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ABSTRACT 
 
The method based on the results of the joint model linking a semi-Markov modelling of the system 
operation process with a multistate approach to system reliability and the linear programming are 
proposed to the operation and reliability optimization of complex technical systems at the variable 
operation conditions. The method consists in determining the optimal values of limit transient 
probabilities at the system operation states that maximize the system lifetimes in the reliability state 
subsets. The proposed method is applied to the operation and reliability optimization of the 
exemplary technical multistate non-homogeneous system composed of a series-parallel and a series-
“m out of l” subsystems linked in series that is changing its reliability structure and its components 
reliability parameters at its variable operation conditions. 
 
 
1  INTRODUCTION 
The complex technical systems reliability improvement and decreasing the risk of exceeding a 
critical reliability state are of great value in the industrial practice (Kołowrocki, Soszyńska-Budny, 
2011; Kuo, Prasad, 2000; Kuo, Zuo 2003; Vercellis, 2009). In everyday practice, there are needed 
the tools that could be applied to improving the reliability characteristics of the multistate systems 
operating at variable conditions. There are needed the tools allowing for finding the distributions 
and the expected values of the optimal times until the exceeding by the system the reliability critical 
state, the optimal system risk function and the moment when the system risk function exceeds a 
permitted level and allowing for changing their operation processes after comparing the values of 
these characteristics with their values before their operation processes optimization in order to 
improve their reliability (Klabjan, Adelman, 2008; Kołowrocki, Soszyńska-Budny, 2009, 2010, 
2011; Lisnianski, Levitin 2003, Tang, Yin, Xi, 2007). 
 
2      COMPLEX SYSTEM RELIABILITY AND OPERATION PROCESS OPTIMIZATION  
Considering the equation (25) (Kołowrocki, Soszyńska-Budny, 2013), it is natural to assume that 
the system operation process has a significant influence on the system reliability. This influence is 
also clearly expressed in the equation (26) (Kołowrocki, Soszyńska-Budny, 2013) for the mean 
values of the system unconditional lifetimes in the reliability state subsets.   

From the linear equation (26) (Kołowrocki, Soszyńska-Budny, 2013), we can see that the mean 
value of the system unconditional lifetime )(uM , ,,...,2,1 zu   is determined by the limit values of 
transient probabilities ,bp  ,,...,2,1 b  of the system operation process at the operation states given 
by (8) (Kołowrocki, Soszyńska-Budny, 2013) and the mean values )(uM b , ,,...,2,1 b  

,,...,2,1 zu   of the system conditional lifetimes in the reliability state subsets },,...,1,{ zuu 
,,...,2,1 zu   given by (27) (Kołowrocki, Soszyńska-Budny, 2013). Therefore, the system lifetime 

optimization approach based on the linear programming (Klabjan, Adelman, 2008; Kołowrocki, 
Soszyńska-Budny, 2009, 2010, 2011). 
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 can be proposed. Namely, we may look for the corresponding optimal values ,bp  ,,...,2,1 b  of 
the transient probabilities ,bp  ,,...,2,1 b  of the system operation process at the operation states 
to maximize the mean value )(uM  of the unconditional system lifetimes in the reliability state 
subsets },,...,1,{ zuu  ,,...,2,1 zu   under the assumption that the mean values )(uM b , 

,,...,2,1 b  ,,...,2,1 zu   of the system conditional lifetimes in the reliability state subsets are 
fixed. As a special and practically important case of the above formulated system lifetime 
optimization problem,  if ,r  ,,...,2,1 zr   is a system critical reliability state, we may look for the 
optimal values ,bp  ,,...,2,1 b  of the transient probabilities ,bp  ,,...,2,1 b  of the system 
operation process at the system operation states to maximize the mean value )(rM  of the 
unconditional system lifetime in the reliability state subset },,...,,1,{ zrr  ,,...,2,1 zr   under the 
assumption that the mean values )(rM b , ,,...,2,1 b  ,,...,2,1 zr   of the system conditional 
lifetimes in this reliability state subset are fixed. More exactly, we may formulate the optimization 
problem as a linear programming model with the objective function of the following form  
 
      





