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ABSTRACT 

 
The tampered Brownian motion process (BMP) arises in the context of partial step-stress 

accelerated life testing when the underlying system fatigue accumulated over time is modeled by 

two constituent BMPs, one governing up to the predetermined time point at which the stress 

level is elevated and the other afterwards. A conditioning argument obtains the probability 

distribution function (pdf) of the corresponding time-to-failure random variable. This result has 

been reported and studied in the literature, but its derivation has not been published.   

 

1  INTRODUCTION 

 

The tampered BMP (Bhattacharyya 1987, Lu & Storer 2001) arises in the context of partial 

step-stress accelerated life testing when the underlying system fatigue accumulated over time t, B(t), 

is modeled by two separate BMPs, one applicable before the stress level is elevated at a 

predetermined fixed time point τ and the other afterwards (assuming that an item under test has not 

failed by time τ). Specifically, let 

𝐵(𝑡) =  {  
𝐵1(𝑡),                              𝑡 ≤  𝜏

𝐵1(𝜏) + 𝐵2(𝑡 −  𝜏),    𝑡 >  𝜏,
                                                               (1) 

where Bi(t) = Bi(t;ηi,δ), i = 1, 2, are independent BMPs with positive drifts ηi and a common 

diffusion parameter δ
2
, and the system fails when B(t) first attains a critical threshold value ξ. The 

ordering η2 > η1 ensures that fatigue accrues relatively faster at the higher stress value. 

A primary impetus for prescribing the representation (1) is its plausible physical basis. 

Additionally, the corresponding single stress setting problem is known to yield the prominent 

inverse Gaussian (IG) distribution for the first passage time of the BMP with respect to a critical 

boundary (Shrӧdinger 1915, Smoluchowski 1915, Tweedie 1945). The IG pdf accommodates a 

spectrum of shapes, adheres to the structure of an exponential family, and supports well-developed 

statistical inference procedures (Folks & Chhikara 1978). It has been applied extensively in the 

modeling of reliability, fatigue life, and long-tailed phenomena (Chhikara & Folks 1977, 

Bhattacharyya & Fries 1982b, Seshadri 1999). The IG pdf and cdf take the forms: 

𝑔(𝑡) = 𝑔(𝑡; 𝜇, 𝜆) = √
𝜆

2𝜋𝑡3
𝑒𝑥𝑝 [

−𝜆(𝑡−𝜇)2

2𝜇2𝑡
],                                                (2) 

 

𝐺(𝑡) =  𝐺(𝑡; 𝜇, 𝜆) = 𝛷 (√
𝜆

𝑡
(
𝑡

𝜇
− 1)) + 𝑒𝑥𝑝 (

2𝜆

𝜇
)𝛷 (−√

𝜆

𝑡
(
𝑡

𝜇
+ 1)), 

denoting the mean as μ, the shape parameter as λ, and the standard N(0,1) cdf as Φ(·). 

Doksum & Hóyland (1992) examine variable accelerated life testing experiments for which 

the time-to-failure distribution is expressed in terms of linear time-transformed IG distribution 
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functions, a construct that is incompatible with (1). Both Lu & Storer (2001) and Doksum & 

Hóyland (1992) employ a common characterization of the failure time: T = inf{t: B(t) > ξ}. 

Different representations of B(t), however, lead to distinct pdfs. Based on (1), Lu & Storer (2001) 

report the pdf for their tampered BMP model to be: 

 

𝑓(𝑡) =  

{
 

 √
𝜆

2𝜋𝑡3
𝑒𝑥𝑝 {−

𝜆𝑡𝑐2(𝜇1,𝑡)

