SEQUENTIAL ALGORITHMS OF GRAPH NODES FACTORIZATION

Tsitsiashvili G.Sh.

IAM FEB RAS
690041 Russia, Vladivostok, Radio str. 7, IAM FEB RAS
e-mail: guram@iam.dvo.ru

In this paper algorithms of a factorization of graph nodes which are used in a processing of data connected with different extreme situations are constructed. We assume that information about a new node and incident edges arrives at each step sequentially. In non oriented graph we suppose that two nodes are equivalent if there is a way between them. In oriented graph we assume that two nodes are equivalent if there is a cycle which includes these nodes. In this paper algorithms of such factorization are constructed. These algorithms need $O\left(n^{2}\right)$ arithmetic operations where n is a number of graph nodes.

1. Factorization of nodes in non oriented graph

Two nodes of a non oriented graph belong to a same connectivity component (are equivalent $[1, \S 3])$, if in the graph there is a way which connects these nodes.

1. On the step 1 we put that there is the single node 1 and the number of connectivity components equals $q=1$ and the connectivity component $K_{1}=\{1\}$.
2. Assume that on the step n there are nodes $1, \ldots, n ;$ and $q \leq n$ connectivity components K_{1}, \ldots, K_{q}

$$
K_{i} \cap K_{j}=\emptyset, i \neq j, \bigcup_{i=1}^{q} K_{i}=\{1, \ldots, n\} .
$$

3. On the step $n+1$ we receive an information about $a_{j}, 1 \leq j \leq n: a_{j}=1$, if the nodes $n+1, j$ are connected by (non oriented) edge, in opposite case $a_{j}=0$. Calculate $c_{j}=\underset{j \in K_{i}}{\vee} a_{j}, \quad 1 \leq i \leq q$, using n arithmetic operations.
4. Define the indexes set $I=\left\{i: c_{i}=1\right\}=\left\{i_{0}, i_{1}, \ldots, i_{r}\right\}, \quad 1<i_{0}<i_{1}<\ldots<i_{r} \leq q$, using no more than n arithmetic operations.
5. From the sequence $\left\{i_{0}+1, \ldots, i_{1}-1, i_{1}+1, \ldots, i_{2}-1, i_{2}+1, \ldots, i_{r}-1, i_{r}+1, \ldots, q\right\}$ with $q-i_{0}$ integers remove the numbers i_{1}, \ldots, i_{r} and transform it into the sequence with $q-i_{0}-r$ integers $\left\{i_{0}+1, \ldots, i_{1}-1, i_{1}+1, \ldots, i_{2}-1, i_{2}+1, \ldots, i_{r}-1, i_{r}+1, \ldots, q\right\}=\left\{l\left(i_{0}+1\right), \ldots, l(q-r)\right\}$ using no more than n arithmetic operations.
6. Assume that $I \notin \emptyset$ then put $K_{i}:=K_{i}, \quad 1 \leq i \leq i_{0}, \quad K_{0}=\{n+1\} \cup\left[\bigcup_{i \in I} K_{i}\right], \quad K_{i}:=K_{l(i)}$,
$i_{0}+1 \leq i \leq q-r, \quad q:=q-r, \quad$ using no more than n arithmetic operations.
If $I \in \emptyset$ then put $K_{q+1}:=\{n+1\}, q:=q+1$ using 2 arithmetic operations. Consequently the transformation of the connectivity components set on the step $n+1$ needs no more then $4 n$ aarithmetic operations for the non oriented graph. So the calculation complexity of suggested algorithm on n steps is no more then $2 n^{2}$ aarithmetic operations.

2. Factorization of nodes in oriented graph

Say that two nodes of an oriented graph are equivalent $[1, \S 3]$ if there is a cycle which contains them. It is obvious that this binary relation is reflexive, symmetric and transitive and so is a relation of equivalence on the set of nodes of the oriented graph. On the set of equivalence classes introduce
the following binary relation: $p \succeq q$ if in the initial graph there is a way from any node of the class p to any node of the class q. It is clear that this binary relation is reflexive, transitive and anti symmetric and so is a relation of a partial order. [1,§4]. Then we contrast to this relation a zero-one matrix in which in the cell (p, q) there is 1 if $p \succeq q$ and 0 in other cases.
We suggest the following sequential algorithm of the oriented graph nodes factorization. On the first step we have a single node which is in the single cluster. The matrix a of the partial order here consists of the single unit. Assume that on the n-the step there is the set I of clusters and the onezero matrix a which characterizes the relation of the partial order \succeq between them.
On the step $n+1$ new node $n+1$ and two edges appear. One of these edges runs into the cluster p and another runs from the cluster q into the node $n+1$. Then new clusters and the partial order matrix a are constructed as follows. Denote