1
)()(

b
bb rMprM                                                                                                                      (1) 

 
for a fixed },...,2,1{ zr  and with the following bound constraints 
       
      ,bbb ppp    ,,...,2,1 b                                                                                                           
(2) 
       





1
,1

b
bp                                                                                                                                       (3) 

 
where 
 
      )(rM b , ,0)( rM b  ,,...,2,1 b                                                                                                 (4) 
 
are fixed mean values of the system conditional lifetimes in the reliability state subset },...,1,{ zrr   
and  
 
      ,bp  10  bp  and ,bp  ,10  bp  ,bb pp    ,,...,2,1 b                                                       (5) 
 
are lower and upper bounds of the unknown transient probabilities bp , ,,...,2,1 b  respectively.  
Now, we can obtain the optimal solution of the formulated by (1)-(5) the linear programming 
problem, i.e. we can find the optimal values bp  of the transient probabilities ,bp  ,,...,2,1 b  that 
maximize the objective function given by (1).  
First, we arrange the system conditional lifetime mean values ),(rM b  ,,...,2,1 b  in non-
increasing order  
 
      )(

1
rM b )(

2
rM b . . . ),(rM b

  where },...,2,1{ ib  for .,...,2,1 i  
 
Next,  we substitute  
 
      

ibi px  , 
ibi px   , 

ibi px    for  ,...,2,1i                                                                               (6) 
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and we maximize with respect to ,ix  ,,...,2,1 i  the linear form (1) that after this transformation 
takes the form  
 
      





1
)()(

i ibi rMxrM                                                                                                                       

(7) 
 
for a fixed },...,2,1{ zr  with the following bound constraints 
 
      ,iii xxx   ,,...,2,1 i                                                                                                              (8) 

       




1
,1

i
ix                                                                                                                                       

(9) 
 
where 
 
      ),(rM

ib  ,0)( rM
ib  ,,...,2,1 i  

 
are fixed mean values of the system conditional lifetimes in the reliability state subset },...,1,{ zrr   
arranged in non-increasing order and  
 
      ,ix  10  ix  and ,ix  ,10  ix  ,ii xx    ,,...,2,1 i                                                           (10) 
 
are lower and upper bounds of the unknown probabilities ix , ,,...,2,1 i  respectively.  
To find the optimal values of ,ix  ,,...,2,1 i  we define 
  

      




1
,

i
ixx   xy 1€                                                                                                                     (11) 

 
and 
 
      ,00 x  00 x   and 



I

i
i

I xx
1

,  


I

i
i

I xx
1

  for .,...,2,1 I                                                      (12) 

 
Next, we find the largest value },...,1,0{ I  such that  
 
      yxx II €                                                                                                                                   
(13) 
 
and we fix the optimal solution that maximize (7) in the following way:  
i) if ,0I  the optimal solution is  
 
      11 € xyx 

   and ii xx 
   for ;,...,3,2 i                                                                                    (14) 

 
ii) if ,0  I  the optimal solution is  
 
      ii xx 

   for ,,...,2,1 Ii  11 €   I
II

I xxxyx 
  and ii xx 

   
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      for  ;,...,3,2  IIi                                                                                                              (15) 
 
iii) if ,I  the optimal solution is  
 
      ii xx 

   for .,...,2,1 i                                                                                                               (16) 
 
Finally, after making the inverse to (6) substitution, we get the optimal limit transient probabilities  
 
      iib xp    for  ,,...,2,1 i                                                                                                           (17) 
 
that maximize the system mean lifetime in the reliability state subset },,...,1,{ zrr  defined by the 
linear form (1), giving its maximum value in the following form 
 
      





1
)()(

b
bb rMprM                                                                                                                     (18) 

 
for a fixed },...,2,1{ zr .  
From the expression (18) for the maximum mean value )(rM  of the system unconditional lifetime 
in the reliability state subset },,...,1,{ zrr   replacing in it the critical reliability state r  by the 
reliability state ,u ,,...,2,1 zu   we obtain the corresponding optimal solutions for the mean values 
of the system unconditional lifetimes in the reliability state subsets },...,1,{ zuu   of the form  
  
      





1
)()(

b
bb uMpuM   for  .,...,2,1 zu                                                                                        (19) 

 
Further, according to (24)-(25) (Kołowrocki, Soszyńska-Budny, 2013), the corresponding optimal 
unconditional multistate reliability function of the system is the vector   
  
