T(F)=6, we get

[[GG) = FEOULF ()= Fy (x=0)' (x—0)— f, (x—0) (x—0) }dx
[ G fo(x=0) (x = 0)dx — [[F ()~ F (x= )]/ (X)W (x—B)dx

From this expression, after replacing G by the empirical d.f. F, , we get an approximation for

dT(F;G-F)=

statistics V,, :
V,,=dT(F;F,-F)=n"YXIF(X,;F,F,,W).
Here IF(u;F,Fy,,W)=dT(F;A, —F), 0<u <o, is the Hampel influence function for the
MD -estimator 0, =0(F,) of the location parameter © , which for a given reference d.f. F, and

given weight function W is a solution of equation (4). Note that the expression for the influence
function also follows from the above formula by replacing d.f. G by degenerated at the point u
distribution function A, . The resulting formulas, together with the expansion (6), are the basis for

the proof of asymptotic normality of the MD -estimators, which are solutions of the equation (4).
Note that the general conditions of regularity (which impose restrictions on the behavior of

the tails of d.f. F' and the weight function W) under which the expression \/;Rln —"0,n—> o,

and for which MD - estimator is consistent and asymptotically normal, given in Boos (1981). In
addition, the considered here MD - estimates belong to the family of mD, - estimates whose

asymptotic properties are described in Shulenin (1992).
To facilitate formulating further results, let us denote by JI; a family of absolutely

continuous symmetric distributions. Let the class of weight functions W; consists of differentiable
and even functions, that is W (—x) =W (x) and

[{F()(A = F)}" W (x + c)dx <0, p>0, ¢ € (0, + ).
Theorem. Let (F,F,)e3y,WeW,. Then, under fulfillment of the inequalities
0<c(F;F),W)= IIFZ(x;F,FO,W)dF(x) <o,
the asymptotic expression can be written in the form of

LN[B(F,) - 6(F))/ o(F; Fy, W)} = N(0, 1) ,n — .
The asymptotic variance of MD -estimate with the reference d.f. F; and the weight function W
under the distribution F of observations X,,..., X, is equal to D(F;F,,W)= o’ (F s Fo, W)/ nj; the
Hampel influence function IF(u; F,F,,W)=—IF(-u;F,F,,W) for the MD -estimates is calculated
by formulas
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IF(u; F, R W)= Ap . (w;W)/ B, (W), 0<u<oo, (7)
Ay (s W)= j W (x)dF (x) = W () F (u) = F, )], (®)
By, ()= I Sy (W (x)dF (x) I [F(x) = F,()7 (x)dF (x). ©)

The proofcan be found in Boos (1981) Wiens (1987), Parr and de Wet (1981).
Note that for the first version of parameter estimation 0, when F' € 3, the influence function

IF(u; F, W), 0<u<oo is given by
[F@ -1 <xiwdr(x) [ W(@)dF ()

[“remwwe [T rew@dre)

IF(u;F, W) =

:J‘I(F,W)]Lf(x)W(x)dx ,0<fu<oo (10)

and the asymptotic variance of +/n MD -estimate is given by

IMIRGORTE y]}W(y)dF(y))zdF(w A OXW(y)dF(y))zdF(x)

o (F, W)= (11)

([ reomeodr ) _ (772 oma |

Efficient MD - estimators

For the first version of parameter O estimation (when the distribution function F of the
observations X,,...,X, is known and coincides with the reference function of a symmetric

distribution Fj) there is an effective parameter estimate in the class of MD - estimators. Its
asymptotic variance is equal to the inverse of the Fisher information /( f,) about 0 in distribution
F,(x —0) with the density f, . This score is determined by the effective weight function of the form
\ d*{~In 1

W () =a L {0(")} : . (12)

dx Jo(x)

This effect was observed earlier in Boos (1981), Parr, De Wet (1981). Correctness of this fact can
be seen from the following. Let us denote y(x)=—f'(x)/ f(x); then ' (x)=d*{~In f(x)}/dx>,

and the expression (12) can be rewritten, taking into account that F = F,, as W(x) =ay’(x)/ f(x).

