
Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

14

VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa


Odessa National Polytechnic University, Odessa, Ukraine
e-mail: Dmitry.A.Maevsky@gmail.com

ABSTRACT

The paper concerns the verification of the existing Software reliability models and their comparison to a
new one based on the theory of Software system dynamics. A statistically significant number of observations
over the process of fault detecting in the fifty different Software systems has been used for the verification.
The results of comparison of estimation correctness of the nine most widely used reliability models to the
new one based on the theory of Software system dynamics are represented. It has been proven the Software
system dynamics model provided 2,7 times higher correctness of reliability estimation than the existing
reliability models.

1 INTRODUCTION
The problem of providing and forecasting the Software reliability of informational systems

is one of the most up to date in the modern program engineering. Nowadays the cost of program
failure can be measured not only in million dollars but also in million human lives. Since the
modern informational technologies have extensively entered all spheres of our life the majority of
mankind becomes in a sense a hostage of its own creature – Software systems. These systems are
relied on a considerable amount of functions of control in traffic, communications, power,
economy, defense and other areas control. In order to immobilize a big city activity a failure in a
system of control dealing with the work of traffic lights in its main transport lines is enough. The
consequences of computer errors in mobile communications and power systems are much more
dramatic. And a nuclear reactor management system failure at the nearby power station can be
catastrophic for all the continent.

 So the creation of the reliable computer systems and further keeping their reliability
during operation is of vital importance. A new and comparatively young trend in the reliability
theory – Software reliability (SR) – deals with estimation and forecasting the Software system
reliability. Its task is to develop the theoretical base of software reliability as well as models,
methods and practical technology for Software resources reliability determination.

2 THE PROBLEM NOWADAYS

At present there exist about twenty different Software reliability models (SRM). Such an
abundance conditions the necessity to classify them, and now we have got several schemes of
classification. The most popular one has been proposed by J.D.Musa and Okumoto [1]. It
distinguishes such characteristics as:

 — Model time. It determines a time counting system applied to the Model — either actual
astronomic (calendar) time or processor time, spent on the work with the given Software by the
moment of fault detection.

 — Model category. It determines the amount of faults which can be detected when
investigation time is infinite. According to this characteristic all models are classified into finite and
infinite.

 — Model type. It determines the probability distribution of random event occurrence, fault
detection in our case. Two types of distribution are used in the models of reliability: the Poisson
distribution and binomial distribution.

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

15

 — Model class. This characteristic is only used for finite category models and determines a
type of function describing the law of intensity change of fault appearing.

 — Family. This characteristic is only used for infinite models and possesses the same
meaning as the characteristic “class” for finite ones.

 In the above classification a particular attention should be focused on such a characteristic as
“model time” because it is a principal factor. First of all a time counting system is different for an
individual analyzing Software systems and for an analyzed Software itself. A human lives in his
(her) own time counting system breaking the stream of time into habitual time intervals – years,
months, days, hours, etc. For a human being the time is uninterrupted. From the viewpoint of a
Software system – if we are trying to imagine ourselves a program system – all events happen in
absolutely another way. Assume a researcher detected and eliminated a program fault in the evening
of November, 25, 2011 at 20 o’clock according to the local time. We see it is a natural way of time
counting for a human. Assume the 25th of November is Friday and after fault detection and
elimination the computer has been off over Saturday and Sunday. So the analyzed system was run
and started operating only at 8 o’clock in the morning on Monday. The next fault was detected by
the same researcher at 9 o’clock in the morning on Monday, November, 28. What is the time
interval between these two sequential detections? From the human viewpoint it is 61 hours. And
what is it for a Software system (SS)? While the computer was off the Software system was not
downloaded in the memory and executed. It is possible to say that over sixty hours the system did
not exist in general and all the processes in it were stopped! It “immersed itself in suspended
animation” at 20 o’clock on Friday and “raised again” at 8 o’clock on Monday morning. So from
the viewpoint of the system (you understand here we are trying to make the system “human” and
suppose that it is able to have its own opinion) the period of time between two fault detections is an
hour. We have proven that SS time was discontinuous and consisted of separate intervals during
which it was active.

 We can ask the question: what time is more correct in estimating the hazard rate? Certainly,
the system operation time, i.e. the processor time. But when using for astronomical time modeling,
the cumulative curve has gaps on the axis of abscess. The data of the axis of abscess (time) have
changed, and the ones of the ordinate axis (cumulative fault number) have not. It makes a false
impression of dissimilar fault detection rate which distorts the modeling results and decreases the
prediction ability of the model. It can be clearly seen in the diagram represented in Fig.1.

