ALGORITHMS OF ISOMETRIC SURFACES CONSTRUCTIONS

G. Tsitsiashvili, M. Osipova
Russia, Vladivostok, Radio str. 7, IAM FEB RAS
e-mail: guram@iam.dvo.ru, mao1975@list.ru

In this paper a problem of a construction of isometric surfaces is considered. It is important in different technical applications. This problem usually is solved for surfaces with constant Gauss curvature using so called "gold" Gauss theorem. But in practical applications it is interesting to consider more wide class of surfaces. Here this problem is solved for surfaces of cylinder, conical and spherical types and their generalizations using a criterion of isometric based on equalities of coefficients of first quadratic forms.

1. INTRODUCTION

In the differential geometry a concept of the isometric is introduced as follows. Define a surface in three dimensional space E^{3} as a set described by equalities

$$
X=x\left(u_{1}, u_{2}\right), \quad Y=y\left(u_{1}, u_{2}\right), Z=z\left(u_{1}, u_{2}\right),\left(u_{1}, u_{2}\right) \in G \subseteq E^{2},
$$

where the functions x, y, z on the domain G are smooth. Say that the surfaces

$$
\begin{aligned}
& S_{1}=\left\{X=x_{1}\left(u_{1}, u_{2}\right), Y=y_{1}\left(u_{1}, u_{2}\right), Z=z_{1}\left(u_{1}, u_{2}\right),\left(u_{1}, u_{2}\right) \in G\right\}, \\
& S_{2}=\left\{X=x_{2}\left(u_{1}, u_{2}\right), Y=y_{2}\left(u_{1}, u_{2}\right), Z=z_{2}\left(u_{1}, u_{2}\right),\left(u_{1}, u_{2}\right) \in G\right\}
\end{aligned}
$$

are isometric if for any pair of points on the surface S_{1} (a length of a geodesic curve connected these points) coincides with a distance between appropriate points on the surface S_{2}. So the surface S_{1} may be transformed into the surface S_{2} without a dilation and a compression. Last condition has important significance in a solution of modern technical problems including reliability theory also [2].
From the Gauss theorem [1] the surfaces S_{1}, S_{2} are isometric if and only if coefficients of their first quadratic forms coincide:

$$
\begin{equation*}
A_{i, j}^{1}=A_{i, j}^{2}, i, j=1,2, \tag{1}
\end{equation*}
$$

where

$$
A_{i, j}^{k}=\left(\frac{\partial x_{k}}{\partial u_{i}}, \frac{\partial y_{k}}{\partial u_{i}}, \frac{\partial z_{k}}{\partial u_{i}}\right) \cdot\left(\frac{\partial x_{k}}{\partial u_{j}}, \frac{\partial y_{k}}{\partial u_{j}}, \frac{\partial z_{k}}{\partial u_{j}}\right), i, j, k=1,2 .
$$

Here "." is the scalar product operation. But in a literature a problem of the isometric is solved mainly for surfaces with constant Gauss curvature [3, p.126] using so called the "gold" Gauss theorem. This restriction is sufficiently inconvenient in an applied sense and it is worthy to use a direct application of the condition (1) and a search of more general relations for isometric surfaces. In this paper these relations are constructed for surfaces of cylinder, conical and spherical types and for some their generalizations.

2. SURFACE OF CYLINDER TYPE

Define the first quadrant S_{1} in the space E^{2} by the equalities $x_{1}=u_{1}, y_{1}=0, z_{1}=u_{2}$ and a surface of a cylinder type S_{2} by equalities

$$
x_{2}=a\left(u_{1}\right), y_{2}=b\left(u_{1}\right), z_{2}=u_{2} .
$$

Coefficients of the first quadratic form for the surface S_{1} satisfy the relations $A_{i, j}^{1}=\delta_{i, j}$ where $\delta_{i, j}$, $i, j=1,2$, is the Kronecker symbol. For the surface S_{2} it is not difficult to obtain the equalities

$$
A_{1,2}^{2}=A_{2,1}^{2}=0, A_{2,2}^{2}=1, A_{1,1}^{2}=\left(a\left(u_{1}\right)\right)^{2}+\left(b\left(u_{1}\right)\right)^{2}=1 .
$$

So for the isometric of the surfaces S_{1}, S_{2} it is sufficient to fulfill relations

$$
\begin{equation*}
\left(a^{\prime}\left(u_{1}\right)\right)^{2} \leq 1,\left(b^{\prime}\left(u_{1}\right)\right)^{2}=1-\left(a^{\prime}\left(u_{1}\right)\right)^{2} . \tag{2}
\end{equation*}
$$

Consequently to solve considered problem for the cylinder surface S_{2} it is sufficient using the function $a(t)$ to find the function $b(t)$ from the equality (2).

