
 
Veretennikov A. 
ON RECURRENCE AND AVAILABILITY FACTOR  

RT&A, No3 (42) 
Volume 11, September 2016  

49 

On recurrence and availability factor for single–server 

system with general arrivals  
 
 

A. Yu. Veretennikov2  
● 

University of Leeds, UK; National Research University  

Higher School of Economics, and Institute for Information  

Transmission Problems, Moscow, Russia,  

 

email: a.veretennikov @ leeds.ac.uk. 

 

 

 

 

Abstract 

 
Recurrence and ergodic properties are established for a single–server queueing system with variable 

intensities of arrivals and service. Convergence to stationarity is also interpreted in terms of 

reliability theory.  
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1  Introduction 
 

 In the last decades, queueing systems of 𝑀/𝐺/1/∞, or 𝑀/𝐺/1, or more general 𝐺/𝐺/1 

type (cf. [10]) – one of the most important queueing systems – attracted much attention, see [1], [2], 

[4], [5], [6], [9], [12], [13], [15], and references therein, et al. In this paper a single–server system 

similar to [18, 19] is considered, in which  intensities of new arrivals as well as of their service may 

depend on the “whole state” of the system, where the whole state includes the number of 

customers in the system – waiting and at service –  and the elapsed time of the last service (that is, 

time from the beginning of this service), as well as the elapsed time from the  last arrival. In 

queueing theory notations, the system under consideration may be denoted as 𝐺/𝐺/1/∞ with 

restrictions. Batch arrivals are not allowed. The model is not 𝐺𝐼/𝐺𝐼/1/∞ (here “I” stands for 

independence, as usual) because generally speaking periods between two consequent hits of idle 

state may be dependent, as well as by other reasons. (This is a slight abuse of notations because 

here “idle” is more than one state.) The generalisation in comparison to the standard 𝐺𝐼/𝐺𝐼/1/∞ 

model and to the models studied in [18, 19] is because of dependence of the intensities on time 

from the last arrival, due to which the moment of hitting the idle state cannot be considered as a 

regeneration. The restrictions mentioned above relate to the existence of intensities and to certain 

assumptions on them, see the details in the beginning of the next section. By the  m-availability 

factor of the system we understand the probability of 𝑚 customers in total on the server and in the 

queue. The problem addressed in the paper is how estimate convergence rate of characteristics of 

the system including the 𝑚-availability factors to their stationary values. 

                                                           
2 The work was prepared within the framework of a subsidy granted to the HSE by the Government of the Russian 

Federation for the implementation of the Global Competitiveness Program, and supported by the RFBR grant                      

14-01-00319-a. 
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The  elapsed service time of a customer at service is assumed to be known at any moment, 

but the remaining service time is not; the same is true for the elapsed time from the last arrival and 

the remaining time to the next arrival. For definiteness, the discipline of serving is FIFO (first–in–

first–out), although other disciplines may be also considered. 

The paper consists of the Section 1 – Introduction, of the setting and main result in the 

Section 2, of the auxiliary lemmata in the Section 3 and of the outline of the proof of the main result 

in the Section 4. In the Theorem 1 we deliberately do not show exact inequalities on the 

characteristics in the assumptions, which would imply greater or lesser constant in the main 

assertion (7) because of various possibilities of dependences between them; however, some idea of 

what precisely may be assumed can be easily worked out from the calculus in the proof. 

 

2  The setting and main result 
 

2.1  Defining the process 
 

Let us present the class of models under investigation in this paper. Here the state space is 

a union of subspaces,  
 𝒳 = {(0, 𝑦):  𝑦 ≥ 0} ∪ ⋃∞

𝑛=1 {(𝑛, 𝑥, 𝑦):  𝑥, 𝑦 ≥ 0}. 

Functions of class 𝐶1(𝒳) are understood as functions with classical continuous derivatives with 

respect to the variable 𝑥. Functions with compact support on 𝒳 are understood as functions 

vanishing outside some domain bounded in this metric: for example, 𝐶0
1(𝒳) stands for the class of 

functions with compact support and one continuous derivative. There is a generalised Poisson 

arrival flow with intensity 𝜆(𝑋), where 𝑋 = (𝑛, 𝑥, 𝑦)   𝑓𝑜𝑟  𝑎𝑛𝑦  𝑛  ≥   1 , and 𝑋 = (0, 𝑦)   𝑓𝑜𝑟  𝑛  =

  0   . Slightly abusing notations, it is convenient to write 𝑋 = (𝑛, 𝑥, 𝑦) for 𝑛 = 0 as well, assuming 

that in this case 𝑥 ≡ 0; after this identification, the “corrected” state space becomes 

 
 𝒳 = {(0,0, 𝑦):  𝑦 ≥ 0} ∪ ⋃∞

𝑛=1 {(𝑛, 𝑥, 𝑦):  𝑥, 𝑦 ≥ 0}. 