Fig. 1. The cumulative curve gaps in using the astronomical time

Cumul. fault
number

Time

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

16

The data for the diagram have been taken from the appendix for [14] (Chapter 4, file Csr2.dat).
Along the axis of abscess the moments of time are represented (the scale is not mentioned in the
literature), along the ordinate axis – the cumulative fault number.

In the diagram we can see several gaps of mentioned type. For example, take the beginning site
of the curve before the first gap. According to the diagram the initial point of the curve has got the
coordinates (0, 0), а конечная – (14500, 76). Thus for 14500 time units 76 faults are detected, the

average rate of detection is 00520
14500

76 , fault per time unit. Then the curve demonstrates

another distinct gap – the point has got the coordinates (24500, 78), i.e. for the next 10000 time

units only two faults are detected. The fault detection rate in this site equals 00020
10000

2 , fault

per time unit, i.e. 26 times less than in the previous one! As we see in the diagram the fault
detection rate is abruptly restored to its original value in the next third site again. It is obvious that
the jumps of detection rate of such kind cannot be explained by anything but the ordinary
interruptions in observation.

 If the processor time were used the mentioned gap would not appear in spite of the
interruption conditioned by some subjective factors. It is necessary to note though the instruction
provides the astronomical time application in the model, the processor time can be used as well.
And all the mathematical formula and equations remains the same.

 In order to estimate the correctness of reliability index modeling the examination of the most
popular models belonging to different branches of the described classification has been carried out.
Let us consider the main characteristics of these models.

 1. Jelinski-Moranda’s Model [2]. Time – astronomical; category – finite; type – binomial;
class – exponential. Assumptions: failure intensity is proportional to the actual fault number in the
program and remains constant in the time interval between any two neighboring moments of fault
detecting; detection of all the faults in the program is equiprobable and independent; all the faults
have got similar degree of importance; time until the detection of the next Software fault is
distributed exponentially.

 2. Goel-Okumoto’s Model [3]. Time – astronomical; category – finite; type – Poisson; class
– exponential. Assumptions: all the SS faults are mutually independent; the detected faults are
eliminated immediately; the fault detection process is a stream of homogeneous events and has got
the Poisson distribution.

 3. Schneidewind’s Model [4]. Time – astronomical; category – finite; type – Poisson; class –
exponential. The main distinctive peculiarity of this model – the failure intensity determining in the
later time is supposed to be more correct for prediction of the further process development than the
one measured at the earlier stages. Assumptions: the fault number in the given time interval is
independent on the fault number in the other intervals; the detected fault number decreases from
interval to interval; the failure intensity is proportional to the fault number detecting at that exact
moment.

 4. Musa’s Model [5]. Time –processor; category – finite; type – Poisson; class – exponential.
Assumptions: the fault detection process is the Poisson process; the fault detection is proportional to
the number of faults which were not detected yet.

 5. Weibull’s Model [6]. Time – processor; category – finite; type –binomial; class –
exponential. Assumptions: at the initial moment of observation there is a finite number of faults in
SS; time before the fault detection is a stochastic value having probability subjected to Weibull
distribution.

 6. S-form Model [7]. Time – processor; category – finite; type – Poisson; class – gamma
distribution. Assumptions: the fault detection process is the Poisson process; in detecting a fault it is
immediately eliminated without entering new ones.

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

17

7. Duan’s Model [8]. Time – astronomical; category – infinite; type – Poisson; family – gamma
distribution. Assumptions: the cumulative fault detection is the Poisson process with the function of
distribution    tt , where  and  – are positive numbers.

8. Moranda’s Geometrical Model [9]. Time – astronomical; category – infinite; type – Poisson;
family – exponential. Assumption: the failure intensity is a geometric progression   1iDt 
with denominator 10  ; the probability of detection of every certain fault is subjected to the
exponential distribution law.

9. Musa-Okumoto’s Logarithmic Model [10]. Time – astronomical; category – infinite; type –
Poisson; family – exponential. Assumption: the failure intensity is decreased over time according to
the exponential law; the fault detection process is the Poisson process.

10. Software System Dynamics (SSD) Model. The SSD theory fundamentals have been
developed in [11] and [12] as an absolutely new deterministic approach to formulating the
reliability parameters taking into account the secondary fault influence. SSD is different from the
existing Software reliability theory because it is not based on the probability theory but on the non-
equilibrium process theory, and it does not consider the fault appearing in Software system as an
occasional event but as a result of deterministic fault flow impact.

