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ABSTRACT 
  
Parameter estimates, constructed by the minimum distance method, are briefly called the 

MD-estimates. The minimum distance method has been proposed by Wolfowitz (1957). An 
extensive bibliography was compiled and published by Parr (1981). In this paper the 
effectiveness of the shift parameter estimation based on the use of Cramer - von Mises weighted 
distance is discussed. The robustness of this kind of MD-estimates under various supermodels 
describing deviations from the Gaussian model is considered. Numerical results are given for 
the case of contaminated normal distributions.   

 
 
Statement of the problem 
 
 Let us consider first a case when the statistical model ),(   is given in parametric form. 

}{x  denotes the sample space, the elements of which are realizations ),...,( 1 nxxx 
 of a random 

vector ),...,( 1 nXXX 


; }),,(:{  xFF   is a parametric set of admissible probability 
distributions for the experiment considered; nXX ,...,1  is a sequence of i.i.d. random variables with 
the distribution function ),( xF  and the density ),( xf , 1Rx  ,  . 
The functional form of the distribution is defined up to an unknown parameter (scalar or vector), 
which belongs to a given parameter set  . It is required to construct the estimate of an unknown 
parameter  based on a sample nXX ,...,1  from a distribution ),( xF . 

. 
 

The essence of the minimum distance method 
 

  If a distance ),( GF  between any two distributions, GF , , is given, then  parameter   may 
be estimated by minimization of the distance between the empirical distribution function )(xFn , 
constructed from a sample nXX ,...,1 , and the distribution function ),()(  xFxF X  adopted in the 
model ),(  . Thus, for a chosen distance ),( GF  MD -estimator for   is defined as 

)},({minargˆ


 FFn . Various distances could be used for constructing MD -estimates (see Parr, 

and  Schucany (1980)). For instance, the maximum likelihood method is based on a distance 
    )(),(ln),( xdFxfFF nn . 
In this paper, we consider the estimates that are based on the weighted Cramer - von Mises 

distance  
    )(),()]()([),( 2 xdFFxWxFxFFF nnW                                                                (1) 

where ),(   FxWW  is a certain weight function, which may depend on d.f. F  (or on density f ). 
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Assuming that ),(  FFnW  a differentiable function of the parameter  , its derivative is 

  /),()(~ FFnWFn
. With this notations, the estimation n  for parameter    based on the use 

of weighted Cramer-von Mises distance  (1) is a solution of the equation 

  


 






 dxxfWxFxFxdFxWxFxFxF nnFn

)]([)]()([)()(
)(

)]()([2)(~ 2              (2) 

 In this paper we consider the MD -estimation of the location parameter; in this case 
)()(  xFxF . Let a family of reference distributions be designated as 

},)()(:{ 1
00 RxFxFF   , where 0F is a distribution with density 0f . Rewrite (1) as 

   dxxWxFxFW nFFn
)()]()([),( 2

0, 0
.                                                                  (3)                                                    

       Note that the choice of the weight function W  in the form of the density of  reference 
distribution, i.e., in the form )()( 0 xfxW  , corresponds to the Cramer-von Mises distance; the 
choice of the weighting function ))(1)((/)()( 000 xFxFxfxW   gives the distance of Anderson-
Darling (see for example, Boos (1981), Shulenin (1993a)). Assuming that ),(

0, WFFn
  is a 

differentiable function of the parameter  , its derivative is  /),()(
0, WFFF nn

. Then the 
equation 0)( 

nF  for the obtaining the MD -estimation, may be written in the form 

 0)()(
2

122
1

)()(0 



 




n

i
ii XWXF

n
i

n
,                                                                         (4) 

where )()1( ,..., nXX  the ordered statistics of the sample nXX ,...,1 . 
 
 Asymptotic normality of the MD -estimators 
 
 The asymptotic properties of MD -estimators were studied by several authors (see, for example, 
Boos (1981), Wiens (1987), Shulenin (1992)). In this paper, we discuss the asymptotic properties of 
estimators n of the parameter of location  , which, for a given reference d.f. 0F , and given weight 
function W , is a solution of equation (4). There are two variants of parameter estimating:  
        Version 1. The distribution function F  of the observations nXX ,...,1 is known and it coincides 
with the reference distribution function 0F , that is 0FF   (or 0F ). 
         Version 2. The distribution function of the observations is not known and it is not necessarily 
the same as the reference distribution function, that is 0FF   (or 0F ). 
         Note that the MD -estimator n  of the location parameter  , which is the solution of 
equation (4), can be written as a functional of the empirical distribution function, in the form of 

