ASYMPTOTIC OF CYCLY EXISTENCE IN ORIENTED GRAPH WITH LOW RELIABLE EDGES

G. Tsitsiashvili
Russia, Vladivostok, IAM FEB RAS, FEFU
e-mail: guram@iam.dvo.ru

Abstract

In this paper a power asymptotic of a probability that there is a cycle in a random oriented graph with n nodes and low reliable edges is constructed. An accelerated algorithm for a calculation of asymptotic coefficients with $O(s(n) \ln n)$ products, where $s(n)$ is an amount of products in a multiplication of two matrixes with a size $n \times n$, is constructed.

Keywords: a cycle, an oriented graph, an edge, a probability.

1. INTRODUCTION

We consider a problem of power asymptotic construction for a probability of a cycle existence in a random graph with low reliable edges. A presence of cycles in a deterministic oriented graph allows to factorize it by a relation of a cycle equivalence [1], [2]. A calculation of an amount of cycles with minimal length may be applied in an investigation of free scale networks which receive large spread last years. [3, Theorems $10-12$]. An algorithm of a calculation of power asymptotic coefficients with products amount $O(s(n) \ln n)$, where $s(n)$ is an amount of products for a multiplication of two matrixes with a size $n \times n$, is constructed.

2. ASYMPTOTIC OF CYCLE EXISTENCE

Consider an oriented graph G with nodes $1, \ldots, n$, without loops and fold edges. Denote $A=$ $\left\|a_{i j}\right\|_{i, j=1}^{n}$ its adjacency matrix, D - minimal cycle length, C - an amount of cycles with minimal length in the graph G. Construct a model of an oriented random graph G_{*} with nodes $1, \ldots, n$ in which only edges of the graph G may enter. The edge (i, j) enters with the probability $p_{i j}=h, h \rightarrow$ 0 (it is low reliable). Random events that different edges enter the graph G_{*} are independent. Denote S the event that there is a cycle in the graph G_{*} and put $P(S)$ its probability.
Theorem 1. The limit relation $P(S) \sim C h^{D}, h \rightarrow 0$ is true.
Proof. As $=\mathrm{U}_{1<k \leq n} S_{k}$, where S_{k} is the event that there is simple (without repetitions of nodes) cycle with the length k in the graph G_{*} so $P(S)$ satisfies the relation

$$
P(S)=P\left(\mathrm{U}_{1<k \leq n} S_{k}\right)=P\left(\mathrm{U}_{D \leq k \leq n} S_{k}\right) \sim P\left(S_{D}\right) \sim C\left(h^{D}\right), h \rightarrow 0 .
$$

Theorem 1 is proved.
Define $c_{k}=\operatorname{tr} A^{k}$ and calculate asymptotic constants D, C.
Theorem 2. If $\min \left(k: c_{k}>0\right) \leq n$ then $D=\min \left(k: c_{k}>0\right), C=\frac{c_{D}}{D}$.
Proof. It is well known that the element $a_{i i}^{(k)}$ of the matrix A^{k} equals the amount of ways ($i=$ $\left.i_{1}, \ldots, i_{k-1}, i_{k}, i\right)$ with the length k in the oriented graph G. If $k=D$ then all cycles with the length k
contain k different nodes. Indeed if not there is a cycle with the length k passes through some node more than one time. So this cycle has length smaller than k.
Consequently the equality $D=\min \left(k: c_{k}>0\right)$ is true and all cycles with the length D are simple. So the cycle ($i=i_{1}, \ldots, i_{k-1}, i_{k}, i$) adds units in k diagonal elements of the matrix A^{k} and the equality $C=\frac{c_{D}}{D}$ takes place. Theorem 2 is proved.
Assume that the constant D is known and $k_{1}=\min \left(k: 2^{k}>n\right)$. Represent the constant D in the binary-number system and write it in the form

$$
D=2^{l_{1}}+2^{l_{2}}+\cdots+2^{l_{r}}, 0 \leq l_{1}<l_{2}<\cdots<l_{r} \leq k_{1} .
$$

Calculate now the matrixes $A^{2^{1}}=A \times A, A^{2^{2}}=A^{2^{1}} \times A^{2^{1}}, \ldots, A^{2^{k_{1}}}=A^{2^{k_{1}-1}} \times A^{2^{k_{1}-1}}$, using $k_{1} s(n)=O(s(n) \ln n)$ products. Then the constant C may be calculated by the formula

$$
\begin{equation*}
C=\frac{\operatorname{tr}\left(A^{l_{1}} \cdot A^{l_{2}} \ldots A^{2^{l} r}\right)}{D} \tag{1}
\end{equation*}
$$

using $O(s(n) \ln n)$ products. The constant $D=\min \left(k: \operatorname{tr} A^{k}>0\right)$ may be found by a sequential calculation of the matrixes $A^{k}, 1<k \leq n$, using $O(s(n) n)$ products. So there is a problem to accelerate an algorithm of the constant D calculation.