If 𝑛 > 0, then the server is serving one customer while all others are waiting in a queue. When the 

last service ends, immediately a new service of the next customer from the queue starts; recall that 

for definiteness the schedule of the service is assumed FIFO, although actually the result does not 

depend on it. If 𝑛 = 0 then the server remains idle until the next customer arrival; the intensity of 

such arrival at state (0, 𝑦) ≡ (0,0, 𝑦) may be variable depending on the value 𝑦, which stands for 

the elapsed time from the last end of service. Here 𝑛 denotes the total number of customers in the 

system, and 𝑥 stands for the elapsed time of the current service (except for 𝑛 = 0, which was 

explained earlier), and 𝑦 is the elapsed time from the last arrival.  Usually, in the literature intensity 

of arrivals – if not independent – may depend on 𝑛 (and in some cases on 𝑦), while intensity of 

service may depend on 𝑛 (and in some cases also on 𝑥); however, we allow a more general 

dependence of all these variables together. Denote 𝑛𝑡 = 𝑛(𝑋𝑡) – the number of customers 

corresponding to the state 𝑋𝑡, and 𝑥𝑡 = 𝑥(𝑋𝑡), the second component of the process (𝑋𝑡), and 𝑦𝑡 =

𝑦(𝑋𝑡), the third component of the process (𝑋𝑡) (the third if 𝑛 > 0)). For any 𝑋 = (𝑛, 𝑥, 𝑦), intensity 

of service ℎ(𝑋) ≡ ℎ(𝑛, 𝑥, 𝑦) is defined; it is also convenient to assume that ℎ(𝑋) = 0 for 𝑛(𝑋) = 0. 

Both intensities 𝜆 and ℎ are understood in the following way, which is a definition: on any 

nonrandom interval of time [𝑡, 𝑡 + Δ), the conditional probability given 𝑋𝑡 that the current service 

will  not be finished and there will be no new arrivals reads,  

 exp (−∫
Δ

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠) 𝑑𝑠) ; (1) 

 the conditional probability of exactly one arrival and no other events on this interval given 𝑋𝑡 

equals  

 ∫
Δ

0
exp(− ∫

𝑣

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠) 𝑑𝑠)𝜆(𝑛𝑡 , 𝑥𝑡 + 𝑣, 𝑦𝑡 + 𝑣) 

  (2) 
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 × exp (−∫
Δ−𝑣

0
(𝜆 + ℎ)(𝑛𝑡 + 1, 𝑥𝑡 + 𝑣 + 𝑠′, 𝑠′) 𝑑𝑠′)  𝑑𝑣; 

 the probabiity of exactly one service given 𝑋𝑡 (of course, assuming 𝑛𝑡 > 0, otherwise no service is 

available and the probability in question equals zero) is  

 ∫
Δ

0
exp(− ∫

𝑣

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠) 𝑑𝑠)ℎ(𝑛𝑡 , 𝑥𝑡 + 𝑣, 𝑦𝑡 + 𝑣) 

  (3) 

 × exp (−∫
Δ−𝑣

0
(𝜆 + ℎ)(𝑛𝑡 − 1, 𝑠′, 𝑦𝑡 + 𝑣 + 𝑠′) 𝑑𝑠′)  𝑑𝑣; 

 and so on, i.e., by induction a conditional probability of any finite number of events on this 

interval may be written as some multivariate integral, while the probability of infinitly many 

events on it equals zero. In particular, the (conditional given 𝑋𝑡) density of the moment of a new 

arrival  or of the end of the current service after 𝑡 at 𝑥𝑡 + 𝑧, 𝑧 ≥ 0, equals,  
 (𝜆(𝑛𝑡 , 𝑥𝑡 + 𝑧, 𝑦𝑡 + 𝑧) + ℎ(𝑛𝑡 , 𝑥𝑡 + 𝑧, 𝑦𝑡 + 𝑧)) 

 × exp(−∫
∞

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠)) 𝑑𝑠). 

 This standard construction does not require any regularity of either intensity function, and even 

may allow some  unbounded intensities; however, we do not touch this issue here and in the 

sequel both functions 𝜆 and ℎ are assumed to be  bounded and, of course, Borel measurable. In this 

case, for Δ > 0 small enough, the expression in (1) may be rewritten as  

 1 − ∫
Δ

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠) 𝑑𝑠 + 𝑂(Δ2),        Δ → 0, (4) 

 and this what is “usually” replaced by  
 1 − (𝜆(𝑋𝑡) + ℎ(𝑋𝑡))Δ + 𝑂(Δ2). 

However, in our situation, the latter replacement may be incorrect because of possible 

discontinuities of the functions 𝜆 and ℎ. Emphasize that from time 𝑡 and until the next jump, the 

evolution of the process 𝑋 is  deterministic, which makes the process  piecewise-linear Markov, see, 

e.g., [10]. 