)( nn F . Here the functional )(F  is defined either by relation 
                                           )),((),(min

00 ,, WFW FFFF 


,  

or may be given implicitly (as functional )()( FFT  ) by expression  

   0)()]())(([)()()]())(([2 /2
000 dxxWxFFTxFdxxWxfxFFTxF .                 (5) 

For studying the asymptotic properties of the MD -estimators )( nn F  for the location  
parameter  , we use the approach of Mises (see Serfling, R. J. (1980), Shulenin (2012)). Let us  
consider the expansion of the form 

nnn RVFF 11)()(  ,                                                                 (6) 
where nV1 is approximation statistics, and nnn VFFR 11 )()(  is the remainder of the expansion 
(6). Let us start from defining approximation statistics nV1  and the remainder nR1 . It is necessary to 
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compute the Gateaux differential of the first order );(1 FGFTd   for functional )(FT  defined by 
(5).  Let )( FGFF  , 10  . Replacing the distribution function F  in (5) by the d.f. F , 
we obtain the expression 
                   dxxWxfxFFTxFFTxGFTxF )()()}())](())(([))(({2 00  

                0)()()}())](())(([))(({ /
0

2
0 dxxWxfxFFTxFFTxGFTxF . 

Differentiating the expression on  , setting 0 , and taking into account that 
01 |/)();(   FTFGFTd ,  )(|)( 0 FTFT , we get 

               
 







dxxWxfxFxFdxxWxfxf

dxxWxfxWxFxFxFxG
FGFTd

)()()]()([)()()(

)}()()()]()()]{[()([
);(

/
00

0
/

0
1

 

From this expression, after replacing G  by the empirical d.f. nF  , we get an approximation for 
statistics nV1  : 

                          ),,;();( 0
1

11 WFFXIFnFFFTdV inn   . 
Here );(),,;( 10 FFTdWFFuIF u  ,  u0 , is the Hampel influence function for the 

MD -estimator )( nn F  of the location parameter  , which for a given reference d.f. 0F  and 
given weight function W  is a solution of equation (4). Note that the expression for the influence 
function also follows from the above formula by replacing d.f. G  by degenerated at the point u  
distribution function  u . The resulting formulas, together with the expansion (6), are the basis for 
the proof of asymptotic normality of the MD -estimators, which are solutions of the equation (4).  

Note that the general conditions of regularity (which impose restrictions on the behavior of 
the tails of d.f. F  and the weight function W ) under which the expression 01

p
nRn  , n , 

and for which MD - estimator is consistent and asymptotically normal, given in Boos (1981). In 
addition, the considered here MD - estimates belong to the family of MD - estimates whose 
asymptotic properties are described in Shulenin (1992).  

To facilitate formulating further results, let us denote by S  a family of absolutely 
continuous symmetric distributions. Let the class of weight functions SW consists of differentiable 
and even functions, that is )()( xWxW   and 

    dxcxWxFxF p )())}(1)(({ , 0p , ),( c . 

Theorem.  Let SFF ),( 0 , SWW  . Then, under fulfillment of the inequalities 

  )(),,;(),;(0 0
2

0
2 xdFWFFxIFWFF  , 

 the asymptotic expression can be written in the form of 
 )1,0()},;(/)]()([{ 0 NWFFFFnL n  , n . 
The asymptotic variance of MD -estimate with the reference d.f. 0F  and the weight function W  
under the distribution F of observations nXX ,...,1 , is equal to nWFFWFFD /),;(),;( 0

2
0  ; the 

Hampel influence function ),,;(),,;( 00 WFFuIFWFFuIF   for the MD -estimates is calculated 
by formulas 
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  )(/);(),,;(
00 ,,0 WBWuAWFFuIF FFFF ,  u0 ,                                                       (7)  

 
u

FF uFuFuWxdFxWWuA
0

0, )]()()[()()();(
0

,                             (8) 

  








 )()()]()([)()()()( /
00, 0

xdFxWxFxFxdFxWxfWB FF .                                          (9) 

The proof can be found in Boos (1981), Wiens (1987), Parr and de Wet (1981).    
          Note that for the first version of parameter estimation  , when 0F  the influence function 

),;( WFuIF ,  u0  is given by 

  





















)()()(

)()(

)()(

)()(]}[)({
),;( 0

2 xdFxWxf

xdFxW

dxxWxf

xdFxWxuIxF
WFuIF

u

 

   
u

dxxWxfWFJ
0

1 )()(),(   ,  u0  ,                                                                            (10) 

and the asymptotic variance of MDn -estimate is given by 














 





