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ABSTRACT

In this paper a power asymptotic of a probability that there is a cycle in a random oriented graph with n
nodes and low reliable edges is constructed. An accelerated algorithm for a calculation of asymptotic
coefficients with O(s(n)Inn) products, where s(n) is an amount of products in a multiplication of two
matrixes with a size n X n, is constructed.
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1. INTRODUCTION

We consider a problem of power asymptotic construction for a probability of a cycle existence in a
random graph with low reliable edges. A presence of cycles in a deterministic oriented graph allows
to factorize it by a relation of a cycle equivalence [1], [2]. A calculation of an amount of cycles with
minimal length may be applied in an investigation of free scale networks which receive large spread
last years. [3, Theorems 10 - 12]. An algorithm of a calculation of power asymptotic coefficients
with products amount O (s(n)In n), where s(n) is an amount of products for a multiplication of two
matrixes with a size n X n, is constructed.

2. ASYMPTOTIC OF CYCLE EXISTENCE

Consider an oriented graph G with nodes 1,...,n, without loops and fold edges. Denote A =
||ai j||:l,,=1 its adjacency matrix, D - minimal cycle length, C - an amount of cycles with minimal
length in the graph G. Construct a model of an oriented random graph G, with nodes 1,...,n in
which only edges of the graph G may enter. The edge (i, j) enters with the probability p;; = h, h —

0 (it 1s low reliable). Random events that different edges enter the graph G, are independent. Denote
S the event that there is a cycle in the graph G, and put P(S) its probability.

Theorem 1. The limit relation P(S)~ChP, h - 0 is true.

Proof. As = Uj<k<n Sk , Where S is the event that there is simple (without repetitions of nodes)
cycle with the length k& in the graph G, so P(S) satisfies the relation

P(S) = P(U1<k<n Sk) = P(Upsk<n Sk)~P(Sp)~C(hP), h - 0.

Theorem 1 is proved.

Define ¢, = trA¥ and calculate asymptotic constants D, C.

Theorem 2. If min (k: ¢, >0) <n thenD = min (k:c, >0),C = %D.
Proof. It is well known that the element ag( ) of the matrix A* equals the amount of ways (i =
i1, e, lg—1, i, 1) With the length & in the oriented graph G. If k = D then all cycles with the length &
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contain k different nodes. Indeed if not there is a cycle with the length & passes through some node
more than one time. So this cycle has length smaller than £.

Consequently the equality D = min (k: ¢, > 0) is true and all cycles with the length D are
simple. So the cycle (i =iy, ..., Ix_1, ik, i) adds units in k diagonal elements of the matrix A¥ and
the equality C = CFD takes place. Theorem 2 is proved.

Assume that the constant D is known and k; = min (k: 2% > n). Represent the constant D in
the binary-number system and write it in the form

D=2h42bt+... 42 0<; <, <<l <kj.

Calculate now the matrixes A% = A x A, A? = A" x A?',..., A?" = 427" x 427", using

kis(n) = 0(s(n)In n) products. Then the constant C may be calculated by the formula
tr(All-Alz-...-Ale)

§ (1)
using O(s(n)In n) products. The constant D =  min (k: trA¥ > 0) may be found by a sequential

calculation of the matrixes A%, 1 < k < n, using O(s(n)n) products. So there is a problem to
accelerate an algorithm of the constant D calculation.

3. ACCELERATED ALGORITHM OF CONSTANT D CALCULATION
Put B = A + I where I is the unit matrix and denote d), = trB* — n.
Theorem 3. If Theorem 2 condition is true then
D= min(k:b,>0),0=b; <b,<--<b,. 2
Proof. The relation (2) is a corollary of the equality
by =tr(A+D*—-—n= Zle C,{ trA’ |
where C ,ﬂ is a number of combination from & by ;.

Using Theorem 3 and an idea of a dichotomy dividing for a search of a root of monotonically
increasing and continuous function construct the following algorithm of the constant D definition.

Using the formulas B2 = B2 - B, t > 0, calculate by s(n) products. If d,k, = 0 then we stop
calculation and put formally D = oo, C =0. If not define q; = min (k: dyx >0), q; <
[log,n] + 1, where [a] is an integer part of a real number a.

Denote P = 291, Q = 29171 and construct the following recurrent procedure: if dgipa1-2 >0 then
P:=Q+2172 else Q:==Q +2172, if dy,,a:-3 > 0 then P := Q + 2173, else Q := Q + 2073
and so on. This procedure continues q; — 1 steps till we obtain the equality P — Q = 1. Then the
relation D = P is true. To fulfill this recurrent procedure it is necessary to make O(s(n)Ilnn)
products. Theorem 3 is proved.

Consequently the asymptotic constants D, C may be calculated by O (s(n) Inn) products.
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4. CONCLUSION REMARKS

For the standard algorithm of the multiplication of two matrixes with the sizen X n s(n) = 0(n3),
for F. Strassen algorithm s(n) = 0(n?®'), for D. Coppersmith and Sh. Winograd algorithm
s(n) = 0(n?37%%) and for V. Williams algorithm s(n) = 0(n?3727) [4]. But main part of
calculators consider that the F. Strassen algorithm is the most applicable among algorithms
accelerated in a comparison with the standard one.

Assume that elements of the matrix V = ||vi j||:l,,_1, v;j = 0, characterize weights of the graph G

edges and in the model of the random graph G, the probability p;;~v;;h, h — 0. Then it is not

complicated to obtain that the probability of the cycle existence in the graph G, satisfies the relation

p ( S) - trvD
-

products.

h - 0. And the matrix V? is calculated similar to the matrix A by 0(s(n)Ilnn)
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