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ABSTRACT 

 
In this paper, probabilistic models for five repairable redundant network flow systems have been developed to analyze 

and compare their availability and profit. Explicit expressions for steady-state availability, busy period of repairman and 

profit function for the five redundant network flow systems are developed. Furthermore, we compare the five redundant 

network flow systems based on their availability and profit and found that configuration II is more reliable and 

profitable than the remaining configurations. 

 

1. INTRODUCTION 
 

Reliability connection between networks can be usually achieved through a number of redundant 

paths/units, thus making the connection reliable. The reliability of these network systems is of 

increasing importance since the failure of some components may lead to disastrous results. Example 

of such systems include water distribution, oil and gas supply, power generation and transmission, 

transport by rail and by road, communication system consisting of a transmitter, relay stations and a 

receiver, where a signal from transmitter is received by two consecutive relay and distributed to 

other relay stations before it finally arrived at the receiver for consumptions. Availability and profit 

of an industrial system are becoming an increasingly important issue. Where the availability of a 

system increases, the related profit will also increase. High system reliability and availability plays 

a vital role towards industrial growth as the profit is directly dependent on production volume 

which depends upon system performance. Because of their prevalence in power plants, 

manufacturing systems, and industrial systems, many researchers have studied reliability 

comparison of different systems, a great number of models have been introduced to describe the 

behaviour and performance of the systems. Evaluation of reliability of network flows with 

stochastic capacity and cost constraint was studied by Fathabadi and Khodaei (2012). Ke and Chu 

(2007) performed comparative analysis of availability of redundant system. Wang and Chen (2009) 

performed comparative analysis of availability of three systems with general repairs, reboot delay 

and switching failure. Wang et al. (2012) performed comparison of availability between two 

systems with warm standby units and different imperfect coverage. Wang et al. (2006) performed 

comparison of reliability and availability between four systems with warm standby components 

standby switching failures. Yusuf (2013) performed comparative analysis of some reliability 
characteristics between two systems requiring supporting devices for operation. Yusuf (2014) 

performed comparative analysis of profit between three dissimilar repairable redundant systems 

using supporting external device for operation.  

The present paper is devoted to modelling and analysis steady-state availability, busy period and 

profit of five redundant network flow systems. The contributions of this paper are twofold. Based 

on the first order linear differential equations, explicit expressions of steady-state availability, busy 

period and profit function for the five redundant network flow systems are developed. Comparisons 

are performed based on assumed numerical values given to system parameters to determine the 

optimal system using MATLAB. 
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2. DESCRIPTION OF THE CONFIGURATIONS 

 

We consider five dissimilar redundant network flow systems as follows. The first configuration 

consists of two subsystems A and B arranged in parallel has two units each. The second 

configuration consists of three subsystems A, B and C. With subsystems A and B in series and 

parallel to subsystem C. Subsystem A has one unit while subsystems B and C two units each. The 

third configuration consists of three subsystems A, B and C with subsystem A and B in parallel and 

series to subsystem C with two units each. The fourth configuration is parallel-series system with 

two units in series in subsystem A and parallel to subsystems B and C. Subsystems B and C are in 

series and have two units each. The fifth configuration consists of the three subsystems A, B and C 

in series. Subsystem A has two units in cold standby, subsystem B consists of 2-out-of -3 units 

while subsystem C consists of one unit.  

It is assume that switching from standby to operation is perfect and instantaneous. We also assume 

that two or more units cannot fail simultaneously. Each active unit fails independent of the state of 

others. Whenever a unit fails with failure rate , it is immediately sent to service station for repair 

with service rate   and the standby unit/subsystem is immediately switched into operation.  

 

3. MODELS FORMULATION 

 

3.1 Availability, Busy period and Profit of Configuration I 

For the analysis of availability case of configuration I, we define ( )iP t to be the probability that the 

system at time 0t   is in state iS . Also let ( )P t  be the probability row vector at time t . The initial 

condition for this problem is:          0 1 2 3 4 11(0) [ 0 , 0 , 0 , 0 , 0 ,..., (0)]P P P P P P P   =

 1,0,0,0,0,0,0,0,0,0,0,0
 

The steady-state equations for configuration 1 can be expressed as follows: 

1

( )dP t
Q P

dt
                                                                                                                                      (1)                                           

This can be written in the matrix form as 

1P Q P                                                                                                                                              (2)                                 

where                                                                         

 

1

2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0

X

X

Y

X

Y
Q

X

  

  

  

 

  

 

  

 

 

 

  

 

 
 


 
 
 

 
 