 












2

2

2

)()()(

)()()(]}[)({
),(

xdFxWxf

udFydFyWyuIyF
WF 2

2

2

0

)()(

)()()(

















 








dxxWxf

xdFydFyW
x

.          (11) 

 
Efficient  MD - estimators 
 
For the first version of parameter   estimation (when the distribution function F  of the 
observations nXX ,...,1 is known and coincides with the reference function of a symmetric 
distribution 0F ) there is an effective parameter estimate in the class of MD - estimators. Its 
asymptotic variance is equal to the inverse of the Fisher information )( 0fI  about   in   distribution 

)(0 xF  with the density 0f . This score is determined by the effective weight function of the form 

              
)(

1)}(ln{
)(

0
2

0
2

xfdx
xfdaxW 


 .                                                        (12)                                           

This effect was observed earlier in Boos (1981), Parr, De Wet (1981). Correctness of this fact can 
be seen from the following. Let us denote )(/)()( / xfxfx  ; then 22/ /)}(ln{)( dxxfdx  , 
and the expression (12) can be rewritten, taking into account that 0FF  , as )(/)()( / xfxaxW  . 
Substituting this weight function SWW   in (11), and taking into account that SF  , 0)0(  , 
we obtain 

 2
2

2

02

)()(

)()()(
),(



















 








dxxWxf

xdFydFyW
WF

x

)(
1

)(
)(

)()(

)()(
22

/2

22

fIfI
fI

xdFxa

xdFxa







 













 . 

 Example 1. Note that the use of (12) allows to find the distribution function 0F , under which 
the Cramer - von Mises MD -estimator with the weighting function )()( 0 xfxW   produces 
asymptotically efficient parameter estimates. In fact, solving the differential equation 

)(/)}(ln{ 2
0

2
0

2 xfadxxfd   under )()( 0 xfxW  , we obtain the density of the form 
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                                           )(sec)/1()](/[2)(0 xheexf xx   , 1Rx , 
with the distribution function 
                                          )()/2()(0

xearctgxF  , 1Rx , 
which is called the hyperbolic secant. Note that the Fisher information for the parameter   in the 
density )(sec)/1()(0 xhxf   is hyperbolic secant as for the Cauchy distribution, and is equal

2/1)( 0 fI . Hence 2),( 00
2  fWF . Note, in addition, that the influence function for MD - 

estimation  with the weighting function 1W , with 0FF   is limited and defined as 

 )4/()(
)/2(

)2/1()()/2(

))((

)2/1(
)1,;( 2

21

0

1
00

0
0 








 

x
x

earctgearctg

dttFf

FWFxIF  , 1Rx . 

The asymptotic variance of the MD - estimate with weight function 1W   and  0FF   is  the same 
as the asymptotic variance of Hodges - Lehmann estimate HL , and for distribution 

)()/2()(0
xearctgxF   is given by 

 









 
21

0

1
00

0
2

))((12

1)1,(
dttFf

WF

 ),(029,2
48)2/cos()2/sin()/2(12

1
0

2
4

21

0

HLF
dttt










 




  . 

           Example 2. Let the supermodel },,,,{ )5()4()3()2()1( FFFFFS   be a finite set of distributions, 
where )1(F  is the standard normal distribution, Fisher information 1)( )1( fI ; )2(F  is logistic, 

3/1)( )2( fI ; )3(F  is Laplace, 1)( )3( fI ; )4(F is Cauchy , 2/1)( )2( fI ; )5(F is hyperbolic secant, 
2/1)( )5( fI . Optimal weight functions of the form (12) for these distributions are given in Table 1 

and in Figure 1. 
Table 1. Optimal weight functions of the form )(/)()( / xfxaxW   

)1(F  )2(F  )3(F  )4(F  )5(F  
)(/1)()1( xxW 

 
1)()2(  xW

 
)0(2)( ||

)3(  xexW x 

 
)1/()1()( 22

)4( xxxW 

 

1
)5( ))(/2()(   xx eexW 

 
 

                              
 

Fig.1. Optimal weight functions-estimates for  SF  
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  Note that the asymptotic variance of MD - estimate with the reference distribution 

)()(0 xFxF   and the weight function )(/1)( xfxW   coincides with the asymptotic variance of the 
sample mean X , and is calculated by the formula 




 



  
















































 )(
))(/1)((

)()())(/1(

)()(

)()()(
)/1,( 2

2
2

2

0
2

2

2

02 xdFx
dxxfxf

xdFdyyfyf

dxxWxf

xdFydFyW
fWF

xx

. 

