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Abstract 

 

In this paper, we introduce a new Bathtub shaped failure rate model named as x-Exponantial Model 

and present a comparative study with Generalized Lindley, Generalized Gamma and Exponentiated 

Weibull distributions.  

 
 
 

 

I. INTRODUCTION 

 
There are many distributions for modeling lifetime data. Among the known parametric 

models, the most popular are the Lindley, Gamma, log Normal, Exponentiated Exponential and 

the Weibull distributions. These five  distributions are suffer from a number of drawbacks. None of 

them exhibit bathtub shape for their failure rate functions. The  distributions exhibit only 

monotonically increasing, montonically decreasing or constant failure rates. This is a major 

weakness because most real life system exhibit bathtub shapes for their failure rate functions. 

Atleast three of the four distributions exhibit constant failure rates. This is a very unrealistic feature 

because there are hardly any real life systems that have constant failure rates. This is a major 

weakness because most real life system exhibit bathtub shapes for their failure rate functions. 

Secondly atleast three of the four distributions exhibit constant failure rates. This is a very 

unrealistic feature because there are hardly any real life systems that have constant failure rates.  

Generalized Lindley, Generalized Gamma and Exponentiated Weibull distributions are 

proposed for modeling Lifetime data having bathtub shaped failue rate model. In this paper we 

introduce a simple model but exhibiting bathtub shaped failure rate and discuss the failure rate 

behavior of these distributions. A comparative study is carried out.  

Section 2, discussed the Lindley Distribution, Section 3 discussed Generalized Lindley 

distribution, section 4 discussed Generalised Weibull distribution, section 5 discussed Generalized 

Gamma distribution, section 6 introduced new model, called x-Exponential and conclusions are 

given at the final section. 
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II. LINDLEY DISTRIBUTION 

 
Lindley distribution was introduced by Lindley (1958) in the context of Bayesian statistics, as 

a counter example of fudicial statistics. Ghitany et al. (2008) observed that this distribution can be 

quite effectively used in lifetime experiments, particularly as an alternative of exponential 

distribution, as it also has only scale parameter. More so, in real world, we rarely encounter the 

engineering systems which have constant failure rate through their life span. Therefore, it seems 

practical to assume failure rate as a function of time. Lindley distribution is one of the 

distributions, having time-dependent failure rate.  

 

The probability density function (pdf) of a Lindley random variable X, with scale parameter λ 

 is given by  

f(x) =
λ

1 + λ
(1 + x)e−λx, x > 0, λ > 0 

The cumulative distribution function is 

F(x) = 1 −
1 + λ + λx

1 + λ
e−λx, x > 0, λ > 0 

Lindley distribution is positively skewed distribution. 

 

 
 

Figure 2.1: Probability density function of Lindley for  λ= 0:1; 0:5; 1:0 and 2.5. 

 

 

The Failure Rate Function of Lindley distribution is 

 

h(x) = (λ2(1 + x))/(1 + λ(1 + x)), x > 0, λ > 0. 
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Figure 2.2: Failure rate function of Lindley distribution for λ = 0:1; 0:5; 1:0 and 5.0. 

 

III. GENERALIZED LINDLEY DISTRIBUTION 
 

Suppose X1 , X2, … , Xn  are independent random variables distributed according to Lindley 

distribution and  T = min⁡(X1, X2, … , Xn)  represent the failure time of the components of a series 

system, assumed to be independent. Then the probability that the system will fail before time x is 

given by 

 

F(x) = [1 −⁡(1 + λ + λx)/(1 + λ)⁡e^(−λx)]n, x > 0, λ > 0. 

It is the distribution of the failure of a series system with independent components. The 

cumulative distribution function and pdf of Generalized Lindley distribution are 

 

F(x) = [1 −⁡(1 + λ + λx)/(1 + λ)⁡e^(−λx)]α, x > 0, λ > 0, α > 0 

 

f(x) =
αλ(1 + x)

1 + λ
[1 −⁡(1 + λ + λx)/(1 + λ)⁡e^(−λx)]α−1e−λx, x > 0, λ > 0, α > 0 

The equation has two parameters, λ and � just like the Gamma, log Normal, Weibull 

and exponentiated Exponential distribution.  For   = 1 it  reduces to Lindley  distribution. 

 

The failure rate function is 

 

h(x) =
〖(αλ(1 + x))/(1 + λ)⁡[1 −⁡(1 + λ + λx)/(1 + λ)⁡e^(−λx)]〗^(α − 1)⁡e^(−λx)

1 − [1 −⁡(1 + λ + λx)/(1 + λ)⁡e^(−λx)]α
, x > 0, λ > 0, α

> 0 

 

The shape of the failure rate function appears monotonically decreasing or to initially 

decrease and then increase, a bathtub shape if �< 1; the shape appears monotonically increasing if 

�≥1. So the Generalized Lindley distribution allows for monotonically decreasing, monotonically 
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increasing and bathtub shapes for its failure rate function. 

 

 
 

Figure 3.1. Probability density function of Generalized Lindley distribution. 

