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ABSTRACT

In this article, progressive censoring and step stress partially accelerated life test are
combined to develop a step-stress PALT with Progressively type-11 Censored Data with the
random removal. The removals from the test are assumed to have binomial distribution and
uniform distribution and the life time of the testing products are considered to follow
Frechet distribution. The parameters are estimated by using the maximum likelihood
method and asymptotic confidence interval estimates of the model parameters are also
evaluated by using Fisher information matrix. Statistically optimal PALT plans are
developed such that the Generalized Asymptotic Variance (GAV) of the Maximum
Likelihood Estimators (MLEs) of the model parameters at design stress is minimized. At
the end, simulation study is performed to illustrate the statistical properties of the
parameters.

KEYWORDS: Partially Accelerated Life Tests; Binomial Removal; Uniform Removal,
Progressive Censoring; Maximum Likelihood Estimator; Generalized Asymptotic Variance

1 INTRODUCTION

When the product of high reliability is tested, the result of the some commonly used life test
gives no or very few failures by the end of the test. In these types of the testing, the accelerated life
testing (ALT) is used to obtain failures quickly. In such cases the testing is done at higher than
usual use conditions. Three types of testing such as constant-stress, step-stress and progressive-
stress are commonly used. In ALT, the mathematical model relating the lifetime of the unit and the
stress is known or can be assumed. For detailed study of ALT see Nelson [1]. So as to, ALT data
cannot be extrapolated to normal use condition. So, in such cases, partially accelerated life testing
(PALT) is a more appropriate test to be used to estimate the statistical model parameters. Ismail et
al. [2] introduced the Optimum Simple Time-Step Stress Plans for Partially Accelerated Life
Testing with Censoring.

In many life tests, the experiment does not observe the failure times of all components. In such
cases, the censored sampling arises. The most common censoring schemes are type-I censoring and
type-11 censoring. These two censoring schemes do not allow for units to be removed from the test
at the points other than the final termination point. Moreover, there are some cases in which
components are lost or removed from the test before failure. This would lead to progressive
censoring. For progressive censoring see Balakrishnan and Aggarwala [3] and Balakrishnan [4].
Under the progressive type Il censoring scheme, the experimenter puts n components on test at time
zero. The first failure is observed at Y, and then R, of surviving components is randomly selected

and removed. When the second failure occurs at timeY,, R, of surviving components is randomly
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selected and removed and when (m-1)" failure is observed at the timeY, ,,R, , of the surviving
units are randomly selected and removed from the experiment, the experiment terminates when the

m-1
m™ failure component is observed at X, and R = n—m->"R; all removed. In this censoring

i=1
scheme R, R, e, ,R,, are all prefixed. However, in some practical experiments, these numbers
cannot be pre-fixed and they occur at random. Inference based on progressively Type Il censored
data is discussed by many authors. Yuen and Tse [5] considered the estimation problem for Weibull
distribution under progressive Censoring with random removals. Yang et al. [6] statistically
analyzed the Weibull Distributed Lifetime Data under Type-1l Progressive Censoring with
Binomial Removals. Wu [7] used progressively Type-1l censored data with uniform removals to
estimate the parameters of Pareto distribution. Ismail et al. [8] introduced the Optimal Design of
Step-Stress Life Test with Progressively type-l11 Censored Exponential Data with binomial
removals. Bander [9] estimated the maximum likelihood for Generalized Pareto Distribution under
Progressive Censoring with Binomial Removals. Chang et al. [10] studied the progressive censoring
with Random Removals for the Burr Type XII Distribution.

2 THE MODEL AND TEST METHOD

2.1 The Frechet Distribution

The Frechet  distributionis a  special case of the generalized extreme  value

distribution. The generalized  extreme  value (GEV) distributionis a  family  of
continuous probability  distributions developed  within extreme  value theoryto combine
the Gumbel, Fréchet and Weibull families also known as type 1, Il and Il extreme value

distributions. The lifetimes of the test items are assumed to follow a Frechet distribution. The
probability density function (pdf) of the Gompertz distribution is given by

f(t)= a0” ot exp(—(%jaJ &)

And the cumulative distribution function is given by

F(t)= exp[(%jaJ (2)

The survival function of the Frechet distribution is given by

ﬁ(t>=1—exp[—[gj°‘}

2.2 Assumptions

= nidentical and independent units are put on the life used condition and the lifetime of each
testing unit follows Frechet distribution.