      ),( tR = [1, ),1,(tR ..., ),( ztR ],                                                                                                   (20) 
 
with the coordinates given by  
 

      ),( utR )(

1
]),([ b

v

b
b utp


R  for 0t , .,...,2,1 zu                                                                        (21) 

 
And, by (29) (Kołowrocki, Soszyńska-Budny, 2013), the optimal solutions for the mean values of 
the system unconditional lifetimes in the particular reliability states are   
  
      ),1()()(  uMuMuM   ,1,...,1,  zu  ).()( zMzM                                                               
(22) 
 
Moreover, considering (30) and (31) (Kołowrocki, Soszyńska-Budny, 2013), the corresponding 
optimal system risk function and the optimal moment when the risk exceeds a permitted level , 
respectively are given by  
  
      )(tr = 1 - ),,( rtR  ,0t                                                                                                               
(23) 
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and    
 
       ),(1 r                                                                                                                                  (24) 
 
where ),( rtR  is given by (21) for ru   and ),(1 tr  if it exists, is the inverse function of the 
optimal risk function ).(tr  
Replacing in (8) (Kołowrocki, Soszyńska-Budny, 2013) the limit transient probabilities bp  of the 
system operation process at the operation states by their optimal values ,bp  maximizing the mean 
value )(rM  of the system lifetime in the reliability states subset },...,1,{ zrr   defined by (1) and 
the mean values bm  of the unconditional sojourn times at the operation states by their 
corresponding unknown optimal values ,bm  we get the system of equations   
 

      bp  = ,

1



v

l
ll

bb

m

m








 .,...,2,1 vb                                                                                                          (25) 

 
After simple transformations the above system takes the form  
 
      0...)1( 1221111   mpmpmp   

 
      0...)1( 2222112   mpmpmp   
          
      ...                                                                                                                                              
(26) 
 
      ,0)1(...2211    mpmpmp   

 
where bm  are unknown variables we want to find, bp  are optimal transient probabilities determined 
by (17) and b  are steady probabilities determined by (9) (Kołowrocki, Soszyńska-Budny, 2013).  
Since the system of equations (26) is homogeneous and it can be proved that the determinant of its 
main matrix is equal to zero, then it has nonzero solutions and moreover, these solutions are 
ambiguous. Thus, if we fix some of the optimal values bm  of the mean values bm  of the 
unconditional sojourn times at the operation states, for instance by arbitrary fixing one or a few of 
them, we may find the values of the remaining once and this way to get the solution of this 
equation.  
Having this solution, it is also possible to look for the optimal values blm  of the mean values blm  of 
the conditional sojourn times at the operation states using the following system of equations  
 

      ,
1

b

v

l
blbl mmp  


 ,,...,2,1 vb                                                                                                         (27) 

 
obtained from (7) (Kołowrocki, Soszyńska-Budny, 2013) by replacing bm  by bm  and blm  by ,blm  
were blp  are known probabilities of the system operation process transitions between the operation 
states bz  i ,lz  ,,...,2,1, vlb   ,lb   defined by (2) (Kołowrocki, Soszyńska-Budny, 2013). 
Another very useful and much easier to be applied in practice tool that can help in planning the 
operation processes of the complex technical systems are the system  operation process optimal 



Krzysztof Kołowrocki & Joanna Soszynska-Budny – RELIABILITY OPTIMIZATION OF COMPLEX SYSTEMS RT&A # 04 (31) 
(Vol.8) 2013, December 

 

99 

mean values of the total system operation process sojourn times b€  at the particular operation states 
,bz  ,,...,2,1 vb   during the fixed system operation time ,  that  can be obtain by the replacing in 

the formula (10) (Kołowrocki, Soszyńska-Budny, 2013) the transient probabilities bp  at the 
operation states bz  by their optimal values bp  and resulting in the following expession  

  
      ,]€[€  bbb pEm    .,...,2,1 vb                                                                                                  (28) 
  
The knowledge of the optimal values bm  of the mean values of the unconditional sojourn times and 
the optimal values blm  of the mean values of the conditional sojourn times at the operation states 
and the optimal mean values bm€  of the total sojourn times at the particular operation states during 
the  fixed system operation time may by the basis for changing the complex technical systems 
operation processes in order to ensure these systems operation more reliable.  
 