$$
\begin{gather*}
K_{p}=\left\{k \in I_{n}: p \succeq k\right\}, R_{q}=\left\{k \in I_{n}: k \succeq q\right\}, \tag{1}\\
A=K_{p} \cap R_{q}, A_{1}=K_{p} \backslash A, A_{2}=R_{q} \backslash A, B=I \backslash\left(A \bigcup A_{1} \cup A_{2}\right) . \tag{2}
\end{gather*}
$$

The new node $n+1$ and the clusters from the set A form new cluster $(n+1)$. The matrix a is divided into 16 rectangular boxes which are created by the cluster $n+1$ and the sets of clusters A_{1}, A_{2}, B. To describe these boxes introduce auxiliary designations \mathcal{A} of a sub matrix which coincides with analogous sub matrix in previous version of a, \mathcal{E} is a sub matrix consisting of units and O is a sub matrix consisting of zeros. In a cell "... $\rightarrow \ldots$..." of a left set "..." is a vector-column and right set "..." is
a vector-string consisting of clusters. The matrix a contains the following cells:

1. $(n+1) \rightarrow(n+1)$ which has the form E because $(n+1)$ is the cluster;
2. $(n+1) \rightarrow A_{1}$ has the form E by a definition of the clusters set A_{1};
3. $A_{2} \rightarrow(n+1)$ has the form E by a definition of the clusters set A_{2};
4. $A_{2} \rightarrow A_{1}$ has the form \mathbb{E} because in the graph on the step $\mathrm{n}+1$ there is a way from a cluster $j \in A_{2}$ to a cluster $i \in A_{1}$ which passes through the node $n+1$;
5. $A_{1} \rightarrow(n+1)$ has the form O because in opposite case a part of clusters from A_{1} joins the set A;
6. $(n+1) \rightarrow A_{2}$ has the form o because in opposite case a part of clusters from the set A_{2} joins the set A;
7. $A_{1} \rightarrow A_{2}$ has the form o because in opposite case a part of clusters from the sets A_{1}, A_{2} joins the set A_{0};
8. $(n+1) \rightarrow B$ has the form o because in opposite case a part of clusters from the set B joins the set A_{1};
9. $B \rightarrow(n+1)$ has the form O because in opposite case a part of clusters from the set B joins the set A_{2};
10. $A_{1} \rightarrow B$ has the form o because in opposite case a part of clusters from the set B joins the set A_{1};
11. $B \rightarrow A_{2}$ has the form O because in opposite case a part of clusters from the set B joins the set A_{2};
12. $B \rightarrow B$ has the form \mathcal{A} because in opposite case a way
$i \rightarrow k_{1} \rightarrow k_{2} \rightarrow j \rightarrow(n+1) \rightarrow i, i \in A_{1}, j \in A_{2}, k_{1} \in B, k_{2} \in B$ appears and so the clusters $k_{1}, k_{2} \in B$;
13. $A_{1} \rightarrow A_{1}$ has the form \mathcal{A} because in opposite case a way $i \rightarrow k \rightarrow(n+1), i \in A_{1}, k \in B, j \in A_{2}$ appears and so $k \in A_{1} \cap A_{2}$;
14. $A_{2} \rightarrow A_{2}$ has the form \mathcal{A} because in opposite case a way $i \rightarrow k \rightarrow(n+1), i \in A_{1}, k \in B, j \in A_{2}$ appears and so $k \in A_{1} \cap A_{2}$;
15. $B \rightarrow A_{1}$ has the form \mathcal{A} because in opposite case a way $k \rightarrow j \rightarrow(n+1) \rightarrow i, i \in A_{1}, k \in B$, $j \in A_{2}$ appears and so $k \in A_{2}$;
16. $A_{2} \rightarrow B$ has the form \mathcal{A} because in opposite case a way $k \rightarrow i \rightarrow(n+1) \rightarrow j, i \in A_{1}, k \in B$, $j \in A_{2}$ appears and so $k \in A_{1}$.