= The test is terminated at the m" failure, where m is prefixed (m < n).

= Each of the n units is first run under normal use condition. If it does not fail or remove from
the test by a pre-specified time t, it is put under accelerated condition.
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= Atthe i" failure a random number of the surviving units, R,,i =12,.....m—1, are randomly
selected and removed from the test. Finally, at the m" failure the remaining surviving units

m-1
R,=n—-m-— z R. are all removed from the test and the test is terminated.
i=1
= The lifetime, say Y, of a unit under SS-PALT can be written as

Y= T if T>1 3
_{’C-F(T—T)/B if T<rt )

where T is the lifetime of the unit under normal use condition, z is the stress change time and S is
the acceleration factor; > 1. Therefore, the pdf of Y can be written as in the following form

Therefore probability density function (pdf) of Y can be written as

0 y<0
f(y)=1fi(y) O<y<r
fz(y) >t
0 y<0
f(y)= aeayalexp[[%j_aJ O<y<r 4)
o -a-1 T+ﬂ(y—7) -
at0”B(z+p(y-7)) " exp| - — y>7

0 y<0
F(y)=1exp (%jaJ O<y<z ©)
o _(%} yor
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3 MAXIMUM LIKELIHOOD ESTIMATION

3.1 Parameter Estimation with the Binomial Removals

The number of units removed from the test at each failure time follows a binomial
distribution and any individual unit being removed is independent of the others but with the same

i-1
probability p. That is, R, ~bino(n—m, p) and fori =2, 3,....., m -1, R, ~ bino[n—m—er, pJ
j=1

and r, =n—-m—1r—r, —........ -r.,.
Let (y,,r,8,,8,)i=12,.....mdenote the observation obtained form a progressively type-Il
censored sample with random removals in a step-stress PALT. Here y;) < Y,y <.......... < Yim)

Thus for the progressive censoring with the pre determined number of the removals
R=(R =l ,R,,=r.,) the conditional likelihood function of the observations

y={(y,.r 61, .8, )i=12,.......m.}can be defined as follow

[ E) T [ 0)E ) ]5} (6)

m

(yliaBeslUSm |R_r = |

j
[
SO B

(7)

The number of units removed at each failure time follows a binomial distribution such that

P(R, 1) = [n - mJPr o py

r-1
And fori=2, 3,.......m-1

PR, =1, [Roy = oy Ry = 1) =| "M 21 g B

where 0<r, <n—m—(r, +r, +......+r_, ). Furthermore, suppose that R; is independent of Y; for
all i. Then the joint likelihood function can be found as

L(y;;c.B.0,p,8;,8,)=L(y;;0.B,0,p,8,,8, IR=r)P(R, p) (8)

where P(R, p) is the joint probability distribution of R = (1,1, 1;,...ty, ) and is given by
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P(R.p)=P(Rp1="m 1Ry 2="n2-Ri=n)
=P(Rp-1="m1/Rm-2 =fm-2:-Ri =1)xP(Rp_2 =f_2/Rn-3 =3, R = 1)
XP(Rm_3 = I’m_3/Rm_4 = rm_2,...R1 = rl)X...P(RZ = I’2/R1 = I’l)P(Rl = rl)

n—-m m-1p m=1)(n=-m)=5""(m—i)r.
(n—m} i p) DI ©)

Cheme

Now by substituting Ll(yi;oc,B, 0,p,0,,0, |R= r)and P(R, p) from the equation (7) and (9) in (8)
we get the likelihood function

L(y’g’ﬂ’p'@iﬁm):ﬁ at®y;” exp[ Eylj J{lexp((%j_aﬂ

a0 f(c+ ﬁ(yi—r))alexp{—(W)_aJ exp[_(wrlj ﬁ (10)

-m)! 2t m-1)(n-m m—i)r,
S U, ) S I L L U
(n—m—ZriJ!Hri!
i=L

1)

1i

i=1

The log-likelihood of the above equation is given by

|ogL:{mloga+malog<9—(a+l)%:|09Yi %(%/9 +rZIog(l exp( (yi/e)_a))}

i=1l i=1 i=l

i=1 i=1

{ma log (e +1)%|09((7+ﬂ(yi _T)))_%[WJ%

+ri%:log 1—exp[—(#} J +Iogol+§:rilogp

+[(m—1)(n—m)—rgl(m—i)ri}Iog(l— p)

