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ABSTRACT 

 
In many cases, reliability can be improved by using redundant components. This is an approach that is applied 

especially in information networks. In this paper we study redundant systems with imperfect switches. We 

show that there exists a limit as the number of redundant components tends to infinity. This limit is computed 

for components with exponential life time distributions, which is the typical distribution for digital equipment 

used in information systems. For components with distributions belonging to the NBUE or HNBUE classes, 

bound are derived. 

 
 

 

1. INTRODUCTION 
 

In order to improve the reliability of a system there are mainly two possibilities. The first one 

is to improve the reliability of the components, the second is to implement redundancy. Mainly this 

is done by using more than one component to fulfill the same function, see e.g. Barlow & Proschan 

(1976). Redundancy means that in a technical system there are more possibilities present to ensure a 

function, than the necessary minimum. If one discards influences as costs and needed space, one 

might come to the conclusion that using redundant items, one could improve system reliability up to 

an arbitrarily high level. In this paper we will discuss the problem whether it is possible to improve 

reliability up to an arbitrary high level. Using redundant components is an approach used mainly in 

networks, especially in telecommunication networks. If a certain link or node fails, traffic is 

rerouted to other nodes and links. 

In this paper we will show that, under several assumptions, reliability cannot be improved 

further than to a certain limit. 

In section 2 we will describe the main assumptions of our model. In the next two chapters we 

consider two extremal modes of standby, hot standby and cold standby. Hot standby means that the 

load on the standby component is the same as on the main component and that no load sharing 

between the redundant components occurs. Cold standby describes a situation, where the redundant 

devices do not age at all during their standby phase, i.e. when the main component provides the 

service. All other modes of standby will describe modes of ageing that are between these two 

situations of load on the redundant components. 

In the third section we describe the situation of hot standby, the worst case regarding ageing. 

In the fourth section, we discuss the situation of cold standby, no ageing of the standby 

components. 

Section five provides an example and in section six we give a summary and conclusion. 
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2. MAIN ASSUMPTIONS 
 

For the model the following assumptions shall hold 

a) Detection and switching to another component is not perfect but fails. Here the probability 

of failure of switching from the failed component to the redundant one includes the failure 

of the switch itself in case of detection of the failure, the failure of the detection mechanisms 

when the switch is working as well as failure of both switch and detection mechanisms. This 

resulting probability is denoted by  

b) The lifetime of the components is random and follows the lifetime distribution F(x) with 

F(0) = 0 and  
lim F(x) =1

x→∞          
  

c) The failure times of all redundant components are completely statistically independent from 

each other. 

d) The number of redundant components is not limited. 

e) All redundant components have the same lifetime distribution. 

f) The lifetime distribution of the components is continuous, differentiable and has a finite 

mean. 

The model has been described in more detail in Shubinsky (2012). 

Parallel systems with imperfect switching to redundant components will be called imperfect 

systems in this paper. 

The following figure shows an example of a system with redundant components. Each of the 

m, possibly different, components has n redundant replications. We will study this type of systems 

for  n →∞ 
 

 

 

Figure 1. System with redundant components 

 

In the following subsections we will simplify the system in figure 1 by considering only one 

component with its redundant replications. 
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3. HOT STANDBY 
 

For hot standby, all components are under full load from the beginning. So this is in fact a 

situation of a simple parallel system. Assume that a component with lifetime distribution F(x) is 

connected in parallel with all its replications. The following figure 2 shows the reliability block 

diagram of the system. Assume that n components are connected in parallel. 
 

 

 

 

 

 

 

 

 

 

Figure 2. System with parallel structure of components 

 

The lifetime distribution of the parallel system with hot standby can now be computed as 

follows. 

In order to have achieve a redundancy of level k, i.e. that k are components functioning, k-1 

successful switchovers are necessary with a failure on the k-th switch-over. 

The probability of this event is (1- )k-1 . The distribution function of k identical units with lifetime 

distribution F(x) and connected in parallel is  

1-(1-F(x))k. (1) 

Combining both expressions and summing up we arrive at 

i=1

k

(1- )i-1(1-(1-F(x))i) (2) 

If now k tends to infinity, this gives 

i=1

∞

(1- )i-1F(x)i = 
F(x)

1-(1- )F(x)
  = G(x), (3) 

where G(x) denotes the distribution function of the lifetime of the redundant system. 

Note that, the lifetime distribution of the parallel system is given by an analytic expression. 

Moreover, one can observe that  

 

G(x) = 
F(x)

1-(1- )F(x)
 ≤ F(x)                                                       (4) 

 

which follows easily from 

F(x) ≤F(x) –(1- )F(x)2 and 

(1- )F(x) ≥ (1- )F(x)2. 

The latter is obvious since F(x) ≥ F(x)2. 