 

2.2  Main result 

 
 Let  
 Λ:= sup

𝑛,𝑥,𝑦: 𝑛>0
𝜆(𝑛, 𝑥, 𝑦) < ∞. 

For establishing convergence rate to the stationary regime, we assume (cf. [18, 19]),  

 inf
𝑛>0,𝑦

ℎ(𝑛, 𝑥, 𝑦) ≥
𝐶0

1+𝑥
,    𝑥 ≥ 0. (5) 

 We also assume a new condition related to the function 𝜆0(𝑡): = 𝜆(0,0, 𝑡):  

 0 < inf
𝑡≥0

𝜆0(𝑡) ≤ sup
𝑡≥0

𝜆0(𝑡) < ∞. (6) 

 Recall that the process has no explosion with probability one due to the boundedness of both 

intensities, i.e., the trajectory may have only finitely many jumps on any finite interval of time. 

 

Theorem 1  Let the functions 𝜆 and ℎ be Borel measurable and bounded and let the assumptions 

(5) and (6) be satisfied. Then, under the assumptions above, if 𝐶0 is large enough, then there exists a unique 

stationary measure 𝜇. Moreover, for any 𝑘 > 0 and any 𝑚 > 𝑘, if 𝐶0 is large enough, then there exists 𝐶 >

0 such that for any 𝑡 ≥ 0,  

 ∥ 𝜇𝑡
𝑛,𝑥,𝑦

− 𝜇 ∥𝑇𝑉≤ 𝐶 
(1+𝑛+𝑥+𝑦)𝑚

(1+𝑡)𝑘+1 , (7) 

 where 𝜇𝑡
𝑛,𝑥,𝑦 is a marginal distribution of the process (𝑋𝑡 , 𝑡 ≥ 0) with the initial data 𝑋 = (𝑛, 𝑥, 𝑦) ∈

𝒳. The constant 𝐶 in (7) admits an effective bound.  

 In particular, this inequality holds true for the reliability characteristics introduced earlier. 

For any 𝑚 ≥ 0 denote  
 𝑝≤𝑚(𝑡): = ℙ𝑥(𝑋𝑡 ∈ {𝑛(𝑋𝑡) ≤ 𝑚}). 

Then the following corollary holds true.  

Corollary 1 Under the assumptions of the Theorem 1, the probabilities 𝑝≤𝑚(𝑡) converge to their 

limits, 𝑝≤𝑚(∞), as 𝑡 → ∞, and for any 𝑘 > 0 and any 𝑚 > 𝑘, if 𝐶0 is large enough, then there exists 𝐶 > 0 
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– the same as in (7) – such that the estimate is valid,  

 |𝑝≤𝑚(𝑡) − 𝑝≤𝑚(∞)| ≤ 𝐶 
(1+𝑛+𝑥+𝑦)𝑚

(1+𝑡)𝑘+1 , 

where 𝑥, 𝑦 are the components of the initial state 𝑋 = (𝑛, 𝑥, 𝑦) ∈ 𝒳.  

 

 

Remark 1 It is plausible that under the same set of conditions (5)–(6), the bound in (7) may be 

improved so that the right hand side does not depend on 𝑦. Moreover, we emphasize that given all other 

constants, the value 𝐶 in (7) may be made “computable”, with a rather involved but explicit dependence on 

the other constants. It is likely that the condition (6) may be replaced by a weaker one,  

 
𝐶0′

1+𝑡
≤ 𝜆0(𝑡) ≤ sup

𝑡≥0
𝜆0(𝑡) < ∞, (8) 

 along with the assumption that 𝐶′0 is large enough; also, it is tempting to replace the condition (5) 

by a weaker one with some dependence of the bound in the right hand side of the variable 𝑦 

(under which new condition an improvement that was mentioned as a hypothesis in the first 

phrase of this remark becomes unlikely). However, all these issues require a bit more accuracy in 

the calculus and we do not pursue these goals here leaving them until further investigations.  

 

The idea of the proof is based on constructing appropriate Lyapunov functions and yet on 

finding a new regeneration state instead of a “compromised” idle state of the system. Lyapunov 

functions guarantee that the distribution of the (independent) periods between regenerations 

admit some polynomial moments, which implies the desired statement. However, we first of all 

need some auxiliary results on a strong Markov property – which is essential in this approach – 

and on Dynkin’s formula. 

 

3  Lemmata 
 

Recall [8] that the generator of a Markov process (𝑋𝑡 , 𝑡 ≥ 0) is an operator 𝒢, such that for a 

sufficiently large class of functions 𝑓  

 sup
𝑋

lim
𝑡→0

‖
𝔼𝑋𝑓(𝑋𝑡)−𝑓(𝑋)

𝑡
− 𝒢𝑓(𝑋)‖ = 0 (9) 

 in the norm of the state space of the process; the notion of generator does depend on this norm. 