3 APPLICATION  
We consider a series system S  composed of the subsystems 1S  and 2S , with the  scheme showed 
in Figures 1-3 (Kołowrocki, Soszyńska-Budny, 2013). This system reliability structure and its 
components reliability parameters depend on its changing in time operation states with arbitrarily 
fixed the number of the system operation process states 4  and their influence on the system 
reliability indicated in Sections 2-3 (Kołowrocki, Soszyńska-Budny, 2013) where its main 
reliability characteristics are predicted.  
To find the optimal values of those system reliability characteristics, we conclude that the objective 
function defined by (1), in this case, as the exemplary system critical state is 2r , according to 
(89) (Kołowrocki, Soszyńska-Budny, 2013), takes the form  
            
      )2(M   00.251p  88.142p 04.133 p 04.74  p .                                                            (29) 
 
Arbitrarily assumed, the lower bp  and upper bp  bounds of the unknown optimal values of transient 
probabilities bp , ,4,3,2,1b  respectively are: 
  
      201.01 p , 03.02 p , 245.03 p . 309.04 p ; 

 
      351.01 p , 105.02 p , 395.03 p , 459.04 p . 
 
Therefore, according to (2)-(3), we assume the following bound constraints  
 
      ,351.0201.0 1  p  ,105.0030.0 2  p  
 
      ,395.0245.0 3  p  .459.0309.0 4  p                                                                                 (30) 

 
       



4

1
,1

b
bp                                                                                                                                   (31) 

 
Now, before we find optimal values bp  of the transient probabilities ,bp  ,4,3,2,1b  that 
maximize the objective function (29), w arrange the system conditional lifetime mean values 

),2(bM  ,4,3,2,1b  in non-increasing order  
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      )2(1M )2(2M )2(3M ).2(4M  
 
Further, according to (6),  we substitute  
 
      ,11 px   ,22 px   ,33 px  ,44 px                                                                                         (32) 
 
and  
 
     201.011  px  , ,030.022  px   245.033  px  , 309.044  px  ;                                  (33) 
 
     351.011  px  , 105.022  px  , 395.033  px  , ,459.044  px                                    (34) 
 
and we maximize with respect to ,ix  ,4,3,2,1i  the linear form (29)  that according to (7)-(9) takes 
the form  
 
      )2(M   00.251x  88.142x 04.133 x 04.74  x ,                                                              (35) 
 
with the following bound constraints 
 
      ,351.0201.0 1  x  ,105.0030.0 2  x  
 
      ,395.0245.0 3  x  .459.0309.0 4  x                                                                          (36) 
 
       



4

1
.1

i
ix                                                                                                                                      (37) 

 
According to (11), we calculate   
 
       



4

1
,785.0

i
ixx   xy 1€  = 1 -  0.785 = 0.215                                                                      (38) 

 
and according to (12), we determine    
 
      ,00 x  00 x ,  ,000  xx   

 
      ,201.01 x  ,351.01 x  ,150.011  xx   

 
      ,231.02 x  ,456.02 x  ,225.022  xx   

 
      .476.03 x  ,851.03 x  ,375.033  xx   
 
      785.04 x  31.14 x  .525.044  xx                                                                                     (39) 
 
From the above, as according to (38), the inequality (13) takes the form  
 
      ,215.0 II xx                                                                                                                          (40) 
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it follows that the largest value }4,3,2,1,0{I  such that this inequality holds is .1I  
Therefore, we fix the optimal solution that maximize linear function (35) according to the rule (15). 
Namely, we get  
 
      ,351.011  xx 

  
 

      2
11

2 € xxxyx 
  ,095.0030.0201.0351.0215.0   

 
     ,245.033  xx 

  .309.044  xx 
                                                                                               (41) 

 
Finally, after making the inverse to (32) substitution, we get the optimal transient probabilities  
 
     ,351.011  xp   ,095.022  xp   ,245.033  xp   ,309.044  xp                                     
(42) 
      
that maximize the exemplary system mean lifetime )2(M  in the reliability state subset }3,2{  
expressed by the linear form (29) giving, according to (18) and (42), its optimal value  
 