2
}                                           𝑡 ≤  𝜏,

√
𝜆

2𝜋𝑡3
𝑒𝑥𝑝 {−

𝜆𝑡

2
[𝑐2(𝜇1, 𝑡) + 

𝑡

𝜇2
2 𝑐(𝜏, 𝑡)]} 𝑠(𝑡),     𝑡 >  𝜏,

                   (3) 

specifying λ = ξ
2
/δ

2
, μi = ξ/ηi, for i = 1, 2, c(a,b) = (1/a – 1/b) for a, b ≠ 0, ∆ = τ∙c(μ2,μ1), s(t) = 

q(t,∆+1,λ) – q(t,∆–1,λ), and q(t,a,λ) = a∙exp(½a
2
λc(τ,t))∙Φ(a(λc(τ,t))

½
). On the interval (0,τ], f(t) 

matches g(t), the IG pdf given in (2), with parameters μ1 and λ. For larger values of t, f(t) 

incorporates μ2 from B2(t) and takes on an unwieldy form. Lu & Storer (2001) establish numerous 

properties of (3): f(t) is continuous and may be either unimodal or bimodal; all positive integer 

moments exist; and maximum likelihood estimators are unique with probability tending to 1, are 

strongly consistent, and are asymptotically normally distributed.  

Lu and Storer (2001) state that (3) was obtained after Bhattacharyya (1987) and attribute the 

derivation to Bhattacharyya – contradicting Bhattacharyya (1987, p. 156): “The distribution … has 

been derived by using a conditioning approach which led to a closed form expression for the pdf” 

[emphasis added]. I derived the tampered BMP pdf (Fries 1982) while awaiting my PhD defense. 

Gouri Bhattachatyya, my advisor, posed the problem to me (Bhattacharyya 1982) and shortly 

thereafter crafted a skeleton of a draft manuscript (Bhattacharyya & Fries, 1982a) streamlining 

portions of my exposition and introducing the exact parameterization (3). Section 2 below details 

the approach taken in the derivation.  

 

2 PDF DERIVATION  

 

Two lemmas support the development of (3). Both were obtained from first principles in 

1982, but at present it suffices to cite published sources. Lemma 1 establishes the probability that a 

BMP in the future will attain a particular value, given that it earlier had reached a specified point at 

some prescribed instance in time – a fundamental probability arising naturally in the context of 

conditioning arguments. Lemma 2 simplifies certain integral expressions involving exponential 

functions.  

 

Lemma 1 (Wang & Pötzelberger 1997, Eq. (2)). Let B
*
(t) = B

*
(t;η,δ) be a BMP with positive drift η 

and variance δ
2
, and let τ, a, and b be positive constants. Then, independent of η, 

 

𝑃[  𝐵∗(𝑠)𝑠 𝜖 [0,𝜏]
𝑠𝑢𝑝 ≥ 𝑎 | 𝐵∗(𝜏) = 𝑏] =  {

𝑒𝑥𝑝 (
−2𝑎(𝑎 − 𝑏)

𝛿2𝜏
)

1               𝑖𝑓 𝑏 ≥ 𝑎.

 𝑖𝑓 𝑏 < 𝑎, 

 

 

 

Lemma 2 (Gradshteyn & Ryzhik 2007, pp. 365 & 1030). Let f(·) = Φ'(·) denote the standard 

normal pdf. For α > 0, 

𝐼(𝛼, 𝛽) ≡  ∫ 𝜗 ∙ 𝑒𝑥𝑝(−(𝛼𝜗2 + 𝛽𝜗))
∞

0
d𝜗 =  

1

2𝛼
(1 − (

𝛽

√2𝛼
)
𝛷(−

𝛽

√2𝛼
)

𝜙(−
𝛽

√2𝛼
)
). 
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Derivation of (3). On the time interval (0,τ], it is straightforward to determine the associated 

component of the cdf F(t) = P[T ≤ t]. For a fixed t ≤ τ, B(t) = B1(t) and  

𝑃[𝑇 ≤ 𝑡] = 𝑃[  𝐵(𝑠)𝑠 𝜖 [0,𝑡]
𝑠𝑢𝑝 > 𝜉] = 𝑃[  𝐵1(𝑠)𝑠 𝜖 [0,𝑡]

𝑠𝑢𝑝 > 𝜉] = 𝐺(𝑡; 𝜇1, 𝜆). 