The maximum likelihood estimators of [ and Ocan be derived directly by maximizing the
equation (7) instead of (10) because P(R, p) does not involves the parameter § and6 . Similarly the
binomial parameter p does not depend on L, (y,;a,B,6, p,d,;,8,; | R =r), hence the MLE of p can be
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found by maximizing P(R; p) directly. Thus, the maximum likelihood estimates (MLEs), of and
0 can be found by solving the following equations:

-a
| - o W exp[—(?j }
dlog L :m_aea—lz yi—a +a9a—lz
i=1

S ol )

—a@a_1%(1'+ B(y; —ﬂ)‘“m@“‘%

= " 1—exp{—(r+ﬂ(9yi T)ja}

ologL m, < Yi—7 2 Nt
glogt _Ma (.S Yi"% .9
op ( )§T+ﬁ(3’i_7) ié(”ﬂ(Yi_T))ml

Independently, the MLE of the binomial parameter p can be obtained by solving the following
equation:

(13)

Therefore we get p from equation (13)

b: m-1 = m-1
é i +(m-1)(n-m)- .:1(m—i)ri

3.2 Estimation with the Uniform Removal
The number of units removed from the test at each failure time follows a uniform discrete

i-1
distribution. That is, R, ~Unif (0,n—m) and for i = 2, 3,...., m =1, R, ~Unif (O,n—m—ZrJJ
1

j=
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1
PR =r)=———
( ! rl) n-m+1
And for i=2, 3 ...m-1.
1
P(R| = ri | Ri71 = I’ifl, ......... ) Rl = rl): —

PR=r)= (14)

where 0<r <n—m—(f, +1, 4o+, i =12, m—1.

It is clear that P(R=r) does not depend on the parameters [ and 0 and, hence the maximum

likelihood estimators can be derived directly by maximizing the equations (7) and then solving the
equations (11)

4 FISHER INFORMATION MATRIX & ASYMPTOTIC CONFIDENCE INTERVAL

The asymptotic variance-covariance matrix of the ML estimators of the parameters can be
approximated by numerically inverting the Fisher-information matrix F and The Fisher information
matrix is obtained by taking the negative second partial derivatives of the log-likelihood function
and for the binomial removal it can be written

ol o2 ol |
802 900p  006p
e_|_on o1 o
oBo0 B2 Opdp
ol ol ol
| opo®  opop op? |

And for the uniform removal, fisher information matrix can be written as

0%l 0%l

c_| 0®  o60p
0%l 2%l
Cope0 ap?
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Elements of Fisher Information matrix are

2 m, m,
OlogL _ M (a-1)3 6% +a(a-1)02Y (4 (v -7))

06° 0* = ~
¢ N\
riyi_a EXp _(ylj [(0{ —1) 00{—2 - yi—a} o riyi_za exp _z(ylj
0 _ azgza—zz“: 4
=1

) w0

f(z+B(yi-7))” eXp{[H'B(OMJa}[(a ~1)0“ % +a0”* 2 (r+ B(v; —z-))_a}

ma
+ O‘Z
i=1

gl _ my T (- T (nir)
( E[Hﬂ(vi—fﬂz ( )E(Hﬂ(yi—r))

. ﬁ<vir>2<r+ﬁ<yir>>“exp{(f+ﬂgi-f>]“][<a+l>mea [(m&mw

a+2

0° log L _ _%
op* i-1 P (p-1)

19



G.Tsitsiashvili, M. Osipova, A. Losev—- ASYMPTOTIC ANALYSIS OF FEW NODES FAILURE IN ORIENTED RANDOM GRAPH (VU?I(%AZ‘SIOSZ ](1?1);33

o*logL _ o%logL _
0008 0po0

a20“_12(1+,3(yi —z'))_a_l(yi -7)

ST

0%y —7)(c+ B(Y; _T))—Za—l exp[_z[ﬂﬂ(gir)}a}

()]

o’InL_&%*InL_&°InL_ 2InL _
opoe  otop  opop  ofop

ma
+a22
i—1

The variance covariance and covariance matrix of the parameter for the binomial removal can be
written