      )2(M   00.251p  88.142p 04.133 p 04.74  p  
 
                 00.25351.0  88.14095.0 04.13245.0  07.7309.0   15.56.                             (43) 
 
Substituting the optimal solution (42) into the formula (19), we obtain the optimal solution for the 
mean values of the exemplary system unconditional lifetimes in the reliability state subsets }3,2,1{  
and },3{ that are as follows  
 
      )1(M   78.271p  27.162p 82.143 p 72.74  p  
 
                 78.27351.0  27.16095.0 82.14245.0  72.7309.0   17.31,                             (44) 
 
      )3(M   73.221p  71.132p 48.113 p 47.64  p  
 
                  73.22351.0  71.13095.0 48.11245.0  47.6309.0   14.09                              (45) 
 
and according to (22), the optimal values of the mean values of the system unconditional lifetimes 
in the particular reliability states 1, 2 and 3, respectively are  
 
      75.1)2()1()1(  MMM  , ,47.1)3()2()2(  MMM     
 
      .09.14)3()3(  MM                                                                                                                 (46) 

 
Moreover, according to (20)-(21), the corresponding optimal unconditional multistate reliability 
function of the system is of the form   
 
      ),( tR  = [1, )1,(tR , )2,(tR , )3,(tR ], ,0t                                                                              (47) 
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with the coordinates given by  
 
      )1,(tR )1()]1,([351.0 tR )2()]1,([095.0 tR )3()]1,([245.0 tR  
 
                 )4()]1,([309.0 tR  for t  0,                                                                                            (48) 
       
      )2,(tR )1()]2,([351.0 tR )2()]2,([095.0 tR )3()]2,([245.0 tR  
 
                  )4()]2,([309.0 tR  for t  0,                                                                                          (49) 
 
      )3,(tR )1()]3,([351.0 tR )2()]3,([0095.0 tR )3()]3,([245.0 tR  
 
                  )4()]3,([309.0 tR  for t  0,                                                                                          (50) 
 
where ,)]1,([ )(btR  ,)]2,([ )(btR ,)]3,([ )(btR  ,4,3,2,1b  are fixed in Section 3 (Kołowrocki, 
Soszyńska-Budny, 2013). 
The graph of the exemplary system optimal reliability function ),( tR given by (47)-(50) is 
presented in Figure 1.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1. The graph of the exemplary system optimal reliability function ),( tR coordinates 
 
As the critical reliability state is r =2, then the exemplary system optimal system risk function, 
according to (23), is given by  
 
      )(tr = )2,(1 tR  for t  0,                                                                                                          (51) 
 
where )2,(tR  is given by (49).  
Hence and considering (24), the moment when the optimal system risk function exceeds a permitted 
level, for instance   = 0.025, is  
 
       = )(-1r    2.55.                                                                                                                    (52) 
 

 (t,1)ࡾ̇

 (t,2)ࡾ̇

 (t,3)ࡾ̇
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                       Fig. 2. The graph of the exemplary system optimal risk function )(tr  
 
Substituting the exemplary operation process optimal transient probabilities at operation states  
 
      ,351.01 p ,095.02 p  ,245.03 p  ,309.04 p  
 
determined by (42) and the steady probabilities   

 
      ,236.01   ,169.02   ,234.03  ,361.04   

 
determined by (17) in Section 2 (Kołowrocki, Soszyńska-Budny, 2013) into (26),  we get the 
following system of equations with the unknown optimal mean values bm  of the exemplary system 
operation process unconditional sojourn times at the operation states we are looking for  
 
      1153164.0 m 2059319.0 m 3082134.0 m 4126711.0 m  = 0 
 
      102242.0 m 2152945.0 m 302223.0 m 4034295.0 m  = 0 
  
      105782.0 m 2041405.0 m 317667.0 m 4088445.0 m  = 0 
 
      1072924.0 m 2052221.0 m 3072306.0 m 4249451.0 m  = 0.                                                   (53) 
 
The determinant of the main matrix of the above homogeneous system of equations is equal to zero 
and therefore there are non-zero solutions of this system of equations that are ambiguous and 
dependent on one or more parameters. Thus, we may fix some of them and determine the remaining 
ones. To show the way of solving this system of equations, we may suppose that we are arbitrarily 
interested in fixing the value of 4m  and we put   
 