Substituting this weight function W e W, in (11), and taking into account that e 3, y(0)=0,
we obtain

(o) ar © e[ Vwre gy
U S Z(X)W(x)dx) “ZU . ‘V/(X)dF(x)T () 1)

Example 1. Note that the use of (12) allows to find the distribution function £{, under which
the Cramer - von Mises MD -estimator with the weighting function W(x)= f,(x) produces

asymptotically efficient parameter estimates. In fact, solving the differential equation
d*{~In f,(x)}/dx*> =a- f;(x) under W(x)= f,(x), we obtain the density of the form

o (F.W)=
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fo(x)=2/[n(e* +e™*)]=(/m)sech(x),xeR',
with the distribution function
F,(x)=(2/m)arctg(e*) ,x e R',
which is called the hyperbolic secant. Note that the Fisher information for the parameter 0 in the
density f,(x)=(/m)sech(x) is hyperbolic secant as for the Cauchy distribution, and is equal

I(f,)=1/2. Hence o’ (Fy,W = f,)=2. Note, in addition, that the influence function for MD -
estimation with the weighting function W =1, with F = F, is limited and defined as

F,—-(1/2)  (2/m)arctg(e’)—(1/2)
NAGRO (2/x%)

The asymptotic variance of the MD - estimate with weight function W =1 and F =F; is the same

IF(x; F,,W=1)= =narctg(e’)—(n*/4) ,xeR".

as the asymptotic variance of Hodges - Lehmann estimate /ML, and for distribution
Fy(x)=(2/m)arctg(e’) is given by
1
02 (F;)’ W = l) = 2 =
1 —
12( [ £ oy
1 nt )
= =—=2,029=0c"(F,HL) .
48

) 12[(2/11) ['sin(re/2) cos(nt/2)dt)2

Example 2. Let the supermodel I = {F,, F,), F3,, F4,
where Fj;) =@ is the standard normal distribution, Fisher information I(f;))=1; F, is logistic,
I(f,)=1/3; Fj, is Laplace, I(f3)=1; F,is Cauchy ,I(f,)=1/2; Fjis hyperbolic secant,

I(fs)=1/2. Optimal weight functions of the form (12) for these distributions are given in Table 1

F,} be a finite set of distributions,

and in Figure 1.
Table 1. Optimal weight functions of the form W*(x)=a -y’ (x)/ f(x)

Fay Fyy Fs) Fay Fis)

Wi @) =1/¢(x) | Wo(x)=1 | Wi x)=2eM8(x=0) | Wi (x)=-x")/(1+x>) | W5 x) =Q/m)e" +e ™)

W (x)
5 : 1 7
Wy (x0)\ /
\ 1
4 \ !
!
\ /
3 \\/
2 W ()
W (x)
Wi (x) L
o 1 7 N
-1 }
4 2 (0] 2 4
X

Fig.1. Optimal weight functions-estimates for F € 3
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Note that the asymptotic variance of MD - estimate with the reference distribution
F,(x)=F(x) and the weight function W (x) =1/ f(x) coincides with the asymptotic variance of the

sample mean X , and is calculated by the formula

F{Lroarm)are  [7([arronsma|are
- = — = [XdF(x).

([ comea) ([Trwaseu] =

For the weight function W(x)=1/¢(x), where ¢(x) is the standard normal density, MD -

estimator is an efficient estimate of the location parameter 0 of the normal distribution, but it has,
like the sample mean X , the unlimited influence function IF(x;®,.W =1/¢)=x, xeR' and its

G (FW =1/f) =

sensitivity to gross errors is not limited, that is y* (D, =1/¢) =. Note also that the choice of the
weighting function W (x) =1 leads to asymptotically efficient MD - estimator for the logistic cdf

