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ABSTRACT 
 
There are sufficient conditions of the ergodicity for queuing systems in a random 

environment. But as theoretically so practically it is very important to obtain a criterion of the 
ergodicity which defines an ability to handle customers of these systems and a possibility to analyze 
them in a regime of heavy traffic. Among queuing systems in the random environment there are 
systems with the hysteresis control which are very important in modern applications. In this paper 
the criterion of the ergodicity is obtained for one server queuing system in the random environment. 
This criterion is based on a reduction of this queuing system to classical Lindley chain. Some 
asymptotic formulas in the heavy traffic regime are obtained for this queuing system also. 

 

 INTRODUCTION 
 

Mathematical models of queuing systems and networks in the random environment attract an 
attention of specialists in the queuing theory (see for an example [1] and its bibliography) because 
of manifold applications to transport models [2, p. 430-432, 438] and systems with the hysteresis 
control [3], [4]. 

Deterministic models of technical systems with the hysteresis control (periodic systems close 
to discontinuous) are considered in the theory of ordinary differential equations with a small 
parameter under high-order derivatives [5], [6], [7]. But a presence of the small parameter in these 
models does not allow to obtain visible formulas for solutions of these equations. It is connected 
with sufficiently complicated behavior of their solutions - an availability of few adjacent boundary 
layers in vicinities of a discontinuous point. 

At a same moment stochastic models of queuing systems in the random environment as a rule 
obtain solutions only in a form of sufficient not necessary and sufficient conditions [1, theorem 1, 
Formula (2)]. An importance of the ergodicity criteria is in their capability to define an ability to 
handle customers of queuing system [8]. So a work in this direction is actual in spite of an 
abundance of results in which there are formulas and algorithms of limit distributions calculations 
of queuing systems in the random environment. 

In this paper the ergodicity criteria are obtained not by an reinforcement of known results of 
limit distributions calculations for queuing systems in the random environment but by a 
construction of sufficiently general stochastic models for queuing systems with a type of the 
Lindley chain [9, P. 20-36]. In frames of this approach a fluid model of one server queuing system 
[10], [11, p. 8-12] is considered and for this model an amount of a fluid in the system is defined in 
moments of their regime changes. Besides of the ergodicity criteria for the considered model 
asymptotic formulas for limit distributions in the heavy traffic regime are obtain also. 
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1. ERGODICITY CRITERIA 

 
Consider the following fluid model of one server queuing system. Divide nonnegative half-

axis 0t  onto half-intervals  10,TT , 00 T , 001 tTT  ,  21,TT , 112 tTT  ,...  Here independent 
and identically distributed random variables (i.i.d.r.v.`s) ,...., 10 tt , have the distribution 
   ttPtG n  , 0t , 0,n   concentrated on the half-axis 0t  and nMt  . Assume that on the 

half-interval  nn TT ,1 , 0,n   some reservoir is replenished by a fluid with the intensity  0na  and 
the fluid is pumped out with the intensity 0nb  if the fluid volume is positive. If the fluid volume 
is zero then for nn ba   the outflow intensity becomes equal the inflow intensity na  and the initial 
volume of the fluid in the reservoir equals 00 w . Further suppose that the differences  nn ba  , 

0n , characterizing random behavior of the environment in which the one server queuing system 
is situated is the sequence of  i.i.d.r.v`s with the mean  nn baM   and random sequences 
 nn ba  , 0n ,  and nt , 0,n  are independent.  

Denote  tW , 0t , the fluid volume in the reservoir at the moment t . The function  tW  is 
the polygonal line with the inflection points nT , 0n . This function is analogous to the virtual 
waiting time in the one server queuing system but it is not identical to it. Suppose that  nn TWw  , 

0n , then from previous assumptions the fluid volume  11   nn TWw  in the reservoir at the 
moment 1nT  satisfies the equality  

    nnn ww 1 , 0n , where  dd ,0max . (1) 

From the ergodicity theorem for the Lindley chain nw , 0,n   [9, §3, theorem 7] the necessary 
and sufficient condition of its ergodicity is the inequality 

   0n n n nM Mt M a b    . (2) 

Remark 1. This ergodicity criterion is true for more general assumptions for a stationarity of 
the random sequence n , 0n , in the narrow sense. 
 