Considering (4) one can see that (4) is smaller than the distribution of a single component, 

but even in the limiting case, the failure probability does not vanish. This is only possible for 

k = 1 

k =2 

k =3 

k =4 

k =5 

k →∞ 
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perfect switching, i.e. =0. For all positive values of  which means imperfect switching, G(x) will 

form a lower bound for all systems with a large but finite number of redundant elements. 

Now we can compute the mean lifetime by 

mG = 

0

∞

(1-G(x))dx = 

0

∞
1-F(x)

1-(1- )F(x)
 dx (5) 

For an exponential distribution, one computes 

mG = 

0

∞

exp(- x)

1-(1- )(1-exp(- x))
 dx= 

0

∞

exp(- x)

+(1- )exp(- x)
) dx = -(1/  ln( ) / (1- ). (6) 

For =1 this gives 1/ , which is the result for the exponential distribution without 

redundancy. Again, for imperfect switching, mG always stays bounded and its value is determined 

by mF and . 

Now, for a function that belongs to the NBUE (new better than used in expectation) or 

NWUE (new worse than used in expectation) family we can show that an expression as (1) is an 

upper (lower) bound on the mean value of the distribution function G. 

A lifetime distribution function belongs to the class NBUE (NWUE) if it satisfies 

x

∞

(1-F(t))dt ≤(≥) mF(1-F(x)) , 

where mF is the mean of F(x), see e.g. Barlow and Proschan (1976) 

If now F(x) belongs to the class NBUE (or NWUE) the following inequality holds 

 

mG ≤ (≥) –mFln( )/(1- ).                                                         (7) 

 

This result can be proven as follows. 

We rewrite (6) in the following form: 

mG = 

0

∞
1-F(x)

1-(1- )F(x)
 dx = - 

0

∞

d 

x

 ∞

(1-F(t))dt 

1-(1- )F(x)
 (8) 

Integrating this expression by parts, we arrive at 

mG = mF/(1-(1- )) + 

0

∞

 

x

 ∞

(1-F(t))dt d 
1

1-(1- )F(x)
 (9) 

Using the NBUE (NWUE) property this can be rewritten as 

mG ≤ (≥) mF/(1-(1- )) - 

0

∞

 mF (1-F(x)) d 
1

1-(1- )F(x)
 (10) 
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and integrating by parts again 

mG ≤ (≥) mF 

0

∞

 
(1-F(x))dx

1-(1- )F(x)
) = -mF ln ( ) /(1- ) (11) 

This proves (7). 

Using the expression (3), we can derive an inequality for the residual life function TRL. The 

latter is defined by  

TRL = 

x

∞

(1-G(t))dt . 

Using (3) we arrive at 

TRL  = 

x

∞

(
1-F(t)

1-(1- )F(t)
)dt = - 

x

∞

(
1

1-(1- )F(t)
)d

t

 ∞

(1-F(s))ds . 

Integrating by parts, we get 

TRL = 
1

1-(1- )F(x)
 

x

∞

(1-F(t))dt + 

x

∞

t

 ∞

(1-F(s))ds d(
1

1-(1- )F(t)
). 

For a NBUE (NWUE) distribution this leads to  

-
mF(1-F(x))

1-(1- )F(x)
 - 

x

∞

mF(1-F(t)) d(
1

1-(1- )F(t)
). 

Integrating by parts again, this expression equals 

TRL ≤ (≥) -mF 

x

∞
d(1-F(t))

1-(1- )F(t)
 = mF 

x

∞
dF(t)

1-(1- )F(t)
 =(mF/ ) ln (

1-(1- )F(x)
 ) 

Putting everything together, we arrive at 

TRL ≤ (≥) (mF/ ) ln (
1-(1- )F(x)

 ) 

For the exponential distribution, the equality holds. 
 

4. COLD STANDBY 
 

The case of cold standby is the other extremal case. Here, the lifetime distribution of a 

parallel system is computed by 

G(x) = 

i=1

∞

(1- )i-1F(i)(x),           (12) 

where F(i)(x) denotes the i-fold convolution of the distribution function F(x). The 

convolution is defined by 
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F(1)(x) = F(x)  

for the first order convolution, all higher orders are defined iteratively by 

F(k+1)(x) = 

0

x

F(k)(x-t)dF(t) . (13) 

Formula (12) is derived from the probability (1- )i-1  for a failure of the system when the 

switching to the i-th redundant component and the lifetime distribution F(i)(x) of i successively 

used components . 

For the type of distributions given by (12), a general analytical solution does not exist. 

However, the following results can easily be obtained. 

For an exponential distribution with density f(x) =  exp(- x) one obtains (see /Shubinski/) 

 

G(x) = 1-exp(- x).                                                    (14) 

 

If =1 (switching fails always), we arrive at the usual exponential distribution of a single 

component. The result (9) can be easily derived by using 

 

f(k)(x)  = k-1exp(- x) /(k-1)!                                        (15) 

 

and computing the density g(x). 

Using results of Schäbe (1986), we can also derive other analytical results for special Gamma 

distributions that have the following form 

 

F(x) = x exp(- x)/ ( )                                         (16) 

 

The results are given in the following table. 