F,, (the variance in this case coincides with the variance of HL - estimator), and the absolute
efficiency of the MD- estimator  with weight function W(x)=f,(x) is equal to
AE (F,),W = f,)) =[3,036(1/ 3)]"' =0,988. Recall that for the logistic distribution F,, with density
J(2)» the equality f, = F, (1—F,) holds, and therefore, the choice of the weighting function in
the form inherent in MD - estimation based on the use of the Anderson-Darling distance,
W(x)=f,/ F,(1-F,), also leads to an effective MD -estimation for the logistic distribution. For
the  Laplace  distribution  with  density  f;(x)=(1/2)exp(—|x|),xeR : function
y(x)=- f(;) (x)/ f5)(x) = sign (x) and,  therefore, the  optimal  weight function
W (x)=a-y'(x)/ f(x) defined by (12), takes the form
W5, (x) = {sign(x)}' / f5,(x) =8(x = 0)/ f5,(x) = 2¢" &(x — 0) . Using this expression for the optimal
weight function, and (11), one may see that the asymptotic variance of MD - estimate coincides
with the asymptotic variance of the sample median X, ,»» which is asymptotically efficient estimate

of parameter 0 for the Laplace distribution. In fact, from (11) with the weighting function
W(x)=0(x—-0)/ f(x), we obtain:

J [ [P - 1<) }W(y)dF(y))zdF(u)

o (F, W)= — 5
([ remware)

- -0 | dFw
[ [ reosee- O)dsz

[ T4F0) = I[u < 013 dF ()

f£2(0)
/4~ " Iu < 0)dF (u) + | UPlu<0dFu) _
= = 2 = RSy G’ (F, X))
72(0) 41°(0)
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Note that for the Cauchy distribution the optimal weight function
Wy(x)=a(l- x*)/(1+ x*) is negative outside the interval [—1, 1]. This fact can be explained as
follows. From (10) it follows that the weight function W is expressed through the derivative of the
influence function in the form W(u)=J(F,W)IF'(u;F,W)/ f(u), 0<u <. So, to "reduce" the

influence outliers on the MD -estimation, it is necessary its influence function to decrease for large
values of the argument and, consequently, the weight function should be negative, as is observed

for the optimal weight function W, (x) =a(1-x*)/(1+x*) for the Cauchy distribution.

Example 3. Consider the family of t-distributions 3, € 3, for which the density distribution
£, (x) with degrees of freedom r can be written as
L) =AF)A+ /) U x e R, A =T((r +1)/2)//raT(r/2).
Using (11), we can see that the optimal weight function for this family of distributions is calculated
by the formula
Wi (x)=a- rUR DA () = X))+ xR

Hence, under r=1 we obtain the optimal weight function for Cauchy distributions as
W' (x)|,=a-2n(l-x*)/(1+x*)=Wj (x). The case of r—o corresponds to the normal
distribution.  Given that under r-—> o, the expressions  A(r)—>1/ V2r and
(1+(x2 /) D2 55 /2 gre hold, from the general formula, we obtain:

lim, ,, W' (x) =a- 21 exp (x> /2) =a-1/ o (x) =W, (x).

Robustness of the MD-estimators

To study the properties of robustness, we consider two types of supermodels that describe
deviations from the Gaussian model of observations. The first supermodel I, which was used in
Example 2, is defined as a finite set of given distributions, that is,

Sy = {Fus Fioyo By By Fisy b
Second supermodel 3, (@) called Gaussian model with scale contamination, is determined as
3, (O)={F:F,_(x)=(1-e)P(x)+eD(x/1)} ,0<e<I,t21,
where @(x)is the standard normal distribution function with density ¢(x), € - the proportion of
sample contamination, and t is a parameter of the scale contamination.

Example 4. The first option. First, we consider the properties of MD -estimators within a
supermodel under different types of reference cdf F, and weighting functions W. For the first

version of parameter O estimation (when the distribution function F is known and equals the
reference distribution function Fy, that is F € 3), the influence function of MD -estimation and

its asymptotic variance are given by (10) and (11). Let us consider various types of the weighting
function W e W;.

A) Let W(x)=1, F(x)=F,(x). Under these conditions the MD -estimators with the weight
function W(x) =1 are B -robust, that is, they have limited influence functions, which are defined as

IF(x;F.W=1)={2F(x)—-1}/2 I f?(x)dx. In the Gaussian case F =®, the influence function is
given by IF(x;0,W =1)= Jr [2D(x) —1]. The sensitivity  to gross errors
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v (F,T)=sup|IF(x;F,T)|of MD -estimators with the weighting function W(x)=1 is equal to

V(@ W =1)=An~177.