 

 
  
 

 
 


 
 
 

 
  

 

 

(2 )X    , ( )Y     
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The steady-state availability and busy period are given by  

1 0 1 2 3 4 5 6( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )VA P P P P P P P                                                               (3)       

1 0( ) 1 ( )PB P                                                                                                                           (4) 

In the steady state, the derivatives of the state probabilities become zero and therefore equation (2) 

become

 

1 0Q P                                                                                                                                              (5)                                                                                                                                                                                                                                                                                                                                                  

which is in matrix form 

0

1

2

3

4

5

6

7

8

9

10

11

2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0

P

XP

XP

YP

XP

YP

XP

P

P

P

P

P

  

  

  

 

  

 

  

 

 



 
 

 
  
 

 
  
 

 
  

 
 

 
 

 
 
 
 
 

0

1

2

3

4

5

6

7

8

9

10

11

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( )0 0 0 0 0 0 0

( )0 0 0 0 0 0 0 0 2 0 0

( )0 0 0 0 0 0 0 0 0 0 0

P

P

P

P

P

P

P

P

P

P

P

P



  

 

   
   

   
   
   

   
   
   

   
   

   
   

   


  
   
  

   
     















 
 
 
 
 



 

Using the following normalizing conditions:
 

0 1 2 11( ) ( ) ( ) ... ( ) 1P P P P                                                                                            (6)       

Substituting (6) in the last row of (5) to compute the steady-state probabilities, the expression for 

steady-state Availability and Busy period are given by 

 
3 2

1 3 2 2 3

2 4
( )

5 4 2
VA

   

    

 
 

  
                                                                                      (7) 

3 2 2

1 3 2 2 3

4 2
( )

5 4 2
P

b
B

  

    

 
 

  
                                                                                   (8) 

Let 0C  and 
1C  be the revenue generated when the system is in working state and no income when in 

failed state, cost of each repair respectively. The expected total profit per unit time incurred to the 

system in the steady-state is 

Profit=total revenue generated – cost incurred when repairing the failed units. 

1 0 1 1 1( ) ( )V PPF C A C B                                                                                                          (9)                                                                                 

where 1PF  is the profit incurred to the system. 

 

3.2 Availability, Busy period and Profit Analysis of Configuration II 

For the analysis of availability case of configuration II, the same initial conditions are 

         0 1 2 3 4 10(0) [ 0 , 0 , 0 , 0 , 0 ,. . ., (0)]P P P P P P P   = 1,0,0,0,0,0,0,0,0,0,0  

The differential equations are expressed in the form 

2P Q P                                                                                                                            (10)       

Where 
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2

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Y

X

Y

Q Y

Y

Y

Y

  

 

  

 

 

 

 

 

 

 

 

 
 

 
 
 

 
 
 

  
 
 

 
 


 
 
 

   
The steady-state availability and busy period are given by  

2 0 1 2 3 5 6 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )VA P P P P P P P P                                                   (11)        

2 0( ) 1 ( )PB P                                                                                                                              (12)                                                             

In the steady state, the derivatives of the state probabilities become zero and therefore equation (10) 

become

 

2 0Q P                                                                                                                                      (13)                                                                                                                                                                                                                                                                                                                                                  

which is in matrix form 

 

 

0

1

2

3

4

5

6

7

8

9

10

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

P

YP

XP

YP

P

YP

YP

YP

YP

P

P

  

 

  

 

 

 

 

 

 

 

  
 

 
  
 

 
  
 

  
  
 
  
 

 
  
  
 

0

1

2

3

4

5

6

7

8

9

10

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( )0 0

P

P

P

P

P

P

P

P

P

P

P 

    
    

    
    
    

    
    
    

     
    
    

    
    
    
    
    

    

 

Using the following normalizing conditions:
 

0 1 2 10( ) ( ) ( ) ... ( ) 1P P P P                                                                                              (14) 

Substituting (14) in the last row of (13) to compute the steady-state probabilities, the expression for 

steady-state Availability and Busy period are given by 

 

                 (15) 

 

 
4 3 2 2 3

2 4 3 2 2 3 4

2 3 3 2
( )

2 3 3 2
PB

     

      

  
 

   
                                                                            (16) 

 

4 2 3 3 2 4 4 2 2

2 1
2 5 4 3 2 4 5 4 3 2 2 3 4

(2 5 5 2 ) ( )
( )

(4 7 9 3 )(4 3 6 2 )
VA

           

             

    
 

       
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Using the procedure described in configuration I above, expected profit is 