For the non-trivial case, t > τ, the derivation proceeds by conditioning on B1(τ) and invoking the 

independence of B1(∙) and B2(∙): 

𝑃[𝑇 ≤ 𝑡] = 𝑃[𝑇 ≤ 𝜏] + 𝑃[𝜏 < 𝑇 ≤ 𝑡]  

= 𝑃[𝑇 ≤ 𝜏] + 𝑃 [[  𝐵(𝑠)𝑠 𝜖 [0,𝜏]
𝑠𝑢𝑝 < 𝜉] ∩ [  𝐵(𝑠)𝑠 𝜖 (𝜏,𝑡]

𝑠𝑢𝑝 ≥ 𝜉]]  

= 𝑃[𝑇 ≤ 𝜏] + ∫ 𝑃 [([  𝐵(𝑠)𝑠 𝜖 [0,𝜏]
𝑠𝑢𝑝 < 𝜉] ∩ [  𝐵(𝑠)𝑠 𝜖 (𝜏,𝑡]

𝑠𝑢𝑝 ≥ 𝜉]) | 𝐵1(𝜏) = 𝑏] 𝑓𝐵1(𝜏)(𝑏)d𝑏
∞

−∞
        (4) 

= 𝑃[𝑇 ≤ 𝜏] + ∫ 𝑃 [([  𝐵1(𝑠)𝑠 𝜖 [0,𝜏]
𝑠𝑢𝑝

< 𝜉] ∩ [  𝐵2(𝑠)𝑠 𝜖 (0,𝑡−𝜏]
𝑠𝑢𝑝

≥ 𝜉 − 𝑏]) | 𝐵1(𝜏) = 𝑏] 𝑓𝐵1(𝜏)(𝑏)d𝑏
∞

−∞
 

= 𝑃[𝑇 ≤ 𝜏] + ∫ 𝑃[  𝐵1(𝑠)𝑠 𝜖 [0,𝜏]
𝑠𝑢𝑝 < 𝜉 | 𝐵1(𝜏) = 𝑏] ∙ 𝑃[  𝐵2(𝑠)𝑠 𝜖 (0,𝑡−𝜏]

𝑠𝑢𝑝 ≥ (𝜉 − 𝑏)]𝑓𝐵1(𝜏)(𝑏)d𝑏.
∞

−∞
 

Lemma 1 enables the first term appearing in the final integrand to be evaluated directly, and 

effectively restricts the upper limit of the integral to be ξ. The second element in the integrand is 

recognized to be an IG cdf, G(t – τ;(ξ – b)/η2,(ξ – b)
2
/δ

2
). Note that this is the only factor in (4) that 

involves t. The last component of the integrand can be written as a normal pdf since B1(τ) has the 

distribution N(η1τ,δ
2
τ). Substituting back into (4), rearranging terms, and reparameterizing via the 

transformation υ = ξ – b yields:  

𝐹(𝑡) =  𝑃[𝑇 ≤ 𝜏] + ∫ 𝐺 (𝑡 − 𝜏;
𝜐

𝜂2
,
𝜐2

𝛿2
)

∞

0

(1 − 𝑒𝑥𝑝 (−
2𝜉𝜐

𝛿2𝜏
))

1

𝛿√𝜏
𝜙 (
𝜐 − 𝜉 + 𝜂1𝜏

𝛿√𝜏
) d𝜐, 

𝑓(𝑡) = 𝐹′(𝑡) = ∫ 𝑔 (𝑡 − 𝜏;
𝜐

𝜂2
,
𝜐2

𝛿2
)

∞

0

(1 − 𝑒𝑥𝑝 (−
2𝜉𝜐

𝛿2𝜏
))

1

𝛿√𝜏
𝜙 (
𝜐 − 𝜉 + 𝜂1𝜏

𝛿√𝜏
) d𝜐. 