IF(x; #,0) . IF(x; F,, 6)
w=1 —
3 W =1/p— o
4 3
w=1
2 A w=1 2 P
Xo5 T — | / ‘\\\
14 .4../"‘ W=g¢ 14 //.-'. W; - -
£ /
X X
0 1 2 3 4 0 1 2 3 4
Fig. 2. Influence function of MD -estimators Fig. 3. Influence function of MD -
for the normal distribution estimators for the Cauchy distribution

B) Let the weight function coincides with the reference density, W(x)= f,(x), and

F(x)=F,(x). Under these assumptions the asymptotic variance of the MD - estimation is given by
+ 00, X 2
[ ma) are

(1727 o)
Note that for a Gaussian distribution F(x)=®(x) and the weight function
Wi(x)=d(x)=(1/ V2n Yexp{—x’/2} we obtain from (10) the /imited influence function
IF(x;®,W = ¢) = (\31/ 2)®(x) = (31 /2)[ 20(x+/2) - 1], x € R',
where &)(x) is the Laplace function given by

d(x) = (2/ﬁ)j:exp{—x2}dx,&>(x) =20(xv2)-1,x20,  O(x)= (1/@)]_’; expi{—x/2}dx .

G (FW = f)=

Sensitivity to gross errors y"(F,T) of MD - estimation, with the weighting function W (x) = ¢(x),
is equal to y"(®,W =¢)=~31/2=1,53. In this case, the asymptotic variance of ~/n MD -
estimation is
° 3n 1 $~ 2
(DWW =) =2|IF*(x;D,W = $p)dD(x) = — - — | DP*(x)e™™ dx =
;[ 2 \2m '([

= (3/2)arctg(2//5) =1,095.

The asymptotic variance of the MD - estimators for the cases (A) and (B) were calculated for
the following distributions: £ - normal, £, - logistic, F(; - Laplace, F, - Cauchy, F, -hyperbolic
secant. Numerical calculations derived from formulas forF = F;,i=1,..,5 and with different
weight functions are shown in Table 2.
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Table 2. The asymptotic variance of\/n_ MD -estimators for the supermodel J; at Fy = Fj,
i=1..5

The weight function Fpy =@ Fy F, Fy Fs

W=1 1,047 (0,96) 3,000 (1,00) 1,333 (0,75) | 3,287 (0,61) | 2,029 (0,98)

Wiy (x) = fi) (%) 1,095 (0,91) 3,036 (0,99) 1,200 (0,83) | 2,573 (0,78) | 2,000 (1,00)

Wiy () =S | Foy(=Fp) | 1,035(0,97) 3,000 (1,00) 1,262 (0,79) | 2,317(0,86) | 2,020 (0,99)

Wiy (x) =1/ f;)(x) 1,000 (1,00) 3,290 (0,91) 2,000 (0,50) w  (0,00) | 2,467 (0,81)

Wiy () =(1-x7)/(1+x?) 1,109 (0,90) 4,204 (0,71) 1,230 (0,81) | 2,000 (1,00) | 2,103 (0,95)

The absolute values of efficiency of MD -estimates are given in parentheses, they were
calculated according to the formula AE(F,W)=[c*(F,W)I(f)]"". Note that for distributions with
"heavy tails" (Cauchy and Laplace), the absolute efficiency of MD -estimators depends mainly on
the choice of the weighting function W. For normal distribution, the optimal weight function is
W(l)(x) =1/ f(l)(x). Weight functions W =1 and W(z)(x)z f(z)/ F(z)(l—F(z)) are optimal for the
logistic distribution  F{, . Weight function W(Z)(x):(l—xz)/(l+x2) is optimal for the Cauchy
distribution. Weight function W (x) = f(5,(x) is optimal for distribution £, - hyperbolic secant.