Example 1. A partial case of this problem solution is the pair of functions

$$
\begin{equation*}
a\left(u_{1}\right)=\cos u_{1}, b\left(u_{1}\right)=\sin u_{1} . \tag{3}
\end{equation*}
$$

If in the first quadrant of E^{2} we separate a stripe with sides not parallel to coordinate axes u_{1}, u_{2}, then from the equalities (3) it is possible to transform this stripe into spiral surface enveloped around the cylinder S_{2}.

3. SURFACE OF CONICAL TYPE

Assume that the angle S_{1} in the space E^{2} is described by the equalities $x_{1}=u_{2} \cos u_{1}, y_{1}=u_{2} \sin u_{1}$. Define the surface of a conical type S_{2} by the formulas

$$
x_{2}=u_{2} a\left(u_{1}\right), y_{2}=u_{2} b\left(u_{1}\right), z_{2}=u_{2} c\left(u_{1}\right) .
$$

Coefficients of the first quadratic form for the surface S_{1} satisfy the formulas

$$
A_{1,1}^{1}=u_{2}^{2}, A_{1,2}^{1}=A_{2,1}^{1}=0, A_{2,2}^{1}=1 .
$$

And coefficients of the first quadratic form for the surface S_{2} satisfy the relations

$$
\begin{gathered}
A_{1,1}^{2}=u_{2}^{2}\left(\left(a^{\prime}\left(u_{1}\right)\right)^{2}+\left(b^{\prime}\left(u_{1}\right)\right)^{2}+\left(c^{\prime}\left(u_{1}\right)\right)^{2}\right), A_{1,2}^{2}=A_{2,1}^{2}=\frac{u_{2}}{2}\left(a^{2}\left(u_{1}\right)+b^{2}\left(u_{1}\right)+c^{2}\left(u_{1}\right)\right)^{\prime}, \\
A_{2,2}^{2}=a^{2}\left(u_{1}\right)+b^{2}\left(u_{1}\right)+c^{2}\left(u_{1}\right) .
\end{gathered}
$$

So to fulfill the equalities in (1) it is sufficient to satisfy the formulas

$$
\begin{gather*}
a^{2}\left(u_{1}\right)+b^{2}\left(u_{1}\right)+c^{2}\left(u_{1}\right)=1, \tag{4}\\
\left(a^{\prime}\left(u_{1}\right)\right)^{2}+\left(b^{\prime}\left(u_{1}\right)\right)^{2}+\left(c^{\prime}\left(u_{1}\right)\right)^{2}=1, \tag{5}
\end{gather*}
$$

Seek a solution of this problem as follows $a\left(u_{1}\right)=\cos F \cos G, b\left(u_{1}\right)=\sin F \sin G, c\left(u_{1}\right)=\sin G, F=F(s), G=G(s), s=s\left(u_{1}\right)$
where $F(s), G(s)$ are arbitrary smooth functions of an argument s and $s\left(u_{1}\right)$ is a smooth function of the argument u_{1}. Such a choice of the functions a, b, c leads to the equality (4) independently on a choice of the function s. Simple calculations show that to fulfill the formulas (5) it is sufficient to satisfy the condition

$$
1=\left(s^{\prime}\left(u_{1}\right)\right)^{2}\left[\left(F^{\prime}(s)\right)^{2}+\left(G^{\prime}(s)\right)^{2}\right]
$$

that leads to the formula

$$
\begin{equation*}
u_{1}= \pm \int \sqrt{\left(F^{\prime}(s)\right)^{2} \cos ^{2} G(s)+\left(G^{\prime}(s)\right)^{2}} d s \tag{6}
\end{equation*}
$$

Example 2. In a partial case it is possible to take real α and put

$$
G(s)=\alpha, F(s)=s, s\left(u_{1}\right)=u_{1}
$$

and so

$$
\begin{equation*}
x_{2}=u_{2} \cos u_{1} \cos \alpha, y_{2}=u_{2} \cos u_{1} \cos \alpha, z_{2}=\sin \alpha . \tag{7}
\end{equation*}
$$

The relations (7) define usual conical surface and the formulas (6) specify a wide class of surfaces isometric to an angle in the space E^{2}.

