SEQUENTIAL ALGORITHMS OF GRAPH NODES FACTORIZATION

Tsitsiashvili G.Sh.

IAM FEB RAS 690041 Russia, Vladivostok, Radio str. 7, IAM FEB RAS e-mail: <u>guram@iam.dvo.ru</u>

In this paper algorithms of a factorization of graph nodes which are used in a processing of data connected with different extreme situations are constructed. We assume that information about a new node and incident edges arrives at each step sequentially. In non oriented graph we suppose that two nodes are equivalent if there is a way between them. In oriented graph we assume that two nodes are equivalent if there is a cycle which includes these nodes. In this paper algorithms of such factorization are constructed. These algorithms need $O(n^2)$ arithmetic operations where *n* is a number of graph nodes.

1. Factorization of nodes in non oriented graph

Two nodes of a non oriented graph belong to a same connectivity component (are equivalent [1,§3]), if in the graph there is a way which connects these nodes.

1. On the step 1 we put that there is the single node 1 and the number of connectivity components equals q = 1 and the connectivity component $K_1 = \{1\}$.

2. Assume that on the step *n* there are nodes 1,...,*n*; and $q \le n$ connectivity components K_1, \dots, K_q

$$K_i \cap K_j = \emptyset, \ i \neq j, \ \bigcup_{i=1}^q K_i = \{1, \dots, n\}.$$

3. On the step n+1 we receive an information about a_j , $1 \le j \le n$: $a_j = 1$, if the nodes n+1, j are

connected by (non oriented) edge, in opposite case $a_j = 0$. Calculate $c_j = \bigvee_{j \in K_i} a_j$, $1 \le i \le q$, using *n*

arithmetic operations.

4. Define the indexes set $I = \{i: c_i = 1\} = \{i_0, i_1, \dots, i_r\}, 1 < i_0 < i_1 < \dots < i_r \le q$, using no more than *n* arithmetic operations.

5. From the sequence $\{i_0 + 1, ..., i_1 - 1, i_1 + 1, ..., i_2 - 1, i_2 + 1, ..., i_r - 1, i_r + 1, ..., q\}$ with $q - i_0$ integers remove the numbers $i_1, ..., i_r$ and transform it into the sequence with $q - i_0 - r$ integers $\{i_0 + 1, ..., i_1 - 1, i_1 + 1, ..., i_2 - 1, i_2 + 1, ..., i_r - 1, i_r + 1, ..., q\} = \{l(i_0 + 1), ..., l(q - r)\}$ using no more than narithmetic operations.

6. Assume that $I \notin \emptyset$ then put $K_i := K_i$, $1 \le i \le i_0$, $K_0 = \{n+1\} \bigcup \bigcup_{i \in I} K_i \rfloor$, $K_i := K_{l(i)}$,

 $i_0 + 1 \le i \le q - r$, q := q - r, using no more than *n* arithmetic operations.

If $I \in \emptyset$ then put $K_{q+1} := \{n+1\}$, q := q+1 using 2 arithmetic operations. Consequently the transformation of the connectivity components set on the step n+1 needs no more then 4n aarithmetic operations for the non oriented graph. So the calculation complexity of suggested algorithm on n steps is no more then $2n^2$ aarithmetic operations.

2. Factorization of nodes in oriented graph

Say that two nodes of an oriented graph are equivalent [1,\$3] if there is a cycle which contains them. It is obvious that this binary relation is reflexive, symmetric and transitive and so is a relation of equivalence on the set of nodes of the oriented graph. On the set of equivalence classes introduce the following binary relation: $p \succeq q$ if in the initial graph there is a way from any node of the class p to any node of the class q. It is clear that this binary relation is reflexive, transitive and anti symmetric and so is a relation of a partial order. [1,§4]. Then we contrast to this relation a zero-one matrix in which in the cell (p,q) there is 1 if $p \succeq q$ and 0 in other cases.