Example 5. The second option. Consider the case when F #F, and
S5 ={Fu: Fo Fioy» Fays
variance of\nMD -estimators under the weight function W =1 is given by

2[ "1Fy -/ 21 dFw)

the supermodel

F s} is the finite set of distributions, F' € 35 . In this case, the asymptotic

o2(F,Fy,W =1) = ,Fe3s. (13)

([ oo rcoasf

The numerical values of the asymptotic variance of VnMD -estimators for Fe 35 and the weight
function W =1, calculated using the formula (13). are shown in Table 3.

Table 3. Asymptotic variance of\/;MD -estimators, for é(i) = é(F0 =F,,W=1),i=1,..5,Fe Ry

O\ F Fy Fla F Fa Es) d0,3%)

é(l) 1,047 (0,96) 3,051 1,383 2,911 2,008 0,42
(0,98) 0,72) (0,69) (0,99)

é(z) 1,016 (0,98) 3,000 1,524 3,679 2,069 0,57
(1,00) (0,66) (0,54) (0,97)

é(z) 1,059 (0,94) 3,048 1,333 2,957 2,006 0,41
(0,98) (0,75) (0,68) (0,99)

é(4) 1,046 (0,96) 3,025 1,385 3,290 2,017 0,48
(0,99) 0,72) 0,61) (0,99)

é(S) 1,031 (0,97) 3,011 1,439 3,276 2,029 0,49
(0,99) (0,70) 0,61) (0,98)

Note that in the table (3) in parentheses the absolute efficiency estimates are presented, calculated
by the formula AE (F ,é) ={c’(F,F,,W =1)I(f)}". In the last column of the table, the defects of

the estimates in the supermodel I, calculated from (19), are  given.
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Note 1. One of convenient means for comparing qualities of estimates él,...,é , of a given
parameter 6 of a symmetric distribution F is a concept of defect of the estimator (see, for
example, Andrews at all. (972), Shulenin (2012)). Let él,...,é , be a finite set of asymptotically
normal and unbiased estimates of the location parameter 0, based on a sample X,,..., X, from the
distribution /', obeying the expression

L{JZ (6,-0)

or(6;)

}zN(O, ), n—>ow, i=L.,k.

A A

Defect of estimator éi ,i=1,...,k among the compared parameter estimates 0,,...,0, for a
symmetrical distribution /' is defined as
DE,(6,)=1-min{c2(H,),....62(0,)}/c2(0,),i=1,... k.
0.0,
ol (é*) =1/1(f) and, therefore, min{czF(él),...,czF(ék)} =1/1(f), then the absolute defect of the

estimator 0, is equal to one minus its absolute efficiency, i.e.,

ADE,.(0.)=1-42,(0.),i=1,...k.

(14)

Note that if among the estimators there is an effective estimate, for which

(15)

Note 2. Studying robustness of compared estimates él ,...,é . of the location parameter 0 in the

supermodel I consisting of a finite set of symmetric distributions, I = {F),...,F,}, usually is made
by observing the disposition of estimates’ defects on the plane of two distributions. The defect for
basic (ideal, usually a Gaussian) model is laid along the horizontal axis, and along vertical axis the
defects for an alternative model, which is a part of a supermodel I ={F},...,F.}, is laid. With this
visual representation of the defects count on the plane of the two distributions, the preference is
given to the estimate, which is closest to the origin. As examples, the absolute defects of estimates

are presented on the plane of distributions "Gauss-Laplace" and "Gauss-Cauchy", see Figures (4)
and (5).

Fig. 4. Defects estimates in the
plane "Gauss-Cauchy"
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The advantages of the MD —estimates 0 0 —G(F Fo,W=f,),i ..,5 for F € 3§ before the

family X, - Winzor-means and family HL_-estimates Hodges-Lehmann 0<ac<l/2.
are clearly seen in these figures (they are placed closer to the origin).