SSD is based on the following assumptions:
1. SS is an open non-equilibrium system that interacts with its subject area ac-cording to the

laws of the non-equilibrium processes. This is a new point of view on the program system. It is
assumed that the properties of a software system are similar ones of other open systems.

2. The state of the SS is characterized by a special state function f(t) – the number of the
defects containing in it. Here it means the number of primary or secondary defects.

3. Disappearing and appearing the defects in the SS is the result of the joint action of the direct
(outcoming) and reverse (incoming) defect flows. It is implied that the primary defects are removed
from the system by the direct flow and secondary defects are appeared in the system as a result of
the reverse flow.

4. The intensity of each flow is proportional to the number of defects that this flow forms. This
is a basic principle of the non-equilibrium processes theory. For a software system, this principle
means that the reduction the number of defects causes the decrease of their detection rate.

5. All defects are equivalent, and participate in the formation of the flow in the same way,
regardless of the causes, location, and type of defect (the principle of equivalence).

6. Function f(t) is differentiable on the whole domain (the principle of continuity).
The basic concept SSD is the one of software defect flows. Each defect is considered as an

integral part of the total flow, which obeys not the laws of the probability theory but the laws of
identification and evolution of flows in non-equilibrium systems. The identification of the defect
flows in the SS is shown in Fig. 2.

In the SS operation defects are the causes that the result which is produced by SS does not
correspond to the result expected by the subject area. This discrepancy is detected by the user which
is in contact with the SS on the one hand and with its subject area on the other. Thus, firstly the user
acts as an error detector, and secondly – a kind of "contact surface" between the SS and its subject
area. We assume that the user is ideal, that is, he detects and records each defect at the time of its
identification.

In the process of correcting the defect disappears from the SS due to changes made in its code.
This disappearance can be supposed as a result of the of defects removal from the SS. Considering
this process in time, we obtain the flow of defects from the SS through the "contact surface", i.e. the
user. This flow is shown by arrows "Detection" and "Correction" in Fig. 2.

It is possible to insert additional "secondary" defects in the process of correcting defects in the
SS. The process of inserting the secondary defect may be regarded as the second, counter-flow of
defects, which operates in the direction from the subject area to the SS.

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

18

Fig. 2. Defect emergence in the SS

We will numerically characterize the flow of defects by the rate (intensity) of the flow, which

can be determined by hypothesis 6 (principle of continuity). Taking into account the outcoming
flow only, SS is characterized by the number of defects, which are contained in the system –
coordinate f1(t). The defects leave the system for the subject area. It has just one degree of freedom,
and is described by the differential equation of first order. In the case of taking into account of the
second process (insertion of secondary defects), its coordinate is their current number – f2(t). Thus
we obtain two coordinates – f1(t) and f2(t). SS in this case is a system with two degrees of freedom
and described by differential equations of second order.

SSD is describes by the following autonomous system of differential equations:














2112

2211

fAfA
dt
df

fAfA
dt
df

2

1

 She’s solution allows to determine the time variation of the primary and secondary defects
existing in SS:

 tAhosceFf t-A1
201 

 tAhinseFf tA
2 20

1  

The presented mathematical equations give the opportunity to estimate the number of the
primary and secondary faults in the Software system and carry out a comparative analysis of
correctness of the described reliability models.

3 THE RESULTS OF INVESTIGATION
As the initial data for the described reliability model verification we have used the data of the

fault detection process analyzed in fifty different-type Software system. All of them were scripted
in different computer languages and have got different functions. The information about these
systems are given in Table 1. All the used series are inhomogeneous: because of the changes
making in the system the law of fault detection curve changes is different over time. That is why in
order to increase the correctness each of the series have been divided into sites with the help of the
unchangeable law of fault detection.

Software
System

(SS)

Subject Area

Detection

Creation

Correction

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

19

Table 1

№ Data Sources Information
Number

of
points

Numb
er of inter

vals

1 [13] OS «Android»,
version 2.3 765

2 [14], Chapter 4, file Csr1.dat No data 397
3 [14], Chapter 4, file Csr2.dat No data 129
4 [14], Chapter 4, file Csr3.dat No data 104
5 [14], Chapter 4, file SS3.dat No data 278
6 [14], Chapter 4, file Sys1.dat No data 136
7 [14], Chapter 7, file Sys1.dat No data 136
8 [14], Chapter 7, file Sys2.dat No data 86
9 [14], Chapter 7, file Sys3.dat No data 207
10 [14], Chapter 7, file J1.dat No data 62
11 [14], Chapter 7, file J2.dat No data 181
12 [14], Chapter 7, file J3.dat No data 41
13 [14], Chapter 7, file J4.dat No data 114
14 [14], Chapter 7, file J5.dat No data 73

