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ABSTRACT 
 

The paper concerns the verification of the existing Software reliability models and their comparison to a 
new one based on the theory of Software system dynamics. A statistically significant number of observations 
over the process of fault detecting in the fifty different Software systems has been used for the verification. 
The results of comparison of estimation correctness of the nine most widely used reliability models to the 
new one based on the theory of Software system dynamics are represented. It has been proven the Software 
system dynamics model provided 2,7 times higher correctness of reliability estimation than the existing 
reliability models. 

1 INTRODUCTION 
The problem of providing and forecasting the Software reliability of informational systems 

is one of the most up to date in the modern program engineering. Nowadays the cost of  program 
failure can be measured not only in million dollars but also in million human lives. Since the 
modern informational technologies have extensively entered all spheres of our life the majority of 
mankind becomes in a sense a hostage of its own creature – Software systems. These systems are 
relied on a considerable amount of functions of control in traffic, communications, power, 
economy, defense and other areas control. In order to immobilize a big city activity a failure in a 
system of control dealing with the work of traffic lights in its main transport lines is enough. The 
consequences of computer errors in mobile communications and power systems are much more 
dramatic. And a nuclear reactor management system failure at the nearby power station can be 
catastrophic for all the continent. 

     So the creation of the reliable computer systems and further keeping their reliability 
during operation is of vital importance. A new and comparatively young trend in the reliability 
theory – Software reliability (SR) – deals with estimation and forecasting the Software system 
reliability. Its task is to develop the theoretical base of software reliability as well as models, 
methods and practical technology for Software resources reliability determination.  

2 THE PROBLEM NOWADAYS  

At present there exist about twenty different Software reliability models (SRM). Such an 
abundance conditions the necessity to classify them, and now we have got several schemes of 
classification. The most popular one has been proposed by J.D.Musa and Okumoto [1]. It 
distinguishes such characteristics as: 

    — Model time. It determines a time counting system applied to the Model — either actual 
astronomic (calendar) time or processor time, spent on the work with the given Software by the 
moment of fault detection. 

    — Model category. It determines the amount of faults which can be detected when 
investigation time is infinite. According to this characteristic all models are classified into finite and 
infinite. 

    — Model type. It determines the probability distribution of random event occurrence, fault 
detection in our case. Two types of distribution are used in the models of reliability: the Poisson 
distribution and binomial distribution. 
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     — Model class. This characteristic is only used for finite category models and determines a 
type of function describing the law of intensity change of fault appearing. 

     — Family. This characteristic is only used for infinite models and possesses the same 
meaning as the characteristic “class” for finite ones. 

     In the above classification a particular attention should be focused on such a characteristic as 
“model time” because it is a principal factor. First of all a time counting system is different for an 
individual analyzing Software systems and for an analyzed Software itself. A human lives in his 
(her) own time counting system breaking the stream of time into habitual time intervals – years, 
months, days, hours, etc. For a human being the time is uninterrupted. From the viewpoint of a 
Software system – if we are trying to imagine ourselves a program system – all events happen in 
absolutely another way. Assume a researcher detected and eliminated a program fault in the evening 
of November, 25, 2011 at 20 o’clock according to the local time. We see it is a natural way of time 
counting for a human. Assume the 25th of November is Friday and after fault detection and 
elimination the computer has been off over Saturday and Sunday. So the analyzed system was run 
and started operating only at 8 o’clock in the morning on Monday. The next fault was detected by 
the same researcher at 9 o’clock in the morning on Monday, November, 28. What is the time 
interval between these two sequential detections? From the human viewpoint it is 61 hours. And 
what is it for a Software system (SS)? While the computer was off the Software system was not 
downloaded in the memory and executed. It is possible to say that over sixty hours the system did 
not exist in general and all the processes in it were stopped! It “immersed itself in suspended 
animation” at 20 o’clock on Friday and “raised again” at 8 o’clock on Monday morning. So from 
the viewpoint of the system (you understand here we are trying to make the system “human” and 
suppose that it is able to have its own opinion) the period of time between two fault detections is an 
hour. We have proven that SS time was discontinuous and consisted of separate intervals during 
which it was active. 