3. ACCELERATED ALGORITHM OF CONSTANT D CALCULATION

Put $B=A+I$ where I is the unit matrix and denote $d_{k}=\operatorname{tr} B^{k}-n$.
Theorem 3. If Theorem 2 condition is true then

$$
\begin{equation*}
D=\min \left(k: b_{k}>0\right), 0=b_{1}<b_{2}<\cdots<b_{n} . \tag{2}
\end{equation*}
$$

Proof. The relation (2) is a corollary of the equality

$$
b_{k}=\operatorname{tr}(A+I)^{k}-n=\sum_{j=1}^{k} C_{k}^{j} \operatorname{tr} A^{j},
$$

where C_{k}^{j} is a number of combination from k by j.
Using Theorem 3 and an idea of a dichotomy dividing for a search of a root of monotonically increasing and continuous function construct the following algorithm of the constant D definition. Using the formulas $B^{2^{t+1}}=B^{2^{t}} \cdot B^{2^{t}}, t>0$, calculate by $s(n)$ products. If $d_{2^{k_{1}}}=0$ then we stop calculation and put formally $D=\infty, C=0$. If not define $q_{1}=\min \left(k: d_{2^{k}}>0\right), q_{1}<$ $\left[\log _{2} n\right]+1$, where $[a]$ is an integer part of a real number a.

Denote $P=2^{q_{1}}, Q=2^{q_{1}-1}$ and construct the following recurrent procedure: if $d_{Q+2^{q_{1}-2}}>0$ then $P:=Q+2^{q_{1}-2}$, else $Q:=Q+2^{q_{1}-2}$, if $d_{Q+2^{q_{1}-3}}>0$ then $P:=Q+2^{q_{1}-3}$, else $Q:=Q+2^{q_{1}-3}$ and so on. This procedure continues $q_{1}-1$ steps till we obtain the equality $P-Q=1$. Then the relation $D=P$ is true. To fulfill this recurrent procedure it is necessary to make $O(s(n) \ln n)$ products. Theorem 3 is proved.
Consequently the asymptotic constants D, C may be calculated by $O(s(n) \ln n)$ products.

4. CONCLUSION REMARKS

For the standard algorithm of the multiplication of two matrixes with the size $n \times n s(n)=O\left(n^{3}\right)$, for F. Strassen algorithm $s(n)=O\left(n^{2.81}\right)$, for D. Coppersmith and Sh . Winograd algorithm $s(n)=O\left(n^{2.3755}\right)$ and for V. Williams algorithm $s(n)=O\left(n^{2.3727}\right)$ [4]. But main part of calculators consider that the F. Strassen algorithm is the most applicable among algorithms accelerated in a comparison with the standard one.

Assume that elements of the matrix $V=\left\|v_{i j}\right\|_{i, j=1}^{n}, v_{i j} \geq 0$, characterize weights of the graph G edges and in the model of the random graph G_{*} the probability $p_{i j} \sim v_{i j} h, h \rightarrow 0$. Then it is not complicated to obtain that the probability of the cycle existence in the graph G_{*} satisfies the relation $P(S) \sim \frac{\operatorname{tr} V^{D}}{D}, h \rightarrow 0$. And the matrix V^{D} is calculated similar to the matrix A^{D} by $O(s(n) \ln n)$ products.

REFERENCES

1. Mirzayanov M.R. 2006 . On minimal strongly connected congruencies of a directed path. Izvestiiia Saratovskogo Universiteta. Mathematika. Mekhanika. Informatika. Vol. 6 (1/2) P. 9195 (In Russian).
2. Karmanova E.O. 2012. Congruences of Paths: Some combinatory properties. Prikladnaya diskretnaya mathematika. Vol. 2 (16). P. 86-89. (In Russian).
3. Raigorodskiy A.M. 2010. Models of random graphs and their application. Trudi MFTI. Vol. 2:4. P. 130-140. (In Russian).
4. Cohn H., Kleinberg R., Szegedy B. and Umans Ch. Group-theoretic algorithms for matrix multiplication. Arhiv: math. Gr/0511460. Proceedings of the 46th Annual symposium on foundations of Computer Science, 23-25 October 2005, Pittsburgh, PA, IEEE Computer Society. P 379-388.