We suggest the following sequential algorithm of the oriented graph nodes factorization. On the first step we have a single node which is in the single cluster. The matrix a of the partial order here consists of the single unit. Assume that on the *n*-the step there is the set I of clusters and the one-zero matrix a which characterizes the relation of the partial order \succeq between them.

On the step n+1 new node n+1 and two edges appear. One of these edges runs into the cluster p and another runs from the cluster q into the node n+1. Then new clusters and the partial order matrix q are constructed as follows. Denote

$$K_{p} = \{k \in I_{n} : p \succeq k\}, \quad R_{q} = \{k \in I_{n} : k \succeq q\},$$

$$(1)$$

$$A = K_p \cap R_q, A_1 = K_p \setminus A, A_2 = R_q \setminus A, B = I \setminus (A \cup A_1 \cup A_2).$$

$$(2)$$

The new node n+1 and the clusters from the set A form new cluster (n+1). The matrix a is divided into 16 rectangular boxes which are created by the cluster n+1 and the sets of clusters A_1 , A_2 , B. To describe these boxes introduce auxiliary designations \mathcal{A} of a sub matrix which coincides with analogous sub matrix in previous version of a, \mathcal{E} is a sub matrix consisting of units and o is a sub matrix consisting of zeros. In a cell "... \rightarrow ..." of a left set "..." is a vector-column and right set"..."

a vector-string consisting of clusters. The matrix a contains the following cells:

1. $(n+1) \rightarrow (n+1)$ which has the form \mathcal{E} because (n+1) is the cluster;

2. $(n+1) \rightarrow A_1$ has the form \mathcal{E} by a definition of the clusters set A_1 ;

3. $A_2 \rightarrow (n+1)$ has the form \mathcal{E} by a definition of the clusters set A_2 ;

4. $A_2 \rightarrow A_1$ has the form \mathcal{E} because in the graph on the step n+1 there is a way from a cluster

 $j \in A_2$ to a cluster $i \in A_1$ which passes through the node n+1;

5. $A_1 \rightarrow (n+1)$ has the form O because in opposite case a part of clusters from A_1 joins the set A;

6. $(n+1) \rightarrow A_2$ has the form *o* because in opposite case a part of clusters from the set A_2 joins the set A;

7. $A_1 \rightarrow A_2$ has the form *o* because in opposite case a part of clusters from the sets A_1, A_2 joins the set A_0 ;

8. $(n+1) \rightarrow B$ has the form *O* because in opposite case a part of clusters from the set *B* joins the set A_1 ;

9. $B \rightarrow (n+1)$ has the form *o* because in opposite case a part of clusters from the set *B* joins the set A_2 ;

10. $A_1 \rightarrow B$ has the form *o* because in opposite case a part of clusters from the set *B* joins the set A_1 ;

11. $B \rightarrow A_2$ has the form o because in opposite case a part of clusters from the set B joins the set A_2 ;

12. $B \rightarrow B$ has the form \mathcal{A} because in opposite case a way

 $i \rightarrow k_1 \rightarrow k_2 \rightarrow j \rightarrow (n+1) \rightarrow i$, $i \in A_1$, $j \in A_2$, $k_1 \in B$, $k_2 \in B$ appears and so the clusters $k_1, k_2 \in B$;

13. $A_1 \rightarrow A_1$ has the form \mathcal{A} because in opposite case a way $i \rightarrow k \rightarrow (n+1), i \in A_1, k \in B$, $j \in A_2$ appears and so $k \in A_1 \cap A_2$;

14. $A_2 \rightarrow A_2$ has the form \mathcal{A} because in opposite case a way $i \rightarrow k \rightarrow (n+1)$, $i \in A_1$, $k \in B$, $j \in A_2$ appears and so $k \in A_1 \cap A_2$;

15. $B \to A_1$ has the form \mathcal{A} because in opposite case a way $k \to j \to (n+1) \to i$, $i \in A_1$, $k \in B$, $j \in A_2$ appears and so $k \in A_2$;

16. $A_2 \rightarrow B$ has the form \mathcal{A} because in opposite case a way $k \rightarrow i \rightarrow (n+1) \rightarrow j$, $i \in A_1$, $k \in B$, $j \in A_2$ appears and so $k \in A_1$.