4. SURFACE OG SPHERICAL TYPE

Suppose that S_{1} is defined as follows

$$
\begin{array}{cc}
x_{1}=a\left(u_{2}\right) \cos u_{1}, & y_{1}=a\left(u_{2}\right) \sin u_{1}, z_{1}=b\left(u_{2}\right),\left(a^{\prime}\left(u_{2}\right)\right)^{2}+\left(b^{\prime}\left(u_{2}\right)\right)^{2}=1 . \\
A_{1,1}^{1}=a^{2}\left(u_{2}\right), A_{1,2}^{1}=A_{2,1}^{1}=0, A_{2,2}^{1}=1 .
\end{array}
$$

Assume that for some real γ the condition $\left(a^{\prime}\left(u_{2}\right)\right)^{2} \leq 1$ is true. Define the surface S_{2} by the equalities

$$
x_{2}=\gamma a\left(u_{2}\right) \cos \frac{u_{1}}{\gamma}, y_{2}=\gamma a\left(u_{2}\right) \sin \frac{u_{1}}{\gamma}, z_{2}=B\left(u_{2}\right) .
$$

Then the functions

$$
A_{1,1}^{2}=a^{2}\left(u_{2}\right), A_{1,2}^{2}=A_{2,1}^{2}=0, A_{2,2}^{2}=\left(B^{\prime}\left(u_{2}\right)\right)^{2}+\gamma^{2}\left(a^{\prime}\left(u_{2}\right)\right)^{2} .
$$

So the surfaces S_{1}, S_{2} are isometric if

$$
\left(B^{\prime}\left(u_{2}\right)\right)^{2}+\gamma^{2}\left(a^{\prime}\left(u_{2}\right)\right)^{2}=1,
$$

consequently

$$
B\left(u_{2}\right)=\int \sqrt{1-\gamma^{2}\left(a^{\prime}\left(u_{2}\right)\right)^{2}} d u_{2} .
$$

Example 3. Assume that the equality $a\left(u_{2}\right)=\cos u_{2}$ is true and so the surface S_{1} is a sphere with unity radius and with a cut along a meridian. Then the surface S_{2} may coincide with a bending of a sphere by a type [3,Figure 3]: spindled surface of a rotating with a self overlap and etc Consider possible generalizations of isometric surface with a spherical type. Suppose that smooth functions $F(s), G(s)$ satisfy the condition

$$
\begin{equation*}
\left(F^{\prime}(s)\right)^{2}+\left(G^{\prime}(s)\right)^{2}=1 \tag{8}
\end{equation*}
$$

and $f\left(u_{1}, u_{2}\right)$ is smooth function. Define the surface S_{1} as follows

$$
\begin{equation*}
x_{1}=F\left(f\left(u_{1}, u_{2}\right)\right), y_{1}=G\left(f\left(u_{1}, u_{2}\right)\right), z_{1}=R\left(u_{2}\right) \tag{9}
\end{equation*}
$$

then the functions

$$
A_{1,1}^{1}=\left(\frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{1}}\right)^{2}, A_{1,2}^{1}=A_{2,1}^{1}=\frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{1}} \cdot \frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{2}}, A_{2,2}^{1}=\left(\frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{2}}\right)^{2}+\left(R^{\prime}\left(u_{2}\right)\right)^{2} .
$$

Take a real number γ and define the surface S_{2} by the equalities

$$
\begin{equation*}
x_{2}=\gamma F\left(\frac{f\left(u_{1}, u_{2}\right)}{\gamma}\right), y_{2}=\gamma G\left(\frac{f\left(u_{1}, u_{2}\right)}{\gamma}\right), z_{2}=R\left(u_{2}\right) . \tag{10}
\end{equation*}
$$

Then the functions
$A_{1,1}^{2}=\left(\frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{1}}\right)^{2}, A_{1,2}^{2}=A_{2,1}^{2}=\frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{1}} \cdot \frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{2}}, A_{2,2}^{2}=\left(\frac{\partial f\left(u_{1}, u_{2}\right)}{\partial u_{2}}\right)^{2}+\left(R^{\prime}\left(u_{2}\right)\right)^{2}$
and so the relation (1) is true. Consequently the surfaces S_{1}, S_{2} defined by the formulas (8) - (10) are isometric.

REFERENCES

1. Andreev G.N. 2007. Additional chapters of geometry. Differential geometry of curved surfaces. Moscow.: MGIU. (In Russian).
2. Ushakov I.A. 2009. History of science through prism of inspiration. Glamour of geometry. Book 3. Moscow: URSS. (In Russian).
3. Fomenko V.T. 1998. Bending of surfaces// Soros educational journal. Vol. 5. P. 122-127. (In Russian).