15 [14], Chapter 8, file 8.txt Multiprocessor
System 186

16 [14], Chapter 9, file Odc1.dat Large IBM Project 1207
17 [14], Chapter 9, file Odc3.dat No data 400
18 [14], Chapter 10, file S2.dat No data 54
19 [14], Chapter 10, file S27.dat No data 41
20 [14], Chapter 10, file SS4.dat No data 197

21 [14], Chapter 10, file SS1.dat The Language of
Assembler 81

22 https://github.com /AArnott/dotnetopenid C# 55 5
23 https://github.com /activescaffold/active_scaffold Ruby 97 7
24 https://github.com /adamzap/landslide Python 89 9
25 https://github.com /addyosmani/backbone-fundamentals JavaScript 25 3
26 https://github.com /AFNetworking/AFNetworking Objective-C 155 12
27 https://github.com /ai/r18n Ruby 36 5
28 https://github.com /akzhan/jwysiwyg JavaScript 194 18
29 https://github.com /alankligman/gladius JavaScript 43 6
30 https://github.com /AlanQuatermain/AQGridView Objective-C 88 11
31 https://github.com /alecgorge/jsonapi Java 111 15
32 https://github.com /alohaeditor/Aloha-Editor JavaScript 391 27
33 https://github.com /amatsuda/kaminari Ruby 191 11
34 https://github.com /andreasgal/B2G Rust 136 13
35 https://github.com /andreasronge/neo4j Ruby 112 14
36 https://github.com /andrewplummer/Sugar JavaScript 88 15
37 https://github.com /andris9/Nodemailer JavaScript 50 6
38 https://github.com /andymatuschak/Sparkle Objective-C 132 5
39 https://github.com /antirez/hiredis C 70 11
40 https://github.com /apneadiving/Google-Maps-for-Rails Ruby 138 12
41 https://github.com /Araq/Nimrod Nimrod 91 10
42 https://github.com /arsduo/koala Ruby 160 19
43 https://github.com /asual/jquery-address C# 126 18
44 https://github.com /away3d/away3d-core-fp11 JavaScript 195 28
45 https://github.com /bartaz/impress.js Java 65 12
46 https://github.com /BaseXdb/basex JavaScript 271 23
47 https://github.com /Baystation12/Baystation12 No data 302 39
48 https://github.com /bbatsov/ruby-style-guide Ruby 73 12
49 https://github.com /benbarnett/jQuery-Animate-Enhanced JavaScript 67 14
50 https://github.com /bengottlieb/Twitter-OAuth-iPhone Objective-C 102 17

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

20

 We have counted 522 intervals with the same law of change of detected fault amount
over time. Along all these intervals for the ten analyzed models both 5220 estimations of reliability
are made and their correctness determined. The correctness is obtained according to standard
deviation (SD) criterion observed and calculated with the help of the fault value model and SD
value dispersion for different Software systems. SD values are calculated on the formula:

 

n

ff
SD

n

1i

2
icio






where n is the number of points in series, fio is the observed value and fic is the calculated value.
The results of comparing the reliability estimation correctness by different models are represented
in Table 2. Besides this Table demonstrates the number of series (in percentage to the total number
of series) unprocessed by each of the model, minimum and maximum SD values obtained for a
model, the average value according to the model as well as the logarithm for dispersion. The
analysis of the Table has shown that only two of the investigated nine models – SSD and S-form
model – are able to carry out the reliability estimation for all of 522 time intervals.

Table2. The Results of Verification

Model SSD Jel.-
Mor NHPP Schne

iderw. Musa
Weib. S-form. Duan Moranda’s

Geom
Musa-
Okum.

Unprocessed % 0,00 54,2 15,9 36,8 55,6 0,96 0,00 28,2 9,4 70,9

Min. SD 0,00 0,23 0,02 0,00 0,01 0,00 0,00 0,09 0,14 0,00

Max. SD 54,5 379 800 928 246 559,7 245,9 996 556,3 417,8

Aver. SD 1,5 12,1 18,7 26,5 4,1 5,3 4,5 25,3 7,8 10,3

 2lg  3,37 7,59 8,47 8,75 5,91 6,86 5,75 9,09 7,27 7,72

According to this index the worst is Musa-Okumoto’s Logarithmic Model that was not able

to process almost 71 % intervals. According to the SD and dispersion value the best turns out SSD
Model. It shows 2,7 times more correct results than Musa’s Model which takes the second place as
to the correctness. According to the dispersion value SSD Model demonstrates two and more orders
of magnitude less than the value of the other analyzed models. The results of verification are
represented graphically in Fig. 3.