For the weight function )(/1)( xxW  , where )(x  is the standard normal density, MD - 
estimator is an efficient estimate of the location parameter   of the normal distribution, but it has,  
like the sample mean X , the unlimited influence function xWxIF  )/1,;( , 1Rx  and its 
sensitivity to gross errors is not limited, that is  )/1,( W . Note also that the choice of the 
weighting function 1)( xW  leads to asymptotically efficient MD - estimator for the logistic cdf 

)2(F  (the variance in this case coincides with the variance of HL - estimator), and the absolute 
efficiency of the MD - estimator  with weight function )()( )2( xfxW   is equal to

988,0)]3/1(036,3[),( 1
)2()2(  fWFАE . Recall that for the logistic distribution )2(F  with density 

)2(f , the equality )1( )2()2()2( FFf   holds, and therefore, the choice of the weighting function in 
the form inherent in MD - estimation based on the use of the Anderson-Darling distance, 

)1(/)( 000 FFfxW  , also leads to an effective MD -estimation for the logistic distribution. For 
the Laplace distribution with density )||exp()2/1()()3( xxf  , 1Rx  function 

)()(/)()( )3(
/
)3( xsignxfxfx   and, therefore, the optimal weight function 

)(/)()( / xfxaxW   defined by (12), takes the form 
)0(2)(/)0()(/)}({)( ||

)3()3(
/

)3(  xexfxxfxsignxW x . Using this expression for the optimal 
weight function, and (11), one may see that the asymptotic variance of MD - estimate coincides 
with the asymptotic variance of the sample median 2/1X , which is asymptotically efficient estimate 
of parameter   for the Laplace distribution. In fact, from (11) with the weighting function 

)(/)0()( xfxxW  , we obtain: 

 












 





 












2

2

2

)()()(

)()()(]}[)({
),(

xdFxWxf

udFydFyWyuIyF
WF  

 





 






 





 












2

2

)0()(

)()0(]}[)({

dxxxf

udFdyyyuIyF
 

 


 




)0(

)(]}0[)0({
2

2

f

udFuIF
     

),(
)0(4

1
)0(

)(]0[)(]0[)4/1(
2/1

2
22

2

XF
ff

udFuIudFuI



  







 . 
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Note that for the Cauchy distribution the optimal weight function 
)1/()1()( 22

)4( xxaxW   is negative outside the interval ]1,1[ . This fact can be explained as 
follows. From (10) it follows that the weight function W  is expressed through the derivative of the 
influence function in the form )(/),;(),()( / ufWFuIFWFJuW  ,  u0 . So, to "reduce" the 
influence outliers on the MD -estimation, it is necessary its influence function to decrease for large 
values of the argument and, consequently, the weight function should be negative, as is observed 
for the optimal weight function )1/()1()( 22

)4( xxaxW   for the Cauchy distribution. 
 
      Example 3. Consider the family of t-distributions Sr  , for which the density distribution 

)(xfr  with degrees of freedom r  can be written as  
               2/)1(2 ))/(1)(()(  r

r rxrAxf , 1Rx , )2/(/)2/)1(()( rrrrA  . 
Using (11), we can see that the optimal weight function for this family of distributions is calculated 
by the formula 

 2/)3(2212/)1( ))()(()1()(   rr
r xrxrrArraxW  . 

 Hence, under 1r  we obtain the optimal weight function for Cauchy distributions as 
)()1/()1(2|)( )4(

22
1 xWxxaxW rr




  . The case of r  corresponds to the normal 

distribution. Given that under r , the expressions  2/1)(rA  and 
2/2/)1(2 2

))/(1( xr erx    are hold, from the general formula, we obtain: 
                 )()(/1)2/(exp2)(lim )1(

2 xWxaxaxWrr


  . 
 

Robustness of the MD-estimators  
 

 To study the properties of robustness, we consider two types of supermodels that describe 
deviations from the Gaussian model of observations. The first supermodel S , which was used in 
Example 2, is defined as a finite set of given distributions, that is, 
                                             },,,,{ )5()4()3()2()1( FFFFFS  . 
  Second supermodel )(,    called Gaussian model with scale contamination, is determined as 
                        )}/()()1()(:{)( ,,   xxxFF  , 10  , 1 , 
where )(x is the standard normal distribution function with density )(x ,   - the proportion of 
sample contamination, and   is a parameter of the scale contamination. 
  