Note 3. If we want to draw a conclusion on the preferenced estimator among compared
estimates él,...,é . of the parameter 0 within the entire supermodel 3 ={F,,...,F, }, we can use
the Euclidean metric using the above notations:

1/2
d(é,-;m:{Z[DEF, (é,->]2} : (16)
=1
or
. 1/2
Ad(éi;S):{Z[ADEFj (él.)]z} ci=1..,k.
Jj=1
(17)
The preference is given to the estimator 6, with the minimal value ofd (éi;S) , that is
d(®,;3)=min{d(0,;3),....d(0,;3)}. (18)
For the supermodel 3Jj ={F, s F2ys Fays Flays Fisy > the formula (16) can be written as

1/2

d(é’(l.),s (Z[l {c?(F), (l.))l(f(j))}_l]zj (Z[l AD(F,), ("’)]zj Ji=L..,5. (19

According to the criterion (18), the preference among estimators 6(1) ,...,6(5) in the supermodel 35,
should be given to the MD - estimator for F, = F(; with reference Laplace distribution, and with
weight function W =1, since this estimator has the minimum value of

d( 3> J5) = rnm{d(e(l), ¢), i=1..5=0,41
(see the last column of Table 3). Compare it with that of Hodges-Lehmann d(HL,3§)=0,47, of
X, - Winzor-mean d(AN;OAS,S*S) =0,41; of the sample median d(X,,,,3%5)=051; of the sample
mean d(X,3}) =114, Shulenin (2012, p.256).

Example 6. The second option. Consider the Gaussian model with a scale contamination
3, (®@). Let the reference distribution be a normal distribution F;, =®, and the distribution of the

observations is characterized by normal distribution with a scale contamination, F e 3, (®).
Under these assumptions, the asymptotic variance of /n MD -estimation for W =1 is calculated by
the formula

2[ 000 -1/ 2P [A-£)d(x) + (e / T)H(x/ )]
o> (F,,,®,W =1)= _

£,T2

([ 40000 -2+ &/ D 0l |

[n(l €)/6] +[earctg (t° /4277 +1)]
([(1-g) /N2 ]+ (/N> +1)}
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For the weight function W (x) = f,(x) = ¢(x) the asymptotic variance of/n MD -estimator is

given

o’ (F, ., @0 =¢)=

2 (/600 /. 0t = 400 F )~ 0]

e ()

(e (x)dFS,T @~ [ ¢ I, (1) - DEE,, (x))

4n .B? (8 T) =
where E(a,r) and 4,(e,7),i=1,...

ZA@@

,20 are certain functions of the parameters gandrt.

by

The

numerical values of the asymptotic variance of ./n MD -estimators for F e 3. (@) at different

weight functions are given in the Table. 5.

Table 5. The asymptotic variance of /n MD -estimators for F ¢ 3,,F=F,,,F,=®

W,t\ ¢ 0,00 0,01 0,05 0,10 0,15 0,20 0,25 0,30
=3 | 1,047(0,95) | 1,071(0,96) | 1,171(0,97) | 1,307(0,97) | 1,458(0,95) | 1,625(0,94) | 1,811(0,93) | 2,019(0,93)

w=1,5 | 1,047(0,95) | 1,078(0,95) | 1,210(0,93) | 1,395(0,90) | 1,607(0,86) | 1,851(0,83) | 2,132(0,80) | 2,459(0,78)
=3 | 1,095(0,91) | 1,117(0,92) | 1,209(0,93) | 1,333(0,94) | 1,470(0,95) | 1,620(0,95) | 1,786(0,95) | 1,972(0,96)

W=¢,5 | 1,0950091) | 1,122(0,92) | 1,237(0,91) | 1,393(0,90) | 1,562(0,89) | 1,749(0,88) | 1,956(0,87) | 2,187(0,87)
The absolute efficiency of  MD -estimates calculated wusing the formula

AE (F, “,9) {o*(F, ., WI(f..)}", where I( f..)is the Fisher information about the location

parameter of distributions from the supermodel 3, _(®), are given in the table in parentheses.

Fig. (6) shows the absolute efficiency of estimates for F e 3, (®). It is clearly seen that

MD -estimates with the reference function F;; =@ and the weight function W (x) = ¢(x), as well as

the weight function w(x)=1,

provide high absolute efficiency when 0<g<0,3. The absolute

efficiency of the sample mean X decreases sharply, and the median for the sample X 12 1s slowly

growing, remaining at low levels.