      .4004 m  

 
Substituting the above value into the system of equations (53), we get  
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      1153164.0 m 2059319.0 m 3082134.0 m  = -50.6844 
 
      102242.0 m 2152945.0 m 302223.0 m  = -13.7180 
  
      105782.0 m 2041405.0 m 317667.0 m  = -35.3780 
 
      1072924.0 m 2052221.0 m 3072306.0 m  = 99.7804                             
  
and we solve it with respect to 1m , 2m  and 3m , after omitting its last equation. This way obtained 
solutions that satisfy (53), are  

 
      1m   689, 2m    261, 3m    487,  .4004 m                                                                           (54) 
 
It can be seen that these solution differ much from the values 1m , ,2m  3m and 4m  estimated in 
Section 2 (Kołowrocki, Soszyńska-Budny, 2013) and given by (13)-(16) (Kołowrocki, Soszyńska-
Budny, 2013).  
Having these solutions, it is also possible to look for the optimal values blm  of the mean values blm  
of the exemplary system operation process conditional sojourn times at operation states. Namely,  
substituting the values bm  instead of bm , the probabilities  
 

      ][ blp



















030.022.048.0
72.0016.012.0
50.030.0020.0
46.032.022.00

 

 
of the exemplary system operation process transitions between the operation states given by (11) in 
Section 2 (Kołowrocki, Soszyńska-Budny, 2013) and replacing blm  by blm  in  (27), we get the 
following system of equations  
 
      1222.0 m 1332.0 m 1446.0 m 689   
 
      2120.0 m 2330.0 m 2450.0 m 261  
 
      3112.0 m 3216.0 m 3472.0 m 487  
 
      4148.0 m 4222.0  1430.0 m 400                                                                                                 (55) 
 
with the unknown optimal values blm  we want to find.  
As the solutions of the above system of equations are ambiguous, then we fix some of them, say 
that because of practically important reasons, and we find the remaining ones. For instance: 
  
      - we fix in the first equation ,20012 m  50013 m  and we find  ;105414 m  
      - we fix in the second equation ,10021 m  10023 m  and we find  ;42224 m  



Krzysztof Kołowrocki & Joanna Soszynska-Budny – RELIABILITY OPTIMIZATION OF COMPLEX SYSTEMS RT&A # 04 (31) 
(Vol.8) 2013, December 

 

105 

      - we fix in the third equation ,90031 m  50032 m  and we find  ;41534 m  
      - we fix in the fourth equation ,30041 m 50042 m  and we find .48743 m                          (56) 
 
It can be seen that these solutions differ much from the mean values of the exemplary system 
conditional sojourn times at the particular operation states before its operation process optimization 
given by (12) (Kołowrocki, Soszyńska-Budny, 2013). 
Another very useful and much easier to be applied in practice tool that can help in planning the 
operation process of the exemplary system are the system  operation process optimal mean values 
of the total sojourn times at the particular operation states during the system operation time that by 
the same assumpion as in Section 2 (Kołowrocki, Soszyńska-Budny, 2013) is equel to 1 year = 
365 days. Under this assumption, after aplying (28), we get the optimal values of the exemplary 
system operation process total sojourn times at the particular operation states during 1 year  
 
      ,5.124365341.0]€[€ 111   pEm    
 
      ,3.38365105.0]€[€ 222   pEm    

 
      ,4.89365245.0]€[€ 333   pEm   
 
     ,8.112365309.0]€[€ 444   pEm                                                                                     (57) 
 
that differ much from the values of ,€1m  ,€2m  ,€3m  ,€4m  determined by (19) in Section 2 
(Kołowrocki,  Soszyńska-Budny, 2013). 
In practice, the knowledge of the optimal values of bm  blm  and bm€  given respectively by (54), 
(56), (57), can be very important and helpful for the system operation process planning and 
improving in order to make the system operation more reliable. 
 
4    CONCLUSION 
Presented in this paper tool is useful in reliability and operation optimization of a very wide class of 
real technical systems operating at the varying conditions that have an influence on changing their 
reliability structures and their components reliability parameters. The results can be interesting for 
reliability practitioners from various industrial sectors.   
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