 Example 4. The first option. First, we consider the properties of MD -estimators within a 
supermodel under different types of reference cdf 0F  and weighting functions W . For the first 
version of parameter   estimation (when the distribution function F  is known and equals the 
reference distribution function  0F , that is 0F ), the influence function of MD -estimation and 
its asymptotic variance are given by (10) and (11). Let us consider various types of the weighting 
function SWW  .  
 A) Let 1)( xW , )()( 0 xFxF  . Under these conditions the MD -estimators with the weight 
function 1)( xW  are B -robust, that is, they have limited influence functions, which are defined as 

 dxxfxFWFxIF )(2/}1)(2{)1,;( 2 . In the Gaussian case F , the influence function is 

given by ]1)(2[)1,;(  xWxIF . The sensitivity to gross errors 
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|),;(|sup),( TFxIFTF
x

 of MD -estimators with the weighting function 1)( xW  is equal to 

77,1)1,(  W . 
                

                

Fig. 2. Influence function of MD -estimators                 Fig. 3. Influence function of MD -                                                           
              for the normal distribution                            estimators  for the Cauchy distribution 
 
 B) Let the weight function  coincides with the reference density, )()( 0 xfxW  , and 

)()( 0 xFxF  . Under these assumptions the asymptotic variance of the MD - estimation is given by 

  2
3

2

0

2

2

)(

)()(
),(



















 








dxxf

xdFdyyf
fWF

x

. 

Note that for a Gaussian distribution )()( xxF   and the weight function 
}2/exp{)2/1()()( 2xxxW   we obtain from (10) the limited influence function  

 ]1)2(2[)2/3()(~)2/3(),;(  xxWxIF , 1Rx , 
where )(~ x  is the  Laplace function given by 

 
x

dxxx
0

2 }exp{)/2()(~ , 1)2(2)(~  xx , 0x ,   


x
dxxx }2/exp{)2/1()( 2 . 

Sensitivity to gross errors ),( TF  of MD - estimation, with the weighting function )()( xxW  , 
is equal to 53,12/3),(  W . In this case, the asymptotic variance of MDn -
estimation is 

 





 





0

2/2

0

22 2

)(~
2
1

2
3)(),;(2),( dxexxdWxIFW x  

095,1)5/2()2/3(  arctg . 
         The asymptotic variance of the MD - estimators for the cases (A) and (B) were calculated for 
the following distributions: )1(F - normal, )2(F - logistic, )3(F - Laplace, )4(F - Cauchy, )5(F -hyperbolic 
secant. Numerical calculations derived from formulas for )(0 iFF  , 5,...,1i   and with different 
weight functions are shown in Table 2. 
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Table 2. The asymptotic variance of MDn -estimators for the supermodel S  at )(0 iFF  , 
5,...,1i  

 
     The weight function )1(F  )2(F  )3(F  )4(F  )5(F  

1W  
)()( )()( xfxW ii   

)1(/)(~
)()()()( iiii FFfxW   

)(/1)( )()( xfxW ii   
)1/()1()( 22

)4( xxxW   

   1,047  (0,96) 
 

1,095  (0,91) 
 

1,035 (0,97) 
 

   1,000  (1,00) 
 

1,109  (0,90) 

3,000  (1,00) 
 

3,036  (0,99) 
 

3,000  (1,00) 
 

   3,290  (0,91) 
 

4,204  (0,71) 

1,333  (0,75) 
 

1,200  (0,83) 
 

1,262  (0,79) 
 

2,000  (0,50) 
 

1,230  (0,81) 

3,287  (0,61) 
 

2,573  (0,78) 
 

  2,317 (0,86) 
 

         (0,00) 
 

2,000  (1,00) 

2,029 (0,98) 
 

2,000 (1,00) 
 
2,020 (0,99) 
 

2,467  (0,81) 
 

2,103  (0,95) 

 
         The absolute values of efficiency of MD -estimates are given in parentheses, they were 
calculated according to the formula 12 )](),([),(  fIWFWFАE  . Note that for distributions with 
"heavy tails" (Cauchy and Laplace), the absolute efficiency of MD -estimators depends mainly on 
the choice of the weighting function W . For  normal distribution, the optimal weight function is 