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

21

Fig. 3. The results of verification

 In this diagram the solid part shows the SD values, and the hatch – the dispersion value
logarithms. We have used the logarithmic scale for dispersion because its absolute values vary in
orders from model to model.

4 CONCLUSIONS

Thus the verification results show that nowadays SSD Model is the best as to the correctness
of reliability estimation by a model. The low dispersion values demonstrate the fact that SSD Model
constantly shows the most correct results in all the analyzed Software and can be considered as a
universal model. Besides a doubtless advantage of SSD Model lies in its capability to predict the
appearing of secondary faults in a Software system. At present SSD is the only model which can not
only take into account the secondary fault impact but also foresee their number.

5 REFERENCES
1. Musa, J. D. Software Reliability Models: Con-cepts, Classification, Comparisons, and

Practice / J. D. Musa, K. Okumoto // Electronic Systems Effectiveness and Life Cycle Costing,
NATO ASI Series, F3, Springer-Verlag, Heidelberg, p. 395 – 424.

2. Moranda P.B. Final Report of Software Relia-bility Study. — / P.B. Moranda, J.
Jelinski // McDonnel Douglas Astronautics Company. MDC Report № 63921, dec. – 1972. –
51 с.

3. Goel, A.L., Time-Dependent Error-Detection Rate Model for Software and Other
Performance Measures / A.L. Goel, K. Okumoto // IEEE Transactions on Reliability, v. R-28,
№ 5, August. – 1979. – P. 206 – 211.

4. Schneidewind, N.F. Software Reliability Model with Optimal Selection of Failure Data
/ N.F. Schneidewind //IEEE Transactions on Software Engi-neering. – Vol. 19. – No. 11. Nov.
– 1993. P. 1095 – 1104

5. Musa J.D. Validity of Execution time theory of software reliability // IEEE Trans. on
reliability. – 1979. – № 3. – P.199–205.

6. Quadri, S. M. K. Software Reliability Growth Modeling with New Modified Weibull
Testing–effort and Optimal Release Policy / S. M. K. Quadri, N. Ahmad // International Journal

0

5

10

15

20

25

30

Dmitry A. Maevsky, Elena J. Maevskaya, Oleg P. Jekov, Ludmila N. Shapa – VERIFICATION OF THE SOFTWARE RELIABILITY MODELS

RT&A # 03 (34)

(Vol.9) 2014, September

22

of Computer Applications. – Vol. 6. – 2010. – № 12. – С. 1 – 10.
7. Yamada, S. S-Shaped Reliability Growth Mod-eling for Software Error Detection / S.

Yamada, M. Ohba, S. Osaki //IEEE Trans-actions on Reliability. Vol. R-32. No. 5, Dec. –
1983. – P. 475 – 478.

8. Duan J.T. Learning Curve Approach to Relia-bility Monitoring // IEEE Trans. on Aero-
space. – 1964. – Vol. 2. – P. 563 – 566.

9. Moranda, P.B. Event-Altered Rate Models for General Reliability Analysis / P.B.
Moranda // IEEE Transactions on Reliability. Vol.R-28. – No. 5. – 1979. – С.376 – 381

10. Musa, J.D. A Logarithmic Poisson Time Model for Software Reliability Measurement /
J.D.Musa, K. Okumoto //Proc. Sevent International Conference on Software Engineering. –
Orlando, Florida: – 1984. – P. 230 – 238.

11. Maevsky D. A. A New Approach to Software Reliability / Dmitry A. Maevsky //
Lecture Notes in Computer Science: Software Engineering for Resilient Systems. – № 8166. –
Berlin: Springer, 2013. – pp. 156 – 168.

12. Maevsky, D. A. Fundamentals of software stability theory [Electronic resource] / D. A.
Maevsky // Reliability: Theory & Applications. – 2012. – Vol.7. – № 4(27). – p. 31 – 40.
Access mode: http://www.gnedenko-forum.org/Journal/2012/ RTA_4_2012.pdf

13. Android – An Open Handset Alliance Project [Electronic resource]. Access mode:
http://code. google. com/p/android/issues/list

14. Lyu, M. R. Handbook of Software Reliability Engineering / M. R. Lyu. – New York:
McGraw-Hill Company. – 1996. – 805 p.