2 ASSIMPTOTIC ANALYSIS IN REGIME OF HEAVY TRAFFIC 

 
Obtained results allow to transfer well known asymptotic formulas for the Lindley chain onto 

fluid one server queuing system in random environment which may be represented as the queuing 
system with the hysteresis control. If 

0 nMc  , constDd n   , 

then in the condition 3
nM   (9,[chapter 1, formulas (57), (58)],[13]) we have well known 

asymptotic formula for the limit distribution of the Markov chain nw , 0n : for any 0x   

   lim / ~ exp 2 /nn
P w x c x d


  , 0c . 

Refinements of these results may be found in [9, p. 65-67],[14,chapter. III]. These refinements 
are based on the diffusion approximation of the random sequence (1). 

In the conclusion consider the case when 0c ,  cdd  . Assume that the random variables 

n  satisfy the following conditions. There is the sequence of i.i.d.r.v`s n , 0n ,  
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0nM , fD n  ,  3
nM , 

so that nn   , 0n ,  and consequently c ,  22 cffd  . Define the random 
variable   RR   by the equality  

   xRPxwP nn


 lim  , 0x . 

Then from the theorem [15, theorem 1] for 0  , 0x , the following relations are true 
R , 2/10   ; 0R , 1/ 2  ;    fxxRP /2exp  , 2/1 . 

Remark 2. A reduction of the constructed model of the one server fluid queuing system in the 
random environment to the Lindley chain allows to transfer onto this model known results on the 
stability of limit and prelimit distributions (see for an example, [9,§20], [16],[17, chapters V. VI]). 
 
REFERENCES 
 
1. Dudin A.N., Klimenok V.I. 1997. Calculation of characteristics of one server queuing system 

operating in synchronous random environment. Automatics and remote control. V. 1. P. 74-84. 
2. Afanasieva L.G., Rudenko I.V. 2012. Queuing systems GI|G|∞ and their application to analysis 

of transport models. Probability theory and its applications. V. 3. P. 427-452. 
3. Gaidamaka Yu.V., Zaripova E.R., Samuilov K.E. 2008. Models of service of calls in network 

of cellular mobile communication. Teaching-methodical textbook. M.: RUDN. 
4. Samochernova L.S., Petrov E.I. 2011. Optimization of queuing system with histeresis control 

of homotypic reserve device// Proceedings of Tomsk polytechnic university. 2011. T. 319. V. 
5. 

5. Mischenko E.F., Pontriagin L.S. 1955. Periodical solutions of systems of differential equations 
close to discontinuous. Reports of academy sciences of USSR. T. 102. V. 5. P. 889-891. 

6. Pontriagin L.S. 1957. Asymptotic behavior of solutions of differential equations systems with 
small parameter under superior derivatives. Proceedings of Academy Sciences of USSR. 
Mathematical series. T. 21. V. 5. P. 605-626. 

7. Mischenko E.F. 1957. Asymptotic calculation of periodical solutions of systems of differential 
equations with small parameter under derivatives .  Proceedings of Academy Sciences of 
USSR. Mathematical series. T. 21. V. 5. P. 627-654. 

8. Tsitsiashvili G.Sh. 2008. Parametrical and structural optimization of ability to handle customers 
of queuing network. Automatics and remote control. V. 7. P. 64-73. 

9. Borovkov A.A. 1971. Probability processes in queuing theory. M.: Nauka. 
10. Rybko A.N., Stoliar A.L. 1992. Ergodicity of random processes discribing opened queuing 

networks . Problems of information transmission. T. 28. V. 3. P. 3–26. 
11. Adamu A., Gaidamaka Yu.V., Samuilov A.K. 2011. Analysis of buffer state of user of one 

range network with flow traffic. T-comm - Telecommunication and transport. V. 7. P. 8-12. 
12. Shiriaev A.N. 1989. Probability. M.: Nauka. 
13. Ibragimov I.A., Linnik Yu.V. 1969. Independent and stationary connected quantities. M.: 

Nauka. 
14. Borovkov A.A. 1980. Asymptotic methods in queuing theory. M.: Nauka. 
15. Tsitsiashvili G.Sh. 1997. Investigation of almost deterministic queuing systems//  Far Eastern 

mathematical collected articles. V. 3. P. 17-22. 
16. Zolotarev V.M. 1976. About stochastic continuity of queuing systems G|G|1. Probability theory 

and its applications. . XXI. V. 2. P. 260-279. 
17. Kalashnikov V.V. 1978. Quality analysis of behaviour of complex systems by method of test 

functions. M.: Nauka. 