     We can ask the question: what time is more correct in estimating the hazard rate?  Certainly, 
the system operation time, i.e. the processor time. But when using for astronomical time modeling, 
the cumulative curve has gaps on the axis of abscess. The data of the axis of abscess (time) have 
changed, and the ones of the ordinate axis (cumulative fault number) have not. It makes a false 
impression of dissimilar fault detection rate which distorts the modeling results and decreases the 
prediction ability of the model. It can be clearly seen in the diagram represented in Fig.1.  

 
Fig. 1. The cumulative curve gaps in using the astronomical time 

 

Cumul. fault 
number 

Time 
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The data for the diagram have been taken from the appendix for [14] (Chapter 4, file Csr2.dat). 
Along the axis of abscess the moments of time are represented (the scale is not mentioned in the 
literature), along the ordinate axis – the cumulative fault number. 

In the diagram we can see several gaps of mentioned type. For example, take the beginning site 
of the curve before the first gap. According to the diagram the initial point of the curve has got the 
coordinates (0, 0), а конечная –  (14500, 76). Thus for 14500 time units 76 faults are detected, the 

average rate of detection is 00520
14500

76 ,  fault per time unit. Then the curve demonstrates 

another distinct gap – the point has got the coordinates (24500, 78), i.e. for the next 10000 time 

units only two faults are detected. The fault detection rate in this site equals 00020
10000

2 ,  fault 

per time unit, i.e. 26 times less than in the previous one! As we see in the diagram the fault 
detection rate is abruptly restored to its original value in the next third site again. It is obvious that 
the jumps of detection rate of such kind cannot be explained by anything but the ordinary 
interruptions in observation. 

     If the processor time were used the mentioned gap would not appear in spite of the 
interruption conditioned by some subjective factors. It is necessary to note though the instruction 
provides the astronomical time application in the model, the processor time can be used as well. 
And all the mathematical formula and equations remains the same. 

     In order to estimate the correctness of reliability index modeling the examination of the most 
popular models belonging to different branches of the described classification has been carried out. 
Let us consider the main characteristics of these models. 

     1. Jelinski-Moranda’s Model [2]. Time – astronomical; category – finite; type – binomial; 
class – exponential. Assumptions: failure intensity is proportional to the actual fault number in the 
program and remains constant in the time interval between any two neighboring moments of fault 
detecting; detection of all the faults in the program is equiprobable and independent; all the faults 
have got similar degree of importance; time until the detection of the next Software fault is 
distributed exponentially. 

     2. Goel-Okumoto’s Model [3]. Time – astronomical; category – finite; type – Poisson; class 
– exponential. Assumptions: all the SS faults are mutually independent; the detected faults are 
eliminated immediately; the fault detection process is a stream of homogeneous events and has got 
the Poisson distribution. 

     3. Schneidewind’s Model [4]. Time – astronomical; category – finite; type – Poisson; class – 
exponential. The main distinctive peculiarity of this model – the failure intensity determining in the 
later time is supposed to be more correct for  prediction of the further process development than the 
one measured at the earlier stages. Assumptions: the fault number in the given time interval is 
independent on the fault number in the other intervals; the detected fault number  decreases from 
interval to interval; the failure intensity is proportional to the fault number detecting at that exact 
moment. 

     4. Musa’s Model [5]. Time –processor; category – finite; type – Poisson; class – exponential. 
Assumptions: the fault detection process is the Poisson process; the fault detection is proportional to 
the number of faults which  were not detected yet. 

     5. Weibull’s Model [6]. Time – processor; category – finite; type –binomial; class – 
exponential. Assumptions: at the initial moment of observation there is a finite number of faults in 
SS; time before the fault detection is a stochastic value having  probability subjected to Weibull 
distribution. 