The transformation of the matrix a on the transition from the step n to the step n+1 needs the sets A, A_1, A_2, B definition by the formulas (1), (2) and demands O(n) arithmetic operations and $O(n^2)$ operations of an assignment. Consequently a calculation of the connectivity components and of the partial order matrix up to the step n demands $O(n^2)$ arithmetic operations and $O(n^3)$ assignment operations.

Remark 1. This solution remains correct if the single edge from the node n+1 is replaced by a few edges and the single edge to the node n+1 is replaced by a few edges also. Numbers of these additional edges is no more than some finite m which does not depend on n. Denote by P the set of clusters in which new edges come into and by Q the set of clusters from which new edges come into the node n+1. Then the sets A, A_1, A_2, B are defined as follows. Assume that

$$\begin{split} K_p &= \left\{ k \in I_n : p \succeq k \right\}, \ p \in P, \ R_q = \left\{ k \in I_n : k \succeq q \right\}, \ q \in Q, \\ K' &= \bigcup_{p \in P} K_p, \ R = \bigcup_{q \in Q} R_q, \ A = K' \cap R' \, . \end{split}$$

New node n+1 and clusters from the set A create new cluster which we denote by (n+1) and put $A_1 := K' \setminus A$, $A_2 := R' \setminus A$, $B := I \setminus (A \cup A_1 \cup A_2), I := I \cup n+1$.

Describe now an algorithm of a construction of the clusters set and the matrix of partial order on this set in general case. On the step 1 there is the single node 1, the set of clusters $K = \{1\}$ and the matrix of the partial order characterized by the formula a(1,1)=1. Assume that on the step *n* there is the set of clusters *K*. These clusters create a partitioning of the set $I = \{1, ..., n\}$ into non intersected subsets,

Each cluster $k \in K$ is indexed by a maximal number of its nodes.

On the set *K* we have unit-zero matrix $a = ||a(p,q)||_{p,q \in K}$ which characterizes the relation of partial order " \succeq ": a(p,q)=1 if $p \succeq k$ and a(p,q)=0 in opposite case.

From the new node n+1 no more than m edges exit into the set $\mathcal{P} \subseteq I$ of nodes and no more than come into the node n+1 from the set $Q \subseteq I$ of n nodes. Denote by P, Q the sets of clusters generated by nodes of the sets \mathcal{P}, Q and define

$$K_{p} = \{k \in K : a(p,k) = 1\}, p \in P; R_{q} = \{k \in K : a(k,q) = 1\}, q \in Q;$$

$$K' = \bigcup_{p \in P} K_p \,, \ R = \bigcup_{q \in Q} R_q \,, \ A = K' \cap R' \,.$$

The new node n+1 and the clusters from the set A create new cluster (n+1), put $A_1 := K' \setminus A$, $A_2 := R' \setminus A$, $B := K \setminus (A \cup A_1 \cup A_2)$, $I := I \cup (n+1)$. Then a calculation of the matrix a on the step n+1 satisfies the formulas a(n+1,n+1) = 1, $a(n+1,A_1) := \mathcal{E}$, $a(A_2,n+1) := \mathcal{E}$, $a(A_2,A_1) := \mathcal{E}$,

$$a(A_1, n+1) := 0, \ a(n+1, A_2) = 0, \ a(A_1, A_2) = 0, \ a(B, B) = 0,$$

 $a(B, n+1) = 0, a(A_1, B) = 0, a(B, A_2) = 0.$

References

1. Kurosh A.G. Lectures on general algebra. Moscow: Phizmatlit. 1962.