The transformation of the matrix a on the transition from the step n to the step $n+1$ needs the sets A, A_{1}, A_{2}, B definition by the formulas (1), (2) and demands $O(n)$ arithmetic operations and $O\left(n^{2}\right)$ operations of an assignment. Consequently a calculation of the connectivity components and of the partial order matrix up to the step n demands $O\left(n^{2}\right)$ arithmetic operations and $O\left(n^{3}\right)$ assignment operations.

Remark 1. This solution remains correct if the single edge from the node $n+1$ is replaced by a few edges and the single edge to the node $n+1$ is replaced by a few edges also. Numbers of these additional edges is no more than some finite m which does not depend on n. Denote by P the set of clusters in which new edges come into and by Q the set of clusters from which new edges come into the node $n+1$. Then the sets A, A_{1}, A_{2}, B are defined as follows. Assume that

$$
\begin{gathered}
K_{p}=\left\{k \in I_{n}: p \succeq k\right\}, p \in P, R_{q}=\left\{k \in I_{n}: k \succeq q\right\}, q \in Q, \\
K^{\prime}=\bigcup_{p \in P} K_{p}, R=\bigcup_{q \in Q} R_{q}, A=K^{\prime} \cap R^{\prime} .
\end{gathered}
$$

New node $n+1$ and clusters from the set A create new cluster which we denote by $(n+1)$ and put $A_{1}:=K^{\prime} \backslash A, A_{2}:=R^{\prime} \backslash A, B:=I \backslash\left(A \cup A_{1} \cup A_{2}\right), I:=I \bigcup n+1$.

Describe now an algorithm of a construction of the clusters set and the matrix of partial order on this set in general case. On the step 1 there is the single node 1 , the set of clusters $K=\{1\}$ and the matrix of the partial order characterized by the formula $a(1,1)=1$. Assume that on the step n there is the set of clusters K. These clusters create a partitioning of the set $I=\{1, \ldots, n\}$ into non intersected subsets,

Each cluster $k \in K$ is indexed by a maximal number of its nodes.

On the set K we have unit-zero matrix $a=\|a(p, q)\|_{p, q \in K}$ which characterizes the relation of partial order $" \succeq ": a(p, q)=1$ if $p \succeq k$ and $a(p, q)=0$ in opposite case.
From the new node $n+1$ no more than m edges exit into the set $\mathscr{P} \subseteq I$ of nodes and no more than come into the node $n+1$ from the set $Q \subseteq I$ of n nodes. Denote by P, Q the sets of clusters generated by nodes of the sets \mathscr{P}, Q and define

$$
K_{p}=\{k \in K: a(p, k)=1\}, p \in P ; R_{q}=\{k \in K: a(k, q)=1\}, q \in Q ;
$$

$$
K^{\prime}=\bigcup_{p \in P} K_{p}, R=\bigcup_{q \in Q} R_{q}, A=K^{\prime} \cap R^{\prime} .
$$

The new node $n+1$ and the clusters from the set A create new cluster $(n+1)$, put

$$
A_{1}:=K^{\prime} \backslash A, A_{2}:=R^{\prime} \backslash A, B:=K \backslash\left(A \cup A_{1} \cup A_{2}\right), \quad I:=I \cup(n+1)
$$

Then a calculation of the matrix a on the step $n+1$ satisfies the formulas $a(n+1, n+1)=1, a\left(n+1, A_{1}\right):=\mathcal{E}, a\left(A_{2}, n+1\right):=\mathcal{E}, a\left(A_{2}, A_{1}\right):=\mathcal{E}$, $a\left(A_{1}, n+1\right):=0, a\left(n+1, A_{2}\right)=0, a\left(A_{1}, A_{2}\right)=0, a(B, B)=0$, $a(B, n+1)=0, a\left(A_{1}, B\right)=0, a\left(B, A_{2}\right)=0$.

References

1. Kurosh A.G. Lectures on general algebra. Moscow: Phizmatlit. 1962.