 

 
 

 

Figure 3.2. Failure rate function of Generalized Lindley distribution 

 

IV. Exponentiated Weibull Distribution 
 

We consider the Exponentiated Weibull (EW) distribution which has a scale parameter and 

two shape parameters. The Weibull family and the Exponentiated Exponential (EE) family are 

found to be particular cases of this family. The cumulative distribution function of the 

Exponentiated Weibull distribution is given by 

 

F(x) = (1 − e
−(

x
β
)
α

)

λ

, λ > 0, α > 0, β > 0. 

Here λ and � denote the shape parameters and  β  is the scale parameter. For When  λ= 1, the 

distribution   reduces to the Weibull Distribution with parameters.  When β = 1, �=1 it represents 
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the (EE) family. Thus, EW is a generalization of EE family as well as the Weibull family. 

 

Then the corresponding density function is 

f(x) = (
αθ

σ
) [1 − exp⁡{−(x/σ)α}]θ−1exp⁡{−(

x

σ
)α}(

x

σ
)α−1, x ≥ 0. 

 

_ 

Figure 4.1 Probability density function of Exponentiated Weibull distribution 

 

f(x) =
(
αθ
σ
) [1 − ex p {− (〖

x
σ
)〗α}]

θ−1

ex p {− (
x
σ
)
α

} (
x
σ
)
α−1

1 − [1 − ex p {− (〖
x
σ
)〗α}]

θ
,⁡ 

 

x ≥ 0, α, θ, σ > 0. 

 

 

 
 

Figure 4.2: Plot of the failure rate function of EW distribution 
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 The EW distribution is constant for �= 1 and  = 1.  The EW distribution is IFR for  > 1 and �≥1. 

 The EW distribution is DFR for �< 1 and �≤1.  The EW distribution is BT(Bathtub) for �> 1 

and �< 1.  The EW distribution is UBT (Upside down Bathtub) for � < 1 and � > 1. 

 

V. Exponentiated Gamma Distribution 
 

The Gamma distribution is the most popular model for analyzing skewed data and 

hydrological processes. This model is flexible enough to accommodate both monotonic as well as 

non-monotonic failure rates. The Exponentiated Gamma (EG) distribution is one of the important 

families of distributions in lifetime tests. The Exponentiated Gamma distribution has been 

introduced  as an alternative to Gamma and Weibull distributions.  

 

The Cumulative Distribution function of the Exponentiated Gamma  distribution is given by 

 

G(x) = [1 − exp{−λx} (1 + λx)]θ, x > 0, λ, θ > 0. 

 

where  λ and  � are scale and shape parameters respectively.  

 

Then the corresponding probability density function (pdf) is given by 

 

g(x) = θλ2x⁡exp⁡{−λx}([1 − exp{−λx} (1 + λx)]θ−1, x > 0, λ, θ > 0. 

 

 
Figure 5.1. Probability density function of EG distribution. 

 

The failure rate function is 

  

h(x) =
θλ^2⁡x⁡exp⁡{−λx}([1 − exp⁡{−λx}⁡(1 + λx)⁡]^(θ − 1)

1 − [1 − exp⁡{−λx}⁡(1 + λx)⁡]^θ
, x > 0, λ, θ > 0. 

 

Then the other advantage is that it has various shapes of failure function for different values 

of  . It has increasing failure function when �≥ 1/2 and its failure function takes Bath-tub shape for 
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𝜃<1/2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2: Failure rate function of EG distribution. 

 
 
 

VI. x-Exponential Distribution 

 
We introduce a new distribution, call it as x-Exponential, as an alternative to Generalized 

Lindley, Generalized Gamma and Exponentiated Weibull distributions. It is a very simple model 
than these GL, GG, EW distributions. 

 
A life time random variable X is called x-Exponential distribution if its cumulative 

distribution function is 
                                  F(x) = (1 − (1 + λx2)e^(−λx))α, x > 0, λ > 0. 

 
Clearly F(0)=0, F(∞) = 1, F is non-decreasing and right continuous. More over F is 

absolutely continuous. 
The probability density function (pdf) of a x-Exponential random variable X, with scale 

parameter λ is given by  
𝑓(𝑥) = 𝛼𝜆(1 − (1 + λ𝑥ଶ)𝑒ିఒ௫)ఈିଵ. [ λ𝑥ଶ − 2𝑥 + 1]𝑒ିఒ௫, 𝑥 > 0, 𝛼 > 0, λ > 0  

It is positively skewed distribution. 
 

Failure rate function of x-Exponential distribution is 

ℎ(𝑥) =
𝛼(1 − (1 + λ𝑥ଶ)𝑒ିఒ௫)ఈିଵ. [ λ𝑥ଶ − 2𝑥 + 1]𝜆𝑒ିఒ௫

1 − (1 − (1 + λ𝑥ଶ)𝑒ିఒ௫)ఈ
, 𝑥 > 0, 𝛼 > 0, λ > 0 
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Figure 6.1. Failure rate function of x
 
 
 
 

 

There are many distributions in reliability which exhibit Bathtub shaped failure rate 
model, but most of them are complicated in finding the moments, reliability etc. 
Moreover the increased number of parameters make complication and difficulty in 
estimation process. The proposed model is similar to Generalized Lindley, so all the 
computational procedures are like GL distribution. So I am not trying to provide a 
rigorous proof for that. This distribution can be viewed as distribution of 
where Xi is having i.i.d distribution with d.f. 
rate model. 
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Failure rate function of x-Exponential distribution for α =0.01 and λ= .6
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