-1

I N N
5%: 51325'9 8[325'[) AVar(B) ACov(A é) ACov/(fp
s |- ai) 5 292 - aza - ACovgéB; Avar(d)  ACov(dp
P S A .
Al o1 ACov|pp ACov(pe) AVar (p)
| opop poe  op’ |

And for the uniform removal case it can be written as

o]

s op? opoe | _ AVar(B) ACov(BG)

oo ACov(éB) AVar(A)
000 002

The 100(1- &) asymptotic confidence interval for 6,3 and p can be written as

2

{eizl g,/AVarieq {Bizl éw/AVarqu and {pizlg,/AVar(f))}
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5 OPTIMUM TEST PLAN

The present criterion by which one can choose the optimal value of t is based on the
determinant of the Fisher's information matrix. Maximization of that that determinant is equivalent
to minimization of the generalized asymptotic variance (GAV) of the MLE of the model
parameters. The GAV is the reciprocal of the determinant of the Fisher's information matrix F that
is

GAV = 1
F|
So, the optimal value of t is chosen in such a way that the determinant of the Fisher's

information matrix F is maximized and then the GAV is minimized. This is called the D-optimality
criterion.

6 SIMULATION STUDY

In order obtain MLEs of B,0and pand to study the properties of these estimates through
Mean squared errors (MSESs),) and the coverage rate of asymptotic confidence intervals for different
sample sizes, a simulation study is performed. Moreover, we will determine the optimal stress
change time which minimizes the generalized asymptotic variance of the MLE of parameters. To
perform the simulation study, we used the following steps

a) First specify the value of n and m.

b) The value of the parameters are chosen to be o =2.87,0=3.02,3=2.62, p=0.67,71=3.5.

c) Generate a random sample with size n and censoring size m with random removals,
r,i=L12,.... m—1 from the random variable Y given by (4).

i-1 i-1
d) Generate a group value R, ~ bino[n -m- Z r pJ and also R, ~ Unif (0, n—-m-— Z er
=1 j=1
where, r, =n—mM—1, —r, —............ —r

e) For different sample sizes n= 20, 60, 80,100 and 120, compute the ML estimates.

f) The mean squared error (MSE), the coverage rate of the 95% confidence interval of
parameters and Bias are obtained associated with the MLE of the parameters, optimal value
of © and also the Optimal GAV of the MLEs of the model parameters are obtained
numerically for each sample size.
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Table 1(i); Simulation study results with Binomial Removals for
a=2.87,0=3.02,=2.62, p=0.67,t=3.5.

Binomial case 95% Confidence interval
n m coverage ‘ _1‘
T F
0 3 D . . .
B P CP;  CPy  CRs

9 | 2.983612 | 4.889763 | 0.897212 | 0.92039 | 0.90121 | 0.90313 | 3.8746 | 1.336
19 | 2.977351 | 4.886342 | 0.895871 | 0.92141 | 0.90341 | 0.90583 | 3.8786 | 1.465
9 | 2.953811 | 4.867830 | 0.847492 | 0.92156 | 0.90547 | 0.90876 | 3.7424 | 1.493
19 | 2.907351 | 4.858361 | 0.808313 | 0.92183 | 0.90645 | 0.90963 | 3.7413 | 1.502
29 | 2.895634 | 4.888907 | 0.804721 | 0.92190 | 0.90673 | 0.90991 | 3.7409 | 1.573
39 | 2.893631 | 4.683670 | 0.800838 | 0.92199 | 0.90843 | 0.91234 | 3.7289 | 1.638
49 | 2.890731 | 4.642846 | 0.799743 | 0.92213 | 0.90863 | 0.91425 | 3.7263 | 1.693
59 | 2.865341 | 4.619843 | 0.795982 | 0.92254 | 0.91633 | 0.91473 | 3.7084 | 1.699
9 | 2.862563 | 4.983741 | 0.769371 | 0.92261 | 0.91740 | 0.91533 | 3.7052 | 1.712
19 | 2.860726 | 4.738421 | 0.766932 | 0.92275 | 0.91834 | 0.91642 | 3.5566 | 1.734
29 | 2.846535 | 4.597361 | 0.759826 | 0.93280 | 0.91876 | 0.91735 | 3.5503 | 1.782
39 | 2.818732 | 4.55836 | 0.685821 | 0.93289 | 0.91899 | 0.91841 | 3.4371 | 1.791
49 | 2.815721 | 4.387461 | 0.588763 | 0.93385 | 0.92934 | 0.91893 | 3.5778 | 1.832
59 | 2.687631 | 4.334524 | 0.559831 | 0.93481 | 0.92997 | 0.91934 | 3.0766 | 1.854
69 | 2.665434 | 4.284712 | 0.530841 | 0.93541 | 0.93013 | 0.91953 | 3.0355 | 1.871
79 | 2.646213 | 4.097361 | 0.508349 | 0.94753 | 0.93084 | 0.91979 | 2.7009 | 1.889
9 | 2.619736 | 3.869763 | 0.487354 | 0.95130 | 0.93099 | 0.91991 | 2.7987 | 1.920
19 | 2.605531 | 3.898731 | 0.379421 | 0.95353 | 0.93194 | 0.92421 | 2.7354 | 1.943
29 | 2.576435 | 3.757365 | 0.339741 | 0.95365 | 0.93245 | 0.92632 | 2.7354 | 2.132
39 | 2.557261 | 3.728371 | 0.336821 | 0.95475 | 0.93385 | 0.92713 | 2.7047 | 2.223
49 | 2.397251 | 3.686510 | 0.309431 | 0.95573 | 0.93642 | 0.92795 | 2.7028 | 2.264