)(/1)( )1()1( xfxW  . Weight functions  1W  and )1(/)( )2()2()2()2( FFfxW   are optimal for the 

logistic distribution  )2(F . Weight function )1/()1()( 22
)4( xxxW   is optimal for the Cauchy 

distribution. Weight function )()( )5()5( xfxW   is optimal for distribution )5(F - hyperbolic secant. 
 Example 5. The second option. Consider the case when 0FF  , and  the supermodel 

},,,,{ )5()4()3()2()1( FFFFFS  is the finite set of distributions,  SF . In this case, the asymptotic 

variance of MDn -estimators under the weight function 1W  is given by 

                              )1,,( 0
2 WFF  20

0

2
0

)()(

)()]2/1()([2








dxxfxf

udFuF
,  SF .                                         (13) 

The numerical values of the asymptotic variance of MDn -estimators for  SF  and the weight 
function 1W , calculated using the formula (13). are shown in Table 3. 
 
Table 3. Asymptotic variance of MDn -estimators, for )1,(ˆˆ

)(0)(  WFF ii , 5,...,1i ,  SF  

F\̂  )1(F  )2(F  )3(F  )4(F  )5(F  ),ˆ( Sd   

)1(̂  1,047   (0,96) 3,051   
(0,98) 

1,383   
(0,72) 

2,911   
(0,69) 

2,008   
(0,99) 

0,42 

)2(̂  1,016   (0,98) 3,000   
(1,00) 

1,524   
(0,66) 

3,679   
(0,54) 

2,069   
(0,97) 

0,57 

)3(̂  1,059   (0,94) 3,048   
(0,98) 

1,333   
(0,75) 

2,957   
(0,68) 

2,006   
(0,99) 

0,41 

)4(̂  1,046   (0,96) 3,025   
(0,99) 

1,385   
(0,72) 

3,290   
(0,61) 

2,017   
(0,99) 

0,48 

)5(̂  1,031   (0,97) 3,011   
(0,99) 

1,439   
(0,70) 

3,276   
(0,61) 

2,029   
(0,98) 

0,49 

 
Note that in the table (3) in parentheses the absolute efficiency estimates are presented,  calculated 
by the formula 1

0
2 )}()1,,({)ˆ,(  fIWFFFAE  . In the last column of the table, the defects of 

the estimates in the supermodel S , calculated from (19), are given. 
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 Note 1. One of convenient means for comparing qualities of estimates k ˆ,...,ˆ
1  of a given 

parameter   of a symmetric distribution F  is a concept of defect of the estimator (see, for 
example, Andrews at al1. (972), Shulenin (2012)). Let k ˆ,...,ˆ

1  be a finite set of asymptotically 
normal and unbiased estimates  of the location parameter , based on a sample nXX ,...,1  from the 
distribution F , obeying the expression 

                                    )1,0(
)ˆ(

)ˆ(
N

n
L

iF

i 










 



 ,  n ,   ki ,...,1 . 

Defect of estimator i̂ , ki ,...,1  among the compared parameter estimates k ˆ,...,ˆ
1  for a 

symmetrical distribution F  is defined as 
 )ˆ(/)}ˆ(),...,ˆ(min{1)ˆ( 22

1
2

iFkFFiFDE  , ki ,...,1 .                                        (14) 

Note that if among the estimators k ˆ,...,ˆ
1  there is an effective estimate, for which 

)(/1)ˆ(2 fIF    and, therefore, )(/1)}ˆ(),...,ˆ(min{ 2
1

2 fIkFF  , then the absolute defect of the 

estimator i̂  is equal to one minus its absolute efficiency, i.e., 

                            )ˆ(1)ˆ( iFiF AЭADE  , ki ,...,1 .                                                       (15) 
  
 Note 2. Studying robustness of compared estimates  k ˆ,...,ˆ

1  of the location parameter   in the 
supermodel   consisting of a finite set of symmetric distributions, },...,{ 1 rFF , usually is made 
by observing the disposition of estimates’ defects  on the plane of two distributions. The defect for 
basic (ideal, usually a Gaussian) model is laid along the horizontal axis, and along vertical axis the 
defects for an alternative model, which is a part of a supermodel },...,{ 1 rFF , is laid. With this 
visual representation of the defects count on the plane of the two distributions, the preference is 
given to the estimate, which is closest to the origin. As examples, the absolute defects of estimates 
are presented on the plane of distributions "Gauss-Laplace" and "Gauss-Cauchy", see Figures (4) 
and (5). 
 