An operator 𝒢 is called a  mild generalised generator (another name is extended generator) if (9) is 

replaced by its corollary (10) below called  Dynkin’s formula, or  Dynkin’s identity [8, Ch. 1, 3],  

 𝔼𝑋𝑓(𝑋𝑡) − 𝑓(𝑋) = 𝔼𝑋 ∫
𝑡

0
𝒢𝑓(𝑋𝑠) 𝑑𝑠, (10) 

 also for a wide enough class of functions 𝑓. We will also use the non-homogeneous counterpart of 

Dynkin’s formula,  

 𝔼𝑋𝜑(𝑡, 𝑋𝑡) − 𝜑(0, 𝑋) = 𝔼𝑋 ∫
𝑡

0
(

∂

∂𝑠
𝜑(𝑠, 𝑋𝑠) + 𝒢𝜑(𝑠, 𝑋𝑠))  𝑑𝑠, (11) 

 for appropriate functions of two variables (𝜑(𝑡, 𝑋)). Both (10) and (11) play a very important role 

in analysis of Markov models and under our assumptions may be justified similarly to [19]. Here 𝑋 

is a (non-random) initial value of the process. Both formulae (10)–(11) hold true for a large class of 

functions 𝑓, 𝜑 with 𝒢 given by the standard expression, 

 

 𝒢𝑓(𝑋): =
∂

∂𝑥
𝑓(𝑋)1(𝑛(𝑋) > 0) +

∂

∂𝑦
𝑓(𝑋) 

  
 +𝜆(𝑋)(𝑓(𝑋+) − 𝑓(𝑋)) + ℎ(𝑋)(𝑓(𝑋−) − 𝑓(𝑋)), 

 where for any 𝑋 = (𝑛, 𝑥, 𝑦),  
 𝑋+: = (𝑛 + 1, 𝑥, 0),    𝑋−: = ((𝑛 − 1) ∨ 0,0, 𝑦) 

(here 𝑎 ∨ 𝑏 = max(𝑎, 𝑏)). Under our minimal assumptions on regularity of intensities this may be 

justified similarly to [19]. 
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Lemma 1  If the functions 𝜆 and ℎ are Borel measurable and bounded, then the formulae (10) and 

(11) hold true for any 𝑡 > 0 for every 𝑓 ∈ 𝐶𝑏
1(𝒳) and 𝜑 ∈ 𝐶𝑏

1([0,∞) × 𝒳), respectively. Moreover, the 

process (𝑋𝑡 , 𝑡 ≥ 0) is strong Markov with respect to the filtration (ℱ𝑡
𝑋 , 𝑡 ≥ 0).  

 

  

 Further, let  

 𝐿𝑚(𝑋) = (𝑛 + 1 + 𝑥 + 𝑦)𝑚,    𝐿𝑘,𝑚(𝑡, 𝑋) = (1 + 𝑡)𝑘𝐿𝑚(𝑋). (12) 

 The extensions of Dynkin’s formulae for some unbounded functions hold true: we will need them 

for the Lyapunov functions in (12).  

Corollary 2  Under the assumptions of the Lemma 1,  

 𝐿𝑚(𝑋𝑡) − 𝐿𝑚(𝑋) = ∫
𝑡

0
𝜆(𝑋𝑠)[    (𝐿𝑚(𝑋𝑠

(+)
) − 𝐿𝑚(𝑋𝑠))     

  (13) 

 +ℎ(𝑋𝑠)(𝐿𝑚(𝑋𝑠
−) − 𝐿𝑚(𝑋𝑠)) + 1(𝑛(𝑋𝑠) > 0)

∂

∂𝑥
𝐿𝑚(𝑋𝑠) +

∂

∂𝑦
𝐿𝑚(𝑋𝑠)]  𝑑𝑠 + 𝑀𝑡 , 

 with some martingale 𝑀𝑡, and also  

 𝐿𝑘,𝑚(𝑡, 𝑋𝑡) − 𝐿𝑘,𝑚(0, 𝑋) = ∫
𝑡

0
[𝜆(𝑋𝑠)(𝐿𝑘,𝑚(𝑠, 𝑋𝑠

(+)
) − 𝐿𝑘,𝑚(𝑠, 𝑋𝑠)) 

  

 +ℎ(𝑋𝑠)(𝐿𝑘,𝑚(𝑠, 𝑋𝑠
−) − 𝐿𝑘,𝑚(𝑠, 𝑋𝑠)) (14) 

  

 +(1(𝑛(𝑋𝑠) > 0)
∂

∂𝑥
+

∂

∂𝑦
+

∂

∂𝑠
) 𝐿𝑘,𝑚(𝑠, 𝑋𝑠)]  𝑑𝑠 + 𝑀̃𝑡 , 

 with some martingale 𝑀̃𝑡.  