20

60

80

100 59 | 2.307360 | 3.428761 | 0.304814 | 0.95752 | 0.93752 | 0.92846 | 2.7011 | 2.349
69 | 2.152841 | 3.087361 | 0.233193 | 0.95883 | 0.93840 | 0.92896 | 2.7006 | 2.382
79 | 2.119423 | 2.787361 | 0.230341 | 0.95992 | 0.94671 | 0.92888 | 2.6937 | 2.467
89 | 2.094381 | 2.629834 | 0.178287 | 0.96862 | 0.94689 | 0.92913 | 2.6795 | 2.484
99 | 2.007378 | 2.198347 | 0.145931 | 0.97432 | 0.94778 | 0.92999 | 2.6654 | 2.961
9 | 2.003841 | 2.007973 | 0.089831 | 0.97652 | 0.95032 | 0.93252 | 2.6473 | 2.999
19 | 1.997763 | 1.775983 | 0.089720 | 0.97743 | 0.95075 | 0.93419 | 2.5531 | 3.012
29 | 1.947345 | 1.999631 | 0.084566 | 0.97832 | 0.95174 | 0.93555 | 2.5139 | 3.058
39 | 1.917371 | 1.929831 | 0.059741 | 0.97865 | 0.95195 | 0.93860 | 2.4961 | 3.184
49 | 1.886351 | 1.909832 | 0.057631 | 0.97921 | 0.95348 | 0.94642 | 2.4741 | 3.452
120 59 | 1.807363 | 1.905987 | 0.005574 | 0.98134 | 0.95534 | 0.94875 | 2.3961 | 3.872

69 | 1.743251 | 1.889874 | 0.005174 | 0.98353 | 0.95613 | 0.95875 | 2.3756 | 3.891
79 | 1.797356 | 1.899642 | 0.003752 | 0.98463 | 0.95732 | 0.95999 | 2.3367 | 3.928
89 | 1.586352 | 1.858943 | 0.001734 | 0.98561 | 0.95822 | 0.96641 | 2.3205 | 3.963
99 | 1.559736 | 2.81874 | 0.001538 | 0.98673 | 0.95913 | 0.96831 | 2.1858 | 3.971
109 | 1.5372651 | 1.77321 | 0.009634 | 0.98751 | 0.95989 | 0.97654 | 2.0751 | 3.984
119 | 1.386345 | 1.79731 | 0.002752 | 0.98462 | 0.96143 | 0.97943 | 2.0356 | 3.991
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Table 1(ii); Simulation study results with Binomial Removals for
o=2.87,60=3.02,=2.62,p=0.67,1=35.