2 0 2 1 2( ) ( )V PPF C A C B                                                                                                             (17)                

 

3.3 Availability, Busy period and Profit Analysis of Configuration III 

For the analysis of availability case of configuration III, the same initial conditions are 

         0 1 2 3 4 10(0) [ 0 , 0 , 0 , 0 , 0 ,. . ., (0)]P P P P P P P   = 1,0,0,0,0,0,0,0,0,0,0  

The differential equations are expressed in the form 

3P Q P                                                                                                                                         (18)       

Where 

3

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

X

X

X

Q

X

  

  

   

 

 

 

 

  

 

 

 

 
 

 
 
 

 
 
 

  
 
 

 
 


 
 
 

   
The steady-state availability and busy period are given by  

3 0 1 2 3 7( ) ( ) ( ) ( ) ( ) ( )VA P P P P P                                                                              (19)    

3 0( ) 1 ( )PB P                                                                                                                     (20)                                                   

In the steady state, the derivatives of the state probabilities become zero and therefore equation (18) 

become

 

3 0Q P                                                                                                                                                 

(21)                                                                                                                                                                                                                                                                                                                                                  

which is in matrix form 

 

0

1

2

3

4

5

6

7

8

9

10

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

P

XP

XP

XP

P

P

P

XP

P

P

P

  

  

   

 

 

 

 

  

 

 



  
 

 
  
 

 
  
 

  
  
 
  
 

 
  
  
 

0

1

2

3

4

5

6

7

8

9

10

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( )0 0

P

P

P

P

P

P

P

P

P

P

P

    
    

    
    
    

    
    
    

     
    
    

    
    
    
    
    

    
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Using the following normalizing conditions:
 

0 1 2 10( ) ( ) ( ) ... ( ) 1P P P P                                                                                                 (22) 

Substituting (22) in the last row of (21) to compute the steady-state probabilities, the expression for 

steady-state Availability and Busy period are given by 

 
3 2 2

3 3 2 2 3
( )

4 4 2
VA

   

    

 
 

  
                                                                                  (23) 

3 2 2

3 3 2 2 3

4 4 2
( )

4 4 2
PB

   

    

 
 

  
                                                                                     (24) 

Using the procedure described in configuration I above, expected profit is 

3 0 3 1 3( ) ( )V PPF C A C B                                                                                                            (25)                

 

3.4 Availability, Busy period and Profit Analysis of Configuration IV 

For the analysis of availability case of configuration II, the same initial conditions are 

         0 1 2 3 4 11(0) [ 0 , 0 , 0 , 0 , 0 ,. . ., (0)]P P P P P P P   = 1,0,0,0,0,0,0,0,0,0,0,0  

The differential equations are expressed in the form 

4P Q P                                                                                                                                     (26)       

Where 

 

4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

X

X

X

X

X
Q

 

  

  

  

  

  

 

 

 

 

 

 

 
 


 
 
 

 
 
 

 
  
 

 
 


 
 
 

 
  

 

 

The steady-state availability and busy period are given by  

4 0 1 2 3( ) ( ) ( ) ( ) ( )VA P P P P                                                                                           (27)  

4 0( ) 1 ( )PB P                                                                                                                         (28) 

 

In the steady state, the derivatives of the state probabilities become zero and therefore equation (26) 

become

 

4 0Q P                                                                                                                                   (29)                                                                                                                                                                                                                                                                                                                                                  

which is in matrix form 
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0

1

2

3

4

5

6

7

8

9

10

11

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

P

XP

XP

XP

XP

XP

P

P

P

P

P

P

 

  

  

  

  

  

 

 

 



 
 

 
  
 

 
  
 

 
  

 
 

 
 

 
 
 
 
 

0

1

2

3

4

5

6

7

8

9

10

11

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( )0 0 0 0 0 0

( )0 0 0 0 0 0 0 0 0 0 0

( )0 0 0 0 0 0 0 0 0 0 0

P

P

P

P

P

P

P

P

P

P

P

P



 

 

   
   

   
   
   

   
   
   

   
   

   
   

   


   
   
  

   
     

















 
 
 



 

 

Using the following normalizing conditions: 

 

0 1 2 11( ) ( ) ( ) ... ( ) 1P P P P                                                                                            (30) 

 

Substituting (30) in the last row of (29) to compute the steady-state probabilities, the expression for 

steady-state Availability and Busy period are given by 

 
4 3 2 2 3

4 4 3 2 2 3 4

2 2
( )

4 4 2
VA

     

      

  
 

   
                                                                             (31) 

