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Abstract 

 

This paper deals with the equal marginal location-scale Generalized Absolutely Continuous 

Multivariate Exponential model. The distributional properties and applications of the location-scale 

model arising out of the k-parameter Generalized Absolutely Continuous Multivariate Exponential 

distribution are studied. Standby, parallel, series and relay systems of order k with location-scale 

Generalized Absolutely Continuous Multivariate Exponential failuretimes are discussed and their 

performance measures are obtained. The optimal estimators of the meantime before failure times are 

also derived. 

 

Keywords: Equivariant estimation, location-scale, multivariate exponential, performance                        

measures  

 

 

1. Introduction 
 

               Though, there is an extensive literature on the reliability aspects of systems with 

independent failure times, not much work seems to have been carried out on systems with 

dependent component failure times. Rau (1970) discusses reliability analysis of systems 

with independent components. Chandrasekar and Paul Rajamanickam (1996), Paul 

Rajamanickam and Chandrasekar (1997, 1998a, 1998b), Paul Rajamanickam (1999) discuss 

repairable systems with dependent structures mainly assuming Marshall - Olkin type of 

joint distributions for the system component failure and repair times. Recently 

Chandrasekar and Sajesh (2013) and Chandrasekar and Amala Revathy (2016) discussed 

reliability applications of location-scale equal marginal absolutely continuous bivariate and 

multivariate exponential distributions respectively. 

              By considering location-scale Generalized Absolutely Continuous Multivariate 

Exponential (GACMVE) failuretime distribution, for k unit systems, we derive the 

reliability performance measures and obtain optimal estimators. In Section 2, we propose 

the probability density function for the location- scale GACMVE model. In Section 3, we 

derive some important distributional results required for further discussion. In Section 4, 

we consider a k unit standby system and obtain the mean time before failure (MTBF) and 
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the reliability function of the system. Further the minimum risk equivariant estimator 

(MREE) and the uniformly minimum variance unbiased estimator (UMVUE) of the MTBF 

are derived. Similar results for parallel, series and relay systems are presented in Sections 5, 

6 and 7 respectively.  

 

2. Generalized Absolutely Continuous Multivariate Exponential location scale   

                                                        model 

  
   The joint pdf of GACMVE is  
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For fixed  1 2, ,...., ,k   the distribution of 1 2, ,...., kXX X  
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family is the location GACMVE family. When ξ = 0, the resulting family is the scale GACMVE 

family. Since we are interested in the location-scale parameter, it is assumed that the parameters 
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3. Distributional properties 
 

Theorem 3.1                                                                                                   

 Let  1 2, ,... ~kX X X  GACMVE distribution given in (2.1), and 
1 2, , kY Y Y  denote the order 

statistics based on 1 2, , kX X X . Define 
1 1 ,W Y  2 2 1 ,W Y Y  ……  1.k k kW Y Y    Then 

0 1B W , 
1 2B W ,..., 

1k kB W
 are independent and identical standard exponential random variables, 
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In order to find the distribution of  1 2, , nW W W , consider the transformation 

.0with,,...2,1, 01   ykiyyw iii  
Then  jj wwwy  ....21 , j = 1,2,3,…,k. 

Note that the Jacobian of the transformation is 1. 
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The joint pdf of   1 2, , kW W W  is  
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Hence 0 1B W , 1 2BW  …..
1k kB W

  are independent and identical E(0,1) random variables. 

 

 

Sufficient statistic 

Let  1 2, ,p p p kpX X X X


 ; p = 1,2,….n be a random sample of size n from (2.2). 

The joint pdf of   1 2, ,p p kpX X X  ; j = 1,2,….n  is          
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By factorization theorem,  * * *

1 2,T T T  is a sufficient statistic. 
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Theorem 3.2                      

(i) 
*
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2 ~ 1,T G nk   and 
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Proof 

(i) Let  1 2, ,p p p kpX X X X


 ; p = 1,2,….n be a random sample of size n from (2.2). 

The joint pdf of   1 2, ,p p kpX X X  ; j = 1,2,….n is  
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, ....
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0
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, it follows that the first term on the 

right hand side follows  1,G n  .  

By Theorem 3.1, each of the other (k-1) terms on the right hand side follows  ,G n  . Since 

1 2 ,, ,j j kjW W W  are independent for each j, the k random variables on the right hand side are 

independent.  

Hence  *

2 ~ 1,T G nk  . 

 

(iii) For fixed τ, the joint distribution of  1 2, ,j j kjX X X , j = 1,2,….n, belongs to a location family 

with the location parameter ξ. The statistic T2* is ancillary and T1* is complete sufficient. Hence T1* 

and T2* are independent (Basu, 1955). 

 

The following theorem will help us in obtaining the reliability performance measures of standby 
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and parallel syste 

Theorem 3.3 

Let  1 2, , , kT T T  follow  1 2, ,... ; ,kGACMVE       with pdf given in equation (2.2). Then   
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The following Lemma helps us in finding the reliability function. 
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Lemma 3.1 
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Corollary 3.1 
 

The survival function corresponding to M(u) is  
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4 Standby system 
 

Consider a k unit standby system with component failure times 1 2, , , kT T T  having location-scale 

GACMVE distribution. 

Then the system failure time is 
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MTBF = E (T) 
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  kVVVE k  ....21  
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5 Parallel system 

 

               Consider a k unit parallel system with component failure times 
1 2, , , kT T T  having the 

GACMVE distribution. Then the system failure time is 
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6  Series system 
 

               Consider a k unit series system with component failure times 1 2, , , kT T T  having the 

GACMVE distribution. 

 Then the system failure time is 
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From Theorem 3.2,  
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  , the MREE of the MTBF is given by  

*

01 02

0

1 1 1

lkn B n B
  

 
   

 
 

 

Reliability function 

 

R(t) = P(T > t)   

         =  0exp ,
B

t t 


 
  

 
  

 

7 Relay system 
                        

Consider a k unit relay system with component failure times 1 2, ,.... , kT T T  having the GACMVE 

distribution. A relay system of order k operates if the first component and anyone of the remaining 

(k-1) components operate. Therefore, the failure time of the system is  1 2 3 .... kT T T T T     . 

 

         The reliability function of the system is  

         
   tTPtR   

                     
















k

r

r
r

tttF
r

k

2

0....,,0,...,,,
1

1
1 , 

 using distributive law and routine arguments. 

Here  , ,..., ,0,....,0rF t t t   represents  1 2 1, ,..., , 0,..., 0r r kP X t X t X t X X     .  

Let us discuss in detail the case when k = 3. 

Here 
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The MTBF is given by 

                  MTBF 
   1 2 1 2 3
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2 3 3
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When η = α ξ +β τ, α, β є R, the MREE of η is given by 
*

01 02

0

1

kn n B


    

 
   

 
. 

By taking α = 1 and
 

  
1 2 3

1 2 1 2 3

4 5 2

2 3 3

  


    

  
  

   

, in the above equation, we get the MREE 

of the MTBF. 

    Therefore, MREE of the MTBF is 

            

 

  
1 2 3*

01 02

1 2 1 2 3 0

4 5 21 1

2 3 3kn n B

  
  

    

   
            

 

Remark 7.1 
From Theorem 3.2, we can obtain the UMVUE’s of ξ and τ, and hence obtain the UMVUE of  

α ξ +β τ: 

                     
**

01 02

0

1

1kn n B


   

 
   

  
 

Hence one can obtain the UMVUE’s of the MTBF in each of the four systems discussed in this 

chapter. 
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