n m Bias; Biasﬁ Bias
o0 | 9 |0.006691 [ 0.009879 | 0.089431
19 | 0.006687 | 0.009773 | 0.067909
9 | 0.005982 | 0.005928 | 0.063989
19 | 0.005791 | 0.005721 | 0.047298
g0 | 29 | 0.005194 | 0.004823 | 0.045901
39 | 0.003791 | 0.004594 | 0.028432
49 | 0.003913 | 0.003909 | 0.018931
59 | 0.003492 | 0.003791 | 0.015986
9 | 0.003389 | 0.003588 | 0.014982
19 | 0.002780 | 0.002791 | 0.011955
29 | 0.002678 | 0.002279 | 0.011577
g | 39 | 0.002569 | 0.002254 | 0.008793
49 | 0.002378 | 0.002093 | 0.003985
59 | 0.002354 | 0.002056 | 0.003416
69 | 0.002334 | 0.001973 | 0.001567
79 | 0.001682 | 0.001671 | 0.001391
9 | 0.001494 | 0.001498 | 0.001198
19 | 0.001475 | 0.001289 | 0.001203
29 | 0.000971 | 0.001182 | 0.001982
39 | 0.000849 | 0.000678 | 0.000689
100 | 49 | 0.000692 | 0.000451 | 0.000486
59 | 0.000578 | 0.000381 | 0.000198
69 | 0.000387 | 0.000078 | 0.000139
79 | 0.000234 | 0.000029 | 0.000116
89 | 0.000209 | 7.35x10° | 0.000104
99 | 0.000209 | 3.74x10° | 0.000101
9 |9.87x10° ] 9.59x10° | 0.000094
19 | 9.31x10° | 9.38x10° | 0.000047
29 | 7.52x10° | 9.27x107 | 0.000029
39 | 4.39x107° | 5.62x107 | 0.000016
49 | 2.58x10° | 5.39x107 | 8.79x10™
120 | %9 5.81x107 | 2.76x107 | 5.91x107
69 | 4.79x107 | 5.73x10% | 4.13x10™
79 | 3.35x107 | 4.79x10% | 9.95%x10°
89 | 2.79x107 | 3.79x10% | 8.88x10®
99 | 2.12x107 | 1.87x10% | 6.83x10°
109 | 2.07x107 | 8.67x10° | 4.67x10®
119 | 6.87x10% | 5.19x10° | 1.39x10°®
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Table 2; Simulation study results with uniform removals for
a=287,0=3.02,=2.62,p=0.67 and 7 =3.5