4 3 2 2 3

4 4 3 2 2 3 4

4 4 2
( )

4 4 2
PB

     

      

  
 

   
                                                                             (32) 

 

Using the procedure described in configuration I above, expected profit is 

4 0 4 1 4( ) ( )V PPF C A C B                                                                                                         (33) 

 

3.5 Availability, Busy period and Profit Analysis of Configuration V 

 

For the analysis of availability case of configuration II, the same initial conditions are 

         0 1 2 3 4 11(0) [ 0 , 0 , 0 , 0 , 0 ,. . ., (0)]P P P P P P P   = 1,0,0,0,0,0,0,0,0,0,0,0  

The differential equations are expressed in the form 

5P Q P                                                                                                                                     (34)       

Where 
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5

3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

W

W

Q
Z

   

   

   

 

 

 

   

 

 

 

 

 

 
 


 
 
 

 
 
 

 
  
 

 
 


 
 
 

 
  

 

(3 )W    , (3 2 )Z     
The steady-state availability and busy period are given by  

5 0 1 2 6( ) ( ) ( ) ( ) ( )VA P P P P                                                                                             (35)     

5 0( ) 1 ( )PB P                                                                                                                           (36)  

In the steady state, the derivatives of the state probabilities become zero and therefore equation (34) 

become

 

5 0Q P                                                                                                                                    (37)                                                                                                                                                                                                                                                                                                                                                  

which is in matrix form 

0 ( )3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

P

W

W

Z

   

   

   

 

 

 

   

 

 

 

 

 

 
 


 
 
 

 
 
 

 
 
 

 
 


 
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 

 
  

1

2

3

4

5

6

7

8

9

10

11

0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

( ) 0

P

P

P

P

P

P

P

P

P

P

P

   
   

   
   
   

   
   
   

   
   

   
   

   


   
   
   

   
     

 

 

Using the following normalizing conditions:
 

0 1 2 11( ) ( ) ( ) ... ( ) 1P P P P                                                                                               (38) 

Substituting (38) in the last row of (37) to compute the steady-state probabilities, the expression for 

steady-state Availability and Busy period are given by 
3 2 2

5 3 2 2 3

2
( )

3 5 3
VA

   

    

 
 

  
                                                                                            (39) 
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3 2 2

5 3 2 2 3

3 5 3
( )

3 5 3
PB

   

    

 
 

  
                                                                                        (40)       

Using the procedure described in configuration I above, expected profit is 

5 0 5 1 5( ) ( )V PPF C A C B                                                                                                        (41) 

 
4. GRAPHICAL  ANALYSIS OF THE NETWORKS 

 

In this section, the main purpose of this section is to present specific numerical comparisons for the 

configurations for steady-state availability and profit.  For each model the following set of 

parameters values are fixed throughout the simulations for consistency: 

Case I: We fix 0.3   , 1 500,000C  , 2 80,000C   and vary the values of  for from 0 to 1 

Figures 1 and 4. 

Case II: We fix 0.4   , 1 500,000C  , 2 80,000C   and vary the values of  for from 0 to 1 

Figures 2 and 3. 

 
                      Figure 1 Availability against                  Figure 2 Availability against   

 
                              Figure 3: Profit against                        Figure 4: Profit  against   
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Figures 1 and 4 depict the availability and profit results for the five systems being studied against 

the failure rate . The steady-state availability decrease as   increases for any configuration.  It is 

clear from the Figures that configuration II has higher availability with respect to   as compared 

with the other three configurations. These tend to suggest that configuration II is better than the 

other configurations. On the other hand, Figures 2 and 3 depict the availability and profit 

calculations for the five configurations against repair rate  . The steady-state availability and profit 

increase as   increases for any configuration. The observations that can be made here are much 

similar to those made from Figures 1 and 4. It is evident that from Figures 2 and 3 that 

configuration II is better than the other configurations. Thus,  

2 1 4 3 5( ) ( ) ( ) ( ) ( )V V V V VA A A A A        
 

2 1 4 3 5( ) ( ) ( ) ( ) ( )PF PF PF PF PF          

 

5. CONCLUSION 

 

In this paper, we analysed five different redundant communication networks with standby units to 

study the availability and profit analysis of five configurations. For each configuration, we present 

the explicit expressions for steady-state availability, busy period of repairman and profit and 

performed comparative analysis numerically to determine the optimal configuration. It is evident 

from Figures 1-4 that configuration II is optimal configuration using steady-state availability and 

profit. The present study will help the engineers and designers to develop sophisticated models and 

to design more critical system in interest of human kind.   
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