AD(F,0), F € F. ., Fo

= &

Fig. 6. Absolute efficiency estimates for Fe3J, (®),r=3
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Example 7. Adaptive version. Properties of the MD - estimates depend strongly on the choice
of the weighting function W for distributions with "heavy tails". Therefore, the study of the
properties of the efficiency and robustness of MD -estimates (for the case F ¢ 3,) opens the
possibility of an adaptive approach to the choice of the reference distribution F, and weighting

function W within the given supermodel, based on the sample estimates of functionals that
determine the "degree of heaviness of tails" of distributions (see Shulenin (1993a)). Adaptive
selection of the weighting function can provide the required quality of MD -estimates for a given
supermodel.

Let us consider an example of the supermodel 3, (®)={F:F(x)=®_ (x) } . We assume that
the proportion of contamination £ may vary in limits 0<g<0,3, and the scale parameter t is

T =3. For this supermodel with the reference function F, =@, let us define an adaptive weighting
function W as

1/¢(x), 1,71< O(F, ) <1,76

W(x; XppnX,)=41, 1,76 < O(F,) <186, (20)

#(x), 186<0O(F,)<191
where Q(F)) is the sample estimate of the functional Q(F';v,p) which characterizes the "degree
of heaviness of the distribution tails" and is defined in Shulenin (1993a). Sample estimate of Q(F,)
is based on a sample X,,..., X, and may be written as

n

Q(Fn;v,u):%( >, X(i)—ZX(i)]/( Z X(i)—i)((i)],k:[vn], m=[un]. (21)

i=n—k+1 i=n—m+1
Here the parameters v and p satisfy inequalities0O<v<p<05, v=02, pn=05 and
Xayror Xy are the order statistics of the sample XX, .

Note that the choice of the weighting function in the form of (20), the absolute efficiency of
adaptive MD - estimates do not fall below the level of 0.95 when the proportion & of contamination
is 0<¢£<0,3. It means that within a given supermodel the absolute efficiency satisfies inequalities

0,95 < AD(®
weighting function, and use, for example, the Anderson - Darling weight function in form of
W(x,9) = (x)/ ®(x)(1-D(x)), then the absolute efficiency of MD- estimates with such a weight
function in the framework of the supermodel 3, (®) could fall to the level of 0.47.

wy<1if =3, 0<e<03, n>40 (see Figure 6). If we choose not to adapt the

£,

Conclusion

We studied the asymptotic properties of the MD - estimators of the location parameter 6,
based on the use of a weighted Cramer - Mises distance. It is shown that these estimates are B -
robust, that is, their influence functions are limited, and therefore, they are "protected" against
outliers in the sample. For the case F' € 3, the optimal weight functions are given that make MD -

estimates asymptotically efficient. For the Gaussian model with a scale contamination (for
Fe3, (D), t=3) the absolute efficiency of MD - estimates with the weight function W =1 does

not fall below 0.93 at 0 <¢<0,3, and it increases from 0.91 to 0.96 for the weight function W =¢.

Summarizing, we note that there is a close connection of MD -estimators of parameter 0
with the other robust M -, L-,and R - estimators (see Shulenin and Tarasenko (1994), Shulenin and
Serykh (1993), Shulenin(1995)). Properties of MD - estimators in some cases coincide with those
of many well-known estimates of the location parameter 0 ; for example, with the properties of the
Hodges - Lehmann estimates, the sample mean and median. Note also that the abovementioned
asymptotic results is quite good approximation for properties of MD-estimators for sample sizes
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n>20. This is confirmed by the numerous computer simulation results. Studied properties of the
efficiency and robustness of MD -estimates open (for the case F ¢ 3, ) the possibility to use an

adaptive approach to the choice of the reference distribution function F and the weighting function

W within the given supermodel, based on sample estimates of functionals that determine the
"degree of heaviness of tails" of distributions (see Example 7 and Shulenin (2010),
Shulenin(2010a)).
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