MLE 95%Confidence
n m Interval coverage Bias, Biasﬁ - ‘F‘l‘
0 Vi CP; CP;
0 | 9 | 394710 [ 4.98997 [ 0.91018 | 0.87329 | 0.097631 | 0.009959 | 5.9829 | 1.009
19 | 3.92741 | 4.98975 | 0.91317 | 0.87440 | 0.093859 | 0.009936 | 5.9693 | 1.119
9 [ 3.91931 | 499742 | 0.91712 | 0.87489 | 0.073185 | 0.009368 | 5.8746 | 1.239
19 | 3.91673 | 4.95836 | 0.91738 | 0.87511 | 0.068166 | 0.008489 | 5.7837 | 1.265
so | 29 | 391391 | 4.98890 | 0.91740 | 0.87546 | 0.057217 | 0.008299 | 5.4728 | 1.363
39 | 3.91832 | 4.99888 | 0.91765 | 0.87599 | 0.043608 | 0.006943 | 5.4643 | 1.371
49 | 3.67721 | 4.99817 | 0.91785 | 0.87632 | 0.041735 | 0.006509 | 5.4489 | 1.398
59 | 3.65360 | 4.98736 | 0.91889 | 0.87790 | 0.030360 | 0.006297 | 5.4098 | 1.403
9 | 3.48721 | 4.95742 | 0.91940 | 0.87793 | 0.018429 | 0.006098 | 5.4071 | 1.412
19 | 3.46831 | 4.92646 | 0.91985 | 0.87888 | 0.009588 | 0.006024 | 5.3064 | 1.425
29 | 3.47974 | 4.90896 | 0.91990 | 0.89999 | 0.005981 | 0.005949 | 5.1984 | 1.451
go | 39 | 329346 | 490693 | 091998 | 0.91354 | 0.005945 | 0.005439 | 5.1697 | 1463
49 | 3.25312 | 4.78931 | 0.92011 | 0.91616 | 0.005674 | 0.005190 | 5.0983 | 1.470
59 | 3.21038 | 4.75726 | 0.92042 | 0.91659 | 0.005395 | 0.004987 | 5.0582 | 1.623
69 | 3.09531 | 4.73842 | 0.92086 | 0.91923 | 0.005194 | 0.004956 | 5.0193 | 1.674
79 | 3.09836 | 4.73571 | 0.92090 | 0.91987 | 0.004004 | 0.004547 | 4.9875 | 1.680
9 | 3.05647 | 459831 | 0.92119 | 0.92156 | 0.003598 | 0.003757 | 4.8572 | 1.731
19 | 3.05563 | 4.56828 | 0.92187 | 0.92181 | 0.003283 | 0.002899 | 4.6365 | 2.643
29 | 3.03844 | 4.29784 | 0.92319 | 0.92615 | 0.003093 | 0.002875 | 4.5324 | 2.684
39 | 3.03573 | 4.27641 | 0.92355 | 0.90842 | 0.003062 | 0.002598 | 4.5084 | 2.299
100 | 49 | 3.01963 | 425089 | 0.92488 | 0.92476 | 0.000999 | 0.002429 | 4.3948 | 2.384
59 | 2.98450 | 4.23791 | 0.92556 | 0.92589 | 0.000739 | 0.002125 | 4.2874 | 2.715
69 | 2.95741 | 4.09912 | 0.92580 | 0.92757 | 0.000721 | 0.001356 | 4.2683 | 2.764
79 | 2.93474 | 4.06983 | 0.92666 | 0.92783 | 0.000699 | 0.000896 | 4.2543 | 2.754
89 | 2.91093 | 4.06728 | 0.92691 | 0.92791 | 0.000570 | 0.000597 | 4.1974 | 2.794
99 | 2.90983 | 4.01734 | 0.92921 | 0.92798 | 0.000398 | 0.000496 | 4.0746 | 2.790
9 | 290657 | 3.93837 | 0.92957 | 0.92799 | 0.000096 | 0.000063 | 3.9973 | 2.917
19 | 2.90633 | 3.90973 | 0.93421 | 0.93523 | 0.000068 | 0.000039 | 3.8374 | 2.932
29 | 2.90435 | 3.68347 | 0.93511 | 0.92645 | 0.000036 | 0.000019 | 3.6467 | 2.938
39 | 2.90313 | 3.65531 | 0.92585 | 0.92685 | 0.000019 | 0.000013 | 3.5621 | 2.972
49 | 2.86414 | 3.48327 | 0.92881 | 0.92985 | 9.96x107 | 9.02x107° | 3.4788 | 2.977
100 | 59 | 284531 | 345177 | 093183 | 0.93145 9.28><10'; 8.84><10'§ 3.1845 | 2.999
69 | 2.84313 | 3.42641 | 0.93371 | 0.93351 |9.09x107 | 8.36x10° | 3.1477 | 3.031
79 | 2.75443 | 3.28421 | 0.93612 | 0.93831 | 8.45x107 | 7.79x10° | 3.1248 | 3.074
89 | 2.73249 | 3.26947 | 0.93722 | 0.935145 | 8.33x107 | 7.34x10™ | 3.0983 | 3.187
99 | 2.71734 | 3.24874 | 0.94513 | 0.93690 | 7.84x107 | 6.78x10™ | 3.0387 | 3.191
109 | 2.59931 | 3.19834 | 0.94721 | 0.93800 | 6.69x107 | 6.34x10° | 3.0276 | 3.284
119 | 2.51677 | 3.15893 | 0.94882 | 0.93641 | 4.05x107 | 5.99x10° | 2.9975 | 3.291
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7 CONCLUSION

This paper considers the SS-PALT under type-I1 progressive censoring with Binomial and uniform
removals assuming frechet distribution. Comparison between both removal are shown. The
Newton-Raphson method is applied to obtain the optimal stress-change time 7z which minimizes
the GAV.

The numerical study for obtaining the optimum plan for binomial removal is tabulated in table 1 for
different sample size and table 2 describes uniform removal for possible values of scale and shape
parameters. From the above results it is easy to find that for the fixed values of the parameters, the
error and optimal time decrease with increasing sample size n.

Performance of testing plans and model assumptions are usually evaluated by the properties of the
maximum likelihood estimates of model parameters. Hence from the numerical result we can
conclude that estimates of binomial are more stable with relatively small error with increasing
sample size. Therefore, the test design obtained here is robust design and work well for binomial
removal.

As a future work, this study can be extended to explore the situation under type-l progressive
censoring
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