 

Table 1. density functions g(x) for special types of gamma densities for f(x). 
 

Parameters  density g(x) of the parallel system 

=1/2 

x
 exp(- x)+ (1- )exp(- (1- )2/2)erfc(- (1- ) x) 

 = 1 exp(- x) 

 = 2 

2 1-
 (exp(-(1- 1- ) x) - exp(-(1+ 1- ) x) 

 = 3 

(1- )2/3
 (1

3
exp( x(1- )1/3)-

2

3
 exp(- x(1- )1/3)cos(

3

2
x(1- )1/3- /3))  

 = 4 

2(1- )3/4
 exp(- x)(sinh( (1- )1/4x- sin( (1- )1/4x) 

 

Also, it has been shown in Schäbe (1986), that  
 

mG = mF/ (17) 

 
Therefore, no approximation for mG needs to be given. 
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One may note, that the mean is limited, even if the number of redundant devices becomes 

infinite. The distribution function G(x) has no closed form expression  in the general case. So, it is 

worthwhile to have a bound on it. In Schäbe (1986) it has been shown in theorem 3.2 that if F 

belongs to the class NBUE (NWUE), the same holds for G. An analogous result has been proven 

for the class HNBUE (harmonic new better than used in expectation) and HNWUE (harmonic 

worse than used in expectation) in theorem 3.4. The latter result can be used to give a bound on G. 

If F is HNBUE (HNWUE), we have for the distribution G the following inequality for the residual 

life function, see Klefsö (1982) 
 

x

∞

(1-G(t))dt  ≤ (≥) mG exp(-x/mG) = (mF/ ) exp(- x/mF)                   (18). 

 

Also this expression shows, that an infinite number of redundant devices is not able to 

improve the residual life function further than to a certain value. For HNBUE distributions, we 

derived an upper bound on an infinitely increasing number of redundant devices. 

 

5. EXAMPLE 

 

In this section we will show how the mean lifetime depends on the number of components 

used for redundancy and how it depends on the probability  of failure of switching for a cold 

standby system. 

From (5) we have. 
 

G(x) = 1-exp(- x). 
 

For a system as in figure 1 consisting of m components connected in series each having k 

redundant replications this gets 

 
G(x) = 1-exp(- kx). 

 

This distribution has mean 1/( k). Now the relative mean of the system with redundancy 

over a system consisting of one element with failure rate  is  

 

R = 1/( k). 

Let us now denote by =1-  the probability that detection of a fault and switching to the 

redundant component is successful. 
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Figure 3. Relation of means 1/( k) depending on . 
 

 

For k=1 the mean life time is plotted by a simple line. One can observe that with increasing 

degree of redundancy (k) the mean lifetime grows. Also, with increasing , i.e. with increasing 

quality of switching, the mean lifetime also increases. 
 

6. DISCUSSION AND CONCLUSIONS 
 

Now we can provide the following limits for the different types of systems. 

 

Table 2. Overview of the limit values for parallel systems with an independent number of 

components. 
Characteristics Limit for hot standby Limit for cold standby 

G(x) F(x)

1-(1- )F(x)
  

G(x) = 

i=1

∞

(1- )i-1F(i)(x) 

mG ≤ (≥) -mF ln ( ) /(1- ) 

For F being NBUE (NWUE), 

equality for the exponential 

distribution 

mG = mF/  

Residual life 

x

∞

(1-G(t))dt  
≤ (≥) (mF/ ) ln (

1-(1- )F(x)
 ) 

For F being NBUE (NWUE), 

equality holds for the exponential 

distribution 

≤ (≥) (mF/ ) exp(- x/mF) 

For F being HNBUE 

(HNWUE), equality holds for 

the exponential distribution 
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Note that, the limit itself is an upper bound for systems with a finite number of redundant 

components. So the upper bounds for real systems with a finite number of components is given by 

the NBUE / HNBUE limits. This is given in table 3 

 

Table 3 upper bounds for imperfect parallel systems. 
 

Characteristics Limit for hot standby Limit for cold standby 

G(x) F(x)

1-(1- )F(x)
  

G(x) = 

i=1

∞

(1- )i-1F(i)(x) 

mG  -mF ln ( ) /(1- ) 

For F being NBUE 

mG = mF/  

Residual life 

x

∞

(1-G(t))dt  
(mF/ ) ln (

1-(1- )F(x)
 ) 

For F being NBUE 

(mF/ ) exp(- x/mF) 

For F being HNBUE 

 
An imperfect system cannot achieve better values than given in the table above for 

components that satisfy the NBUE or HNBUE property. 

In this paper we have obtained distribution functions for parallel systems in the case that 

switching to redundant devices is not perfect. It has turned out that there exists a limit and reliability 

cannot be improved up to 1. This can only be reached if switching is perfect. 

This implies that at a certain stage of system development it is worthwhile to improve the 

reliability of the switching algorithm that to implement further additional redundant devices. 
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