Incorporating (2) and expanding the exponential function terms gives: 

𝑓(𝑡) =
1

2𝜋𝛿2
1

√𝜏(𝑡 − 𝜏)3
∙ 𝑒𝑥𝑝 (−

1

2𝛿2
[
(𝜂1𝜏 − 𝜉)

2

𝜏
+ 𝜂2

2(𝑡 − 𝜏)]) 

∙ ∫ 𝜐 ∙ 𝑒𝑥𝑝 (−
1

2𝛿2
[𝜐2 (

1

𝑡 − 𝜏
+
1

𝜏
) − 2𝜐 (𝜂2 − 𝜂1 +

𝜉

𝜏
)])

∞

0

(1 − 𝑒𝑥𝑝 (−
2𝜉𝜐

𝛿2𝜏
))d𝜐 

          =
1

2𝜋𝛿2
1

√𝜏(𝑡 − 𝜏)3
∙ 𝑒𝑥𝑝 (−

1

2𝛿2
[
(𝜂1𝜏 − 𝜉)

2

𝜏
+ 𝜂2

2(𝑡 − 𝜏)])            

∙ {𝐼 ([

1
𝑡 − 𝜏 +

1
𝜏

2𝛿2
] , − [

𝜂2 − 𝜂1 +
𝜉
𝜏

𝛿2
]) − 𝐼 ([

1
𝑡 − 𝜏 +

1
𝜏

2𝛿2
] , − [

𝜂2 − 𝜂1 −
𝜉
𝜏

𝛿2
])}. 

 

The precise form of (3) follows by application of Lemma 2 (observing that the first additive term in 

that result cancels out due to the difference being taken between the two I terms), assimilating the 

parameter definitions accompanying the initial statement of (3), and routine algebra. 
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3 DISCUSSION 

 

The original derivation of the pdf for the tampered BMP, over three decades old but hitherto 

unpublished, has been presented. Extensions to encompass experiments with three or more stress 

levels conceptually could be developed following analogous conditioning arguments, but 

cumbersome analytical expressions are encountered, e.g., 

∫ Φ(𝛼1 + 𝛽1𝑥)
∞

0

𝜙(𝛼2 + 𝛽2𝑥)𝑑𝑥. 

This integral does not seem to be representable in a closed form or even a single series expansion; 

Fayed & Atiya (2014) establish that a related integral can be written as an infinite series of the 

normalized incomplete Gamma function and the Hermite polynomial. The identical analytical 

complexity arises when attempting to integrate the F(t) expression under (4) to directly obtain the 

tampered BMP cdf. 

Upon reading an early draft of this paper, Nozer Singpurwalla noted that realizations of an 

underlying BMP with positive drift are not necessarily monotonically increasing. While such a 

construct plausibly may model many physical phenomena (e.g., when fatigue or degradation can be 

partially mitigated by regenerative or restorative processes), it would not realistically portray 

circumstances for which accumulated levels cannot decrease over time. For these situations, he 

endorsed modeling based on an underlying Wiener Maximum Process (introduced in Singpurwalla 

2006), i.e., the customary B(t;η,δ), a BMP with drift η > 0 and variance δ
2 

> 0,  would be replaced 

by M(t;η,δ) ≡ sup0<s≤t B(s;η,δ). Since the distribution of the first hitting time of a threshold barrier is 

derived from considerations of the maximum attained value, one obtains the standard IG pdf (2) 

regardless of whether the phenomenon of interest is modeled by the standard BMP or by its 

maximum. The derivation of the tampered BMP (3) presented in this paper only considers standard 

BMPs. It does not account for the prospect that B1(t;η,δ) and M1(t;η,δ) are not identical.  
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