         
       Fig. 4. Defects estimates in the                                    Fig. 5. Defects estimates in the plane                    
                plane "Gauss-Cauchy"                                                           "Gauss-Laplace" 
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The advantages of the MD -estimates ),(ˆˆ
)()(0)( iii fWFF  , 5,...,1i  for  SF  before the 

family X~ - Winzor-means   and family HL -estimates Hodges-Lehmann 2/10  . 
are clearly seen in these figures (they are placed closer to the origin).  

 
Note 3. If we want to draw a conclusion on the preferenced estimator  among compared 

estimates  k ˆ,...,ˆ
1   of the parameter   within the entire supermodel },...,{ 1 rFF , we can use 

the Euclidean metric using the above notations: 

                                     
2/1

1

2)]ˆ([);ˆ(








 


r

j
iFi j

DEd ,                                                        (16) 

or 

              
2/1

1

2)]ˆ([);ˆ(








 


r

j
iFi j

ADEAd   , ki ,...,1 .                                                     

(17) 
The preference is given to the estimator i̂  with the minimal value of );ˆ(  id , that is 

                                    )};ˆ(,...,);ˆ(min{);ˆ( 1  ki ddd .                                            (18) 
      For the supermodel },,,,{ )5()4()3()2()1( FFFFFS  , the formula (16) can be written as 

2/1
5

1

2
)()(

2/1
5

1

21
)()()(

2
)( )]~,(1[])}()~,({1[),~( 

















 





j
ij

j
jijSi FAЭfIFd , 5,...,1i . (19) 

According to the criterion (18), the preference among estimators )5()1(
~,...,~
  in the supermodel S , 

should be given to the MD - estimator for )3(0 FF  with reference Laplace distribution, and with  
weight function 1W , since this estimator has the minimum value of  
                                        41,0}5,...,1),,ˆ(min{),ˆ( )()3(   idd SiS  

(see the last column of Table 3). Compare it with  that  of Hodges-Lehmann 47,0),( 
SHLd , of 

X~ - Winzor-mean   41,0),~( 45,0 
SXd ;  of the sample median 51,0),( 2/1 

SXd ;  of the sample 

mean 14,1),( 
SXd , Shulenin (2012, p.256). 

  Example 6. The second option. Consider the Gaussian model with a scale contamination 
)(,   . Let the reference distribution be a normal distribution 0F , and the distribution of the 

observations is characterized by normal distribution with a scale contamination, )(,  F . 
Under these assumptions, the  asymptotic variance of MDn -estimation for 1W  is calculated by 
the formula 

                





 













 2
0

2

,
2

)]/()/()()1)[((

)]/()/()()1[()]2/1()([2
)1,,(

dxxxx

dxxxx
WF  

                                           
22

22

})1/(]2/)1({[

)]12/([]6/)1([






arctg
. 
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 For the weight function )()()( 0 xxfxW   the asymptotic variance of MDn -estimator is 
given by 

   





 






 



 

 






 





 2

,,
/

,
2

0 ,

2

,0 ,

,
2

)()]()()[()()(

)()]()()[()()(2
),,(

xdFxxFxxdFx

udFuuFudxxfx
WF

u

 

                                       






20

1
22

),(
),(~4

1
i

iA
B

, 

where ),(~ B  and ),( iA , 20,...,1i  are certain functions of the parameters  and  . The 
numerical values of the asymptotic variance of MDn -estimators for )(,  F  at different 
weight functions are given in the Table. 5. 
 
Table 5. The asymptotic variance of MDn -estimators for 0F ,  ,FF  , 0F  
W ,  \  0,00 0,01 0,05 0,10 0,15 0,20 0,25 0,30 
      3                                        

1W ,  5 
1,047(0,95) 
1,047(0,95) 

1,071(0,96) 
1,078(0,95) 

1,171(0,97) 
1,210(0,93) 

1,307(0,97) 
1,395(0,90) 

1,458(0,95) 
1,607(0,86) 

1,625(0,94) 
1,851(0,83) 

1,811(0,93) 
2,132(0,80) 

2,019(0,93) 
2,459(0,78) 

       3       
W  , 5 

1,095(0,91) 
1,095(0,91) 

1,117(0,92) 
1,122(0,92) 

1,209(0,93) 
1,237(0,91) 

1,333(0,94) 
1,393(0,90) 

1,470(0,95) 
1,562(0,89) 

1,620(0,95) 
1,749(0,88) 

1,786(0,95) 
1,956(0,87) 

1,972(0,96) 
2,187(0,87) 

 
       The absolute efficiency of MD -estimates calculated using the formula 

1
,,

2
, )}(),({)ˆ,(    fIWFFAE , where )( ,fI is the Fisher information about the location 

parameter of distributions from the supermodel )(,   , are given in the table in parentheses. 
          Fig. (6) shows the absolute efficiency of estimates for )(,  F . It is clearly seen that 
MD -estimates with the reference function 0F  and the weight function )()( xxW  , as well as 
the weight function 1)( xW , provide high absolute efficiency when 3,00  . The absolute 
efficiency of the sample mean X  decreases sharply, and the median for the sample 2/1X  is slowly 
growing, remaining at low levels. 
 