     6. S-form Model [7]. Time – processor; category – finite; type – Poisson; class – gamma 
distribution. Assumptions: the fault detection process is the Poisson process; in detecting a fault it is 
immediately eliminated without entering new ones.  
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7. Duan’s Model [8]. Time – astronomical; category – infinite; type – Poisson; family – gamma 
distribution. Assumptions: the cumulative fault detection is the Poisson process with the function of 
distribution     tt , where    and    –  are positive numbers.  

8. Moranda’s Geometrical Model [9]. Time – astronomical; category – infinite; type – Poisson; 
family – exponential. Assumption: the failure intensity is a geometric progression   1iDt   
with denominator 10  ; the probability of detection of every certain fault is subjected to the 
exponential distribution law.  

9. Musa-Okumoto’s Logarithmic Model [10]. Time – astronomical; category – infinite; type – 
Poisson; family – exponential. Assumption: the failure intensity is decreased over time according to 
the exponential law; the fault detection process is the Poisson process. 

10. Software System Dynamics (SSD) Model. The SSD theory fundamentals have been 
developed in [11] and [12] as an absolutely new deterministic approach to formulating the 
reliability parameters taking into account the secondary fault influence. SSD is different from the 
existing Software reliability theory because it is not based on the probability theory but on the non-
equilibrium process theory, and it does not consider the fault appearing in Software system as an 
occasional event but as a result of deterministic fault flow impact. 

SSD is based on the following assumptions: 
1. SS is an open non-equilibrium system that interacts with its subject area ac-cording to the 

laws of the non-equilibrium processes. This is a new point of view on the program system. It is 
assumed that the properties of a software system are similar ones of other open systems. 

2. The state of the SS is characterized by a special state function f(t) – the number of the 
defects containing in it. Here it means the number of primary or secondary defects. 

3. Disappearing and appearing the defects in the SS is the result of the joint action of the direct 
(outcoming) and reverse (incoming) defect flows. It is implied that the primary defects are removed 
from the system by the direct flow and secondary defects are appeared in the system as a result of 
the reverse flow. 

4. The intensity of each flow is proportional to the number of defects that this flow forms. This 
is a basic principle of the non-equilibrium processes theory. For a software system, this principle 
means that the reduction the number of defects causes the decrease of their detection rate. 

5. All defects are equivalent, and participate in the formation of the flow in the same way, 
regardless of the causes, location, and type of defect (the principle of equivalence). 

6. Function f(t) is differentiable on the whole domain (the principle of continuity). 
The basic concept SSD is the one of software defect flows. Each defect is considered as an 

integral part of the total flow, which obeys not the laws of the probability theory but the laws of 
identification and evolution of flows in non-equilibrium systems. The identification of the defect 
flows in the SS is shown in Fig. 2. 

In the SS operation defects are the causes that the result which is produced by SS does not 
correspond to the result expected by the subject area. This discrepancy is detected by the user which 
is in contact with the SS on the one hand and with its subject area on the other. Thus, firstly the user 
acts as an error detector, and secondly – a kind of "contact surface" between the SS and its subject 
area. We assume that the user is ideal, that is, he detects and records each defect at the time of its 
identification.  

In the process of correcting the defect disappears from the SS due to changes made in its code. 
This disappearance can be supposed as a result of the of defects removal from the SS. Considering 
this process in time, we obtain the flow of defects from the SS through the "contact surface", i.e. the 
user. This flow is shown by arrows "Detection" and "Correction" in Fig. 2. 