 About a martingale approach in queueing models see, for example, [14]. The proof of the 

Lemma 1 is based on the next three Lemmata. The first of them is a rigorous statement concerning 

a well-known folklore property that probability of “one event” on a small nonrandom interval of 

length Δ is of the order 𝑂(Δ) and probability of “two or more events” on the same interval is of the 

order 𝑂(Δ2). Of course, in queueing theory this is a common knowledge; moreover, the claims 

(15)–(18) follow immediatey from the definition of the process given earlier in (1)–(??). Yet for 

discontinuous intensities these properties have to be, at least, explicitly stated. 

 

Lemma 2  Under the assumptions of the Theorem 1, for any 𝑡 ≥ 0,  

 ℙ𝑋𝑡
( 𝑛𝑜  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = exp(−∫

Δ

0
(𝜆 + ℎ)(𝑋𝑡 + 𝑠) 𝑑𝑠)    (= 1 + 𝑂(Δ)), (15) 

  

 ℙ𝑋𝑡
( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = 𝑂(Δ), (16) 

  

 ℙ𝑋𝑡
( 𝑒𝑥𝑎𝑐𝑡𝑙𝑦  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑢𝑝  &  𝑛𝑜  𝑑𝑜𝑤𝑛  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = ∫

Δ

0
𝜆(𝑋𝑡 + 𝑠) 𝑑𝑠 + 𝑂(Δ2), (17) 

  

 ℙ𝑋𝑡
( 𝑒𝑥𝑎𝑐𝑡𝑙𝑦  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑑𝑜𝑤𝑛  &  𝑛𝑜  𝑢𝑝  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = ∫

Δ

0
ℎ(𝑋𝑡 + 𝑠) 𝑑𝑠 + 𝑂(Δ2), (18) 

 and  

 ℙ𝑋𝑡
( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑡𝑤𝑜  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = 𝑂(Δ2). (19) 

 In all cases above, 𝑂(Δ) and 𝑂(Δ2) are uniform with respect to 𝑋𝑡 and only depend on the norm 

sup𝑋(𝜆(𝑋) + ℎ(𝑋)), that is, there exist 𝐶 > 0, Δ0 > 0 such that for any 𝑋 and any Δ < Δ0, 

 

 lim
Δ→0

{        Δ−1ℙ𝑋( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (0, Δ] ) +

Δ−2ℙ𝑋( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑡𝑤𝑜  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (0, Δ] ) 

  

 +Δ−2 [ℙ𝑋𝑡
( 𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑢𝑝  &  𝑛𝑜  𝑑𝑜𝑤𝑛  𝑜𝑛  (𝑡, 𝑡 + Δ] ) − ∫

Δ

0
𝜆(𝑋𝑡 + 𝑠) 𝑑𝑠] 

  (20) 

 +Δ−2 [ℙ𝑋𝑡
( 𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑑𝑜𝑤𝑛  &  𝑛𝑜  𝑢𝑝  𝑜𝑛  (𝑡, 𝑡 + Δ] ) − ∫

Δ

0
ℎ(𝑋𝑡 + 𝑠) 𝑑𝑠]} < 𝐶 < ∞. 
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 The next two Lemmata are needed for the justification that the process with discontinuous 

intensities is, indeed, strong Markov. 

 

Lemma 3  Under the assumptions of the Theorem 1, the semigroup 𝑇𝑡𝑓(𝑋) = 𝔼𝑋𝑓(𝑋𝑡) is 

continuous in 𝑡.  

 

Lemma 4  Under the assumptions of the Theorem 1 the process (𝑋𝑡 , 𝑡 ≥ 0) is Feller, that is, 𝑇𝑡𝑓(⋅

) ∈ 𝐶𝑏(𝒳) for any 𝑓 ∈ 𝐶𝑏(𝒳).  

 

The proofs of all Lemmata 2–4 may be performed similarly to [19] where no regularity of 

the intensities was used, although the dependences were a bit less general. Further, according to [8, 

Theorem 3.3.10], any Feller process satisfying the claim of the Lemma 3 with right continuous 

trajectories is strong Markov, which guarantees the last assertion of the Lemma 1. 

 

4  Outline of the Proof of the Theorem 1 
 

 1. The idea of the proof is to identify a regeneration state and to establish polynomial 

bounds for its hitting time. For the latter, we will use Lyapunov functions. The proof of 

convergence in total variation with rate of convergence basically repeats the calculus in [18] for the 

Lyapunov functions 𝐿𝑚(𝑋) and 𝐿𝑘,𝑚(𝑡, 𝑋) from (12) with some changes, and on Dynkin’s formulae 

(10) and (11) due to the Corollary 2. Without big changes, this calculus provides a polynomial 

moment bound  

 𝔼𝑋𝜏0
𝑘 ≤ 𝐶𝐿𝑚(𝑋) ≤ 𝐶(𝑛 + 1 + 𝑥 + 𝑦)𝑚, (21) 

 for certain values of 𝑘 related to the exact value of the constat 𝐶0, and for the hitting time  
 𝜏0: = inf(𝑡 ≥ 0: 𝑋𝑡 = (0,0,∗). 