  
    
 
 
 
 

 
 
 
                                             
                                          
 

                         
 
 

Fig. 6. Absolute efficiency estimates for  )(,  F , 3  
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        Example 7. Adaptive version. Properties of the MD - estimates depend strongly on the choice 
of the weighting function W  for distributions with "heavy tails". Therefore, the study of the 
properties of the efficiency and robustness of MD -estimates (for the case 0F ) opens the 
possibility of an adaptive approach to the choice of the reference distribution 0F  and weighting 
function W  within the given supermodel, based on the sample estimates of functionals that 
determine the "degree of heaviness of tails" of distributions (see Shulenin (1993a)). Adaptive 
selection of the weighting function can provide the required quality of MD -estimates for a given 
supermodel. 
       Let us consider an example of the supermodel })()(:{)( ,, xxFF   . We assume that 
the proportion of contamination   may vary in limits 3,00  , and the scale parameter   is 

3 . For this supermodel with the reference function 0F , let us  define an adaptive weighting 

function Ŵ  as 

                              













91,1)(86,1,)(
86,1)(76,1,1
76,1)(71,1,)(/1

),...,;(ˆ
1

n

n

n

n

FQx
FQ
FQx

XXxW



,                                          (20) 

where )( nFQ  is the sample estimate of the functional ),;( FQ  which characterizes the "degree 
of heaviness of the distribution tails" and is defined in Shulenin (1993a). Sample estimate of )( nFQ
is based on a sample nXX ,...,1  and may be written as 

 



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
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
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
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          Here the parameters    and   satisfy inequalities 5,00  , 2,0 ,  5,0  and 
)()1( ,..., nXX  are the order statistics of the sample nXX ,...,1 . 

          Note that the choice of the weighting function in the form of (20), the absolute efficiency of 
adaptive MD - estimates do not fall below the level of 0.95 when the proportion   of contamination 
is 3,00  . It means that within a given supermodel the absolute efficiency satisfies inequalities 

1)ˆ,(95,0 ,  WAЭ  if  3 , 3,00   , 40n  (see Figure 6). If we choose not to adapt the 
weighting function, and use, for example, the Anderson - Darling weight function in form of 

))(1)((/)(),(~ xxxxW   , then the absolute efficiency of MD - estimates with such a weight 
function in the framework of the supermodel )(,    could fall to the level of  0.47. 
 
           Conclusion 
 We studied the asymptotic properties of the MD - estimators of the location parameter  , 
based on the use of a weighted Cramer - Mises distance. It is shown that these estimates are B - 
robust, that is, their influence functions are limited, and therefore, they are "protected" against 
outliers in the sample. For the case 0F , the optimal weight functions are given that make MD -
estimates asymptotically efficient. For the Gaussian model with a scale contamination (for 

)(,  F , 3 ) the absolute efficiency of MD - estimates with the weight function 1W  does 
not fall below 0.93 at 3,00  , and it increases from 0.91 to 0.96 for the weight function W . 
 Summarizing, we note that there is a close connection of MD -estimators of parameter   
with the other robust M -, L -,and R - estimators (see Shulenin and  Tarasenko (1994), Shulenin and 
Serykh (1993), Shulenin(1995)). Properties of MD - estimators in some cases coincide with those 
of many well-known estimates of the location parameter  ; for example, with the properties of the 
Hodges - Lehmann estimates, the sample mean and median. Note also that the abovementioned 
asymptotic results is quite good approximation for properties of MD-estimators for sample sizes 
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20n . This is confirmed by the numerous computer simulation results. Studied properties of the 
efficiency and robustness of MD -estimates open (for the case 0F ) the possibility to use an 
adaptive approach to the choice of the reference distribution function 0F  and the weighting function 
W  within the given supermodel, based on sample estimates of functionals that determine the 
"degree of heaviness of tails" of distributions (see Example 7 and Shulenin (2010), 
Shulenin(2010a)). 
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