It is possible to insert additional "secondary" defects in the process of correcting defects in the 
SS. The process of inserting the secondary defect may be regarded as the second, counter-flow of 
defects, which operates in the direction from the subject area to the SS. 
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Fig. 2. Defect emergence in the SS 

 
We will numerically characterize the flow of defects by the rate (intensity) of the flow, which 

can be determined by hypothesis 6 (principle of continuity). Taking into account the outcoming 
flow only, SS is characterized by the number of defects, which are contained in the system – 
coordinate f1(t). The defects leave the system for the subject area. It has just one degree of freedom, 
and is described by the differential equation of first order. In the case of taking into account of  the 
second process  (insertion of secondary defects), its coordinate is their current number – f2(t). Thus 
we obtain two coordinates – f1(t) and f2(t).  SS in this case is a system with two degrees of freedom 
and described by differential equations of second order. 

SSD is describes by the following autonomous system of differential equations: 
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 She’s solution allows to determine the time variation of the primary and secondary defects 
existing in SS: 

 tAhosceFf t-A1
201   

 tAhinseFf tA
2 20

1    

The presented mathematical equations give the opportunity to estimate the number of the 
primary and secondary faults in the Software system and carry out a comparative analysis of 
correctness of the described reliability models. 

3 THE RESULTS OF INVESTIGATION 
As the  initial data for the described reliability model verification we have used the data of the 

fault detection process analyzed in fifty different-type Software system. All of them were scripted 
in different computer languages and have got different functions.  The information about these 
systems are given in Table 1. All the used series are inhomogeneous:  because of the changes 
making in the system the law of fault detection curve changes is different over time. That is why in 
order to increase the correctness each of the series have been divided into sites with the help of the 
unchangeable law of fault detection. 
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Table 1 

№ Data Sources Information  
Number 

of 
points 

Numb 
er of inter 

vals 

1 [13] OS «Android», 
version 2.3 765  

2 [14], Chapter 4, file Csr1.dat No data 397  
3 [14], Chapter 4, file Csr2.dat No data 129  
4 [14], Chapter 4, file Csr3.dat No data 104  
5 [14], Chapter 4, file  SS3.dat No data 278  
6 [14], Chapter 4, file  Sys1.dat  No data 136  
7 [14], Chapter 7, file  Sys1.dat No data 136  
8 [14], Chapter 7, file  Sys2.dat No data  86  
9 [14], Chapter 7, file  Sys3.dat No data 207  
10 [14], Chapter 7, file  J1.dat  No data 62  
11 [14], Chapter 7, file  J2.dat  No data 181  
12 [14], Chapter 7, file  J3.dat No data 41  
13 [14], Chapter 7, file  J4.dat No data 114  
14 [14], Chapter 7, file  J5.dat No data 73  

15 [14], Chapter 8, file 8.txt Multiprocessor 
System 186  

16 [14], Chapter 9, file Odc1.dat Large IBM Project 1207  
17 [14], Chapter 9, file Odc3.dat No data 400  
18 [14], Chapter 10, file S2.dat No data 54  
19 [14], Chapter 10, file S27.dat No data 41  
20 [14], Chapter 10, file SS4.dat No data 197  