However, it is not the set of idle states {(0,0,∗)} (i.e., the third component here is arbitrary non-

negative) that will be a regeneration, but it is just an auxiliary one. Namely, once the process 

attains the set {(0,0,∗)}, it may be then successfully coupled with another (stationary) version of the 

same process at their joint jump {𝑛 = 0}  ↦ {𝑛 = 1}. This is because, in particular, immediately after 

such a jump the state of each process reads as (1,0,0). Clearly,  this state (1,0,0) may be considered as a 

regeneration one, and this is despite the fact that the process spends zero time in this state. The news 

in the calculus in comparison to [18] is that we have to tackle a wider class of intensities, which 

may be all variable (as well as discontinuous) rather than constant, including 𝜆0. However – beside 

a new regeneration state instead of a usual “zero” (idle) – this affects the calculus a little, once it is 

established that (10) and (11) hold true, because the major part of this calculus involves only time 

values 𝑡 < 𝜏0. Some change is also in the procedure of coupling, though, because at state (1,0,0) the 

process can only spend zero time, which means that the process “cannot wait” at this state. 

  

In turn, the inequality (21) provides a bound for the rate of convergence, for the 

justification of which rate there are various approaches such as versions of the coupling method as 

well as renewal theory. Convergence of probabilities in the definition of 𝑚-availability factors is a 

special case of a more general convergence in total variation. Although the changes in comparison 

to [18] are, in fact, minor, yet it would be not totally fair to say that a simple reference to this earlier 

paper may replace a full proof. So, as suggested by the Editors, and for the completeness of this 

paper, and for the convenience of the reader we outline the details of the proof of the Theorem 

here. 

  

  2. Let us inspect the properties of the functions 𝐿𝑚(𝑋) and 𝐿𝑘,𝑚(𝑡, 𝑋). Assume that 𝑚 > 1 

and the value 𝐶0 in the condition (5) is large enough, namely, 𝐶0 satisifies  

 𝐶0 > Λ22(𝑚+𝑘)−1 + 2𝑚+𝑘. (22) 

 Recall that 𝜏0: = inf(𝑡 ≥ 0: 𝑋𝑡 = (0,0,∗)). Let 𝑋0 = 𝑋 ≡ (𝑛, 𝑥, 𝑦). Note that  it suffices to establish the 
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estimate (21) for initial states with 𝑛0 + 𝑥 > 0. The reason for this is that in the case of 𝑋0 = (0,0, 𝑦), by 

virtue of the condition (6) irrespectively of the value of 𝑦, the time for the process to hit state 

(1,0,0) does satisfy this estimate – and even a better exponential bound holds true for such 

particular hitting time and initial state under our conditions – so that in this case we can start the 

estimate for 𝜏0 so to say from state (1,0,0). Hence, in the sequel we may and will assume 𝑛0 > 0 

without losing a generality. 

  

  3. Repeating the main steps in the calculus from [18] in our more involved but 

computationaly very similar situation, we obtain for 𝑋𝑡 = (0,0,∗) (note that 𝑛𝑡 = 0 is not excluded):  
 𝑑𝐿𝑚(𝑋𝑡) = 𝜆(𝑋𝑡) ((𝑛 + 2 + 𝑥𝑡 + 0)𝑚 − (𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)

𝑚) 𝑑𝑡 + 

  
 +ℎ(𝑋𝑡)(𝑛

𝑚 − (𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)
𝑚) 𝑑𝑡 + 

  
 +((𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡 + 𝑑𝑡)𝑚 − (𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)

𝑚) + 𝑑𝑀𝑡 ≡ 

  
 ≡ (𝐼1 − 𝐼2 + 𝐼3)𝑑𝑡 + 𝑑𝑀𝑡 , 

 where  
 𝐼1 𝑑𝑡:= 𝜆(𝑋𝑡)𝑑𝑡 ((𝑛 + 2 + 𝑥𝑡 + 𝑦𝑡)

𝑚 − (𝑛 + 1 + 𝑥𝑡 + 0)𝑚), 

  
 𝐼2 𝑑𝑡: = ℎ(𝑋𝑡)((𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)

𝑚 − (𝑛 + 𝑦𝑡)
𝑚) 𝑑𝑡, 

  
 𝐼3 𝑑𝑡: = ((𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡 + 𝑑𝑡)𝑚 − (𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)

𝑚) 
 = 𝑚(𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)

𝑚−1 𝑑𝑡, 

 and 𝑀𝑡 is a local martingale (see, e.g., [14]). The following bound will be established:  
 (𝐼1 − 𝐼2 + 𝐼3) ≤ −𝐶𝐿𝑚−1(𝑋𝑡),    𝑡 < 𝜏0, 

 with some 𝐶 > 0. The main purpose – beside the convenience of the reader – of the calculus which 

follows is, indeed, to make sure that there is no new difficulties due to the more involved model in 

comparison to [18]; in particular, some news is that unlike the paper [18], now to hit the state with 

𝑛 = 0 may not be enough, and because of this even the definition of the hitting time 𝜏0 here is 

different. 

  

Later on, for the function 𝐿𝑚,𝑘(𝑡, 𝑋) = (1 + 𝑡)𝑘𝐿𝑚(𝑋) СЃ 𝑘 > 0 under the appropriate 

condition on 𝐶0 (see (22)) we will show that  

 𝔼𝑋𝐿𝑚,𝑘(𝜏0, 𝑋𝜏0
) ≤ 𝐿𝑚′(𝑋) − 𝑐𝔼𝑋𝜏0

𝑘+1, 

or, equivalently,  

 𝔼𝑋𝐿𝑚,𝑘(𝜏0, 𝑋𝜏0
) + 𝑐𝔼𝑋𝜏0

𝑘+1 ≤ 𝐿𝑚′(𝑋), 

with some 𝑚′ > 𝑚 and 𝑐 > 0, which would suffice for the desired result. 

For any 𝑚 > 1, 𝑎 ≥ 1 we have,  

 (𝑎 + 1)𝑚 − 𝑎𝑚 = 𝑚 ∫
1

0
(𝑎 + 𝑠)𝑚−1 𝑑𝑠 ≤ 𝑚2𝑚−1𝑎𝑚−1. 

It follows that  
 𝐼1 ≤ 𝑚2𝑚−1Λ(𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)

𝑚−1 ≡ 𝑚2𝑚−1Λ𝐿𝑚−1(𝑋𝑡). 

 Further,  
 𝐼2 ≥ 𝐶0(1 + 𝑥𝑡)

−1((𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)
𝑚 − (𝑛 + 𝑦𝑡)

𝑚) 

  

 = 𝐶0(1 + 𝑥𝑡)
−1 ∫

1

0
𝑚(𝑛 + 𝑦𝑡 + 𝑠(1 + 𝑥𝑡))

𝑚−1(1 + 𝑥𝑡) 𝑑𝑠 

  

 ≥ 𝐶0𝑚 ∫
1

1/2
(𝑛 + 𝑦𝑡 +

1

2
(1 + 𝑥𝑡))

𝑚−1 𝑑𝑠 

  
 ≥ 𝐶0𝑚2−𝑚(𝑛 + 1 + 𝑥𝑡 + 𝑦𝑡)

𝑚−1 ≡ 𝐶0𝑚2−𝑚𝐿𝑚−1(𝑋𝑡). 

 Finally,  
 𝐼3 = 𝑚 𝐿𝑚−1(𝑋𝑡). 

 So, we get,  
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 𝐼1 − 𝐼2 + 𝐼3 ≤ 𝑚2𝑚−1Λ𝐿𝑚−1(𝑋𝑡) − 𝐶0𝑚2−𝑚𝐿𝑚−1(𝑋𝑡) + 𝑚 𝐿𝑚−1(𝑋𝑡). 

Here if 𝐶0 is large enough, namely, if  

 𝑚2−𝑚𝐶0 > 𝑚2𝑚−1Λ + 𝑚    ~    𝐶0 > 22𝑚−1Λ + 2𝑚 (23) 

 (clearly, (23) is weaker than (22)), then the sum 𝐼1 − 𝐼2 + 𝐼3 is strictly negative:  
 𝐼1 − 𝐼2 + 𝐼3 ≤ −𝑚(2−𝑚𝐶0 − 2𝑚−1Λ − 1) 𝐿𝑚−1(𝑋𝑡) < 0. 

 Note that (22) in full generality will be used in the sequel. Now, by virtue of Fatou’s Lemma – if 

necessary with an appropriate localizing sequence – we obtain,  

 𝔼𝑋𝐿𝑚(𝑋𝑡∧𝜏0
) + (𝑚2−𝑚𝐶0 − 𝑚2𝑚−1Λ − 𝑚)𝔼𝑋 ∫

𝑡∧𝜏0

0
𝐿𝑚−1(𝑋𝑠) 𝑑𝑠 ≤ 𝐿𝑚(𝑋), 

 and also  

 𝔼𝑋𝐿𝑚(𝑋𝜏0
) + (𝑚2−𝑚𝐶0 − 𝑚2𝑚−1Λ − 𝑚)𝔼𝑋 ∫

𝜏0

0
𝐿𝑚−1(𝑋𝑠) 𝑑𝑠 ≤ 𝐿𝑚(𝑋). (24) 

 

From (24) it follows that, in particular, 𝔼𝑥𝜏0 < ∞ (since 𝐿𝑚−1 ≥ 1), from which it may be 

concluded due to Harris–Khasminsky’s principle that there exists a stationary measure (see [11]); 

in our case it is clearly unique (e.g., because of the convergence to  any stationary measure, which 

follows from this proof); moreover,  

 ∫
𝑋

𝐿𝑚−1(𝑋) 𝜇(𝑑𝑋) < ∞. (25) 

 Also, by Hölder’s inequality, for each 𝑡 ≥ 0,  

 𝔼𝑋𝐿𝑚′(𝑋𝑡∧𝜏0
) ≤ 𝐿𝑚′(𝑋),    ∀    𝑚′ ≤ 𝑚. (26) 

 

  

  4. Note that the bound (26) has been established under the condition (23). Similarly, if it 

were known that 𝐶0 satisfies  

 𝐶0 > 22(𝑚+ℓ)Λ + 2𝑚+ℓ, (27) 

 then we would be able to conclude that also  

 𝔼𝑋𝐿𝑚′(𝑋𝑡∧𝜏0
) ≤ 𝐿𝑚′(𝑋),    ∀    𝑚′ ≤ 𝑚 + ℓ. (28) 

 for each 𝑚′ ≤ 𝑚 + ℓ. In turn, if we need (27) and (28) for  some ℓ greater than 𝑘 – let arbitrarily 

close to 𝑘 – then (22) suffices for this. 

  

  5. Now let us inspect the function 𝐿𝑚,𝑘(𝑡, 𝑋) = (1 + 𝑡)𝑘𝐿𝑚(𝑋) with 𝑘 > 0 under the 

assumption (22). We have, similarly to the step 1,  

 𝑑𝐿𝑚,𝑘(𝑡, 𝑋𝑡) = (1 + 𝑡)𝑘[𝐼1 − 𝐼2 + 𝐼3] 𝑑𝑡 + 𝑑𝑀̃𝑡 

  
 +𝑘(1 + 𝑡)𝑘−1 𝐿𝑚(𝑋𝑡) 𝑑𝑡 

  
 ≤ −(1 + 𝑡)𝑘𝑚(2−𝑚𝐶0 − Λ − 1)𝐿𝑚−1(𝑋𝑡) 𝑑𝑡 

  

 +𝑘(1 + 𝑡)𝑘−1 𝐿𝑚(𝑋𝑡) 𝑑𝑡 + 𝑑𝑀̃𝑡 , 

 with some new local martingale 𝑀̃𝑡. The second term 𝐼4: = 𝑘(1 + 𝑡)𝑘−1 𝐿𝑚(𝑋𝑡) may be split into 

two parts, 𝐼4 = 𝐼5 + 𝐼6, where  

 𝐼5: = 𝑘(1 + 𝑡)𝑘−1 𝐿𝑚(𝑋𝑡) 1(𝑘(1 + 𝑡)𝑘−1 𝐿𝑚(𝑋𝑡) ≤ 𝜀(1 + 𝑡)𝑘𝐿𝑚−1(𝑋𝑡)), 

  
 𝐼6: = 𝑘(1 + 𝑡)𝑘−1 𝐿𝑚(𝑋𝑡) 1(𝑘(1 + 𝑡)𝑘−1 𝐿𝑚(𝑋𝑡) > 𝜀(1 + 𝑡)𝑘𝐿𝑚−1(𝑋𝑡)), 

 where 1(𝐴) stands for the indicator of the event 𝐴. The term 𝐼5 is clearly dominated by the main 

negative expression −𝐼2 in the sum 𝐼1 − 𝐼2 + 𝐼3, if we put 𝜀 < 𝑚(2−𝑚𝐶0 − 2𝑚−1Λ − 1). Let us now 

estimate the term 𝐼6. For any ℓ > 0 and 𝜀 > 0,  

 𝐼6 ≤ 𝐼4  
(𝑘 𝐿𝑚(𝑋𝑡))

ℓ

(𝜀(1+𝑡)𝐿𝑚−1(𝑋𝑡))
ℓ = 𝐼4  

𝑘ℓ

(𝜀(1+𝑡))ℓ
𝐿ℓ(𝑋𝑡). 

 So, 𝐼6 does not exceed the value  

 𝑘(1 + 𝑡)𝑘−1   
𝑘ℓ

(𝜀(1+𝑡))ℓ
𝐿𝑚+ℓ(𝑋𝑡) . 

 Let ℓ = 𝑘 + 𝛿 and assume that the value ℓ satisfies the condition (27). Recall that this is always 

possible if 𝐶0 satisfies (22) and 𝛿 > 0 is small enough. Then, due to (28) and, if necessary, by using 

a new auxiliary localizing sequence of stopping times with Fatou’s Lemma we get,  



 
Veretennikov A. 
ON RECURRENCE AND AVAILABILITY FACTOR  

RT&A, No3 (42) 
Volume 11, September 2016  

57 

 𝔼𝑋𝐿𝑚,𝑘(𝑡 ∧ 𝜏0, 𝑋𝑡∧𝜏0
) 

  

 +(𝑚(2−𝑚𝐶0 − 2𝑚−1Λ − 1) − 𝜀)𝔼𝑋 ∫
𝑡∧𝜏0

0
(1 + 𝑠)𝑘𝐿𝑚−1(𝑋𝑠) 𝑑𝑠 ≤ 

  