21 [14], Chapter 10, file SS1.dat The Language of 
Assembler 81  

22 https://github.com /AArnott/dotnetopenid C# 55 5 
23 https://github.com /activescaffold/active_scaffold Ruby 97 7 
24 https://github.com /adamzap/landslide Python  89 9 
25 https://github.com /addyosmani/backbone-fundamentals JavaScript 25 3 
26 https://github.com /AFNetworking/AFNetworking Objective-C 155 12 
27 https://github.com /ai/r18n Ruby 36 5 
28 https://github.com /akzhan/jwysiwyg JavaScript 194 18 
29 https://github.com /alankligman/gladius JavaScript 43 6 
30 https://github.com /AlanQuatermain/AQGridView Objective-C 88 11 
31 https://github.com /alecgorge/jsonapi Java 111 15 
32 https://github.com /alohaeditor/Aloha-Editor JavaScript 391 27 
33 https://github.com /amatsuda/kaminari Ruby 191 11 
34 https://github.com /andreasgal/B2G Rust 136 13 
35 https://github.com /andreasronge/neo4j Ruby 112 14 
36 https://github.com /andrewplummer/Sugar JavaScript 88 15 
37 https://github.com /andris9/Nodemailer JavaScript 50 6 
38 https://github.com /andymatuschak/Sparkle Objective-C 132 5 
39 https://github.com /antirez/hiredis C 70 11 
40 https://github.com /apneadiving/Google-Maps-for-Rails Ruby 138 12 
41 https://github.com /Araq/Nimrod Nimrod 91 10 
42 https://github.com /arsduo/koala Ruby 160 19 
43 https://github.com /asual/jquery-address C# 126 18 
44 https://github.com /away3d/away3d-core-fp11 JavaScript 195 28 
45 https://github.com /bartaz/impress.js Java 65 12 
46 https://github.com /BaseXdb/basex JavaScript 271 23 
47 https://github.com /Baystation12/Baystation12 No data 302 39 
48 https://github.com /bbatsov/ruby-style-guide Ruby 73 12 
49 https://github.com /benbarnett/jQuery-Animate-Enhanced JavaScript 67 14 
50 https://github.com /bengottlieb/Twitter-OAuth-iPhone Objective-C 102 17 
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     We have counted 522 intervals with the same law of change of detected fault amount 
over time. Along all these intervals for the ten analyzed models both 5220 estimations of reliability 
are made and their correctness determined. The correctness is obtained according to standard 
deviation (SD) criterion observed and calculated with the help of the fault value model and SD 
value  dispersion for  different Software systems. SD values are calculated on the formula: 

 

n

ff
SD

n

1i

2
icio




  

where n is the number of points in series, fio is the observed value and fic is the calculated value. 
The results of comparing the reliability estimation correctness by different models are represented 
in Table 2. Besides this Table demonstrates the number of series (in percentage to the total number 
of series) unprocessed by each of the model, minimum and maximum SD values obtained for a 
model, the average value according to the model as well as the logarithm for dispersion. The 
analysis of the Table has shown that only two of the investigated nine models – SSD and S-form 
model – are able to carry out the reliability estimation for all of 522 time intervals. 
 

Table2. The Results of Verification 

Model SSD Jel.-
Mor NHPP Schne 

iderw. Musa  
Weib. S-form. Duan Moranda’s 

Geom 
Musa- 
Okum. 

Unprocessed % 0,00 54,2 15,9 36,8 55,6 0,96 0,00 28,2 9,4 70,9 

Min. SD 0,00 0,23 0,02 0,00 0,01 0,00 0,00 0,09 0,14 0,00 

Max. SD 54,5 379 800 928 246 559,7 245,9 996 556,3 417,8 

Aver. SD 1,5 12,1 18,7 26,5 4,1 5,3 4,5 25,3 7,8 10,3 

 2lg   3,37 7,59 8,47 8,75 5,91 6,86 5,75 9,09 7,27 7,72 

 
According to this index the worst is Musa-Okumoto’s Logarithmic Model that was not able 

to process almost 71 % intervals. According to the SD and dispersion value the best turns out SSD 
Model. It shows 2,7 times more correct results than Musa’s Model which takes the second place as 
to the correctness. According to the dispersion value SSD Model demonstrates two and more orders 
of magnitude less than the value of the other analyzed models. The results of verification are 
represented graphically in Fig. 3. 
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Fig. 3. The results of verification 

 
     In this diagram the solid part shows the SD values, and the hatch – the dispersion value 
logarithms. We have used the logarithmic scale for dispersion because its absolute values vary in 
orders from model to model. 
 
4 CONCLUSIONS 
 

Thus the verification results show that nowadays SSD Model is the best as to the correctness 
of reliability estimation by a model. The low dispersion values demonstrate the fact that SSD Model 
constantly shows the most correct results in all the analyzed Software and can be considered as a 
universal model. Besides a doubtless advantage of SSD Model lies in its capability to predict the 
appearing of secondary faults in a Software system. At present SSD is the only model which can not 
only take into account the secondary fault impact but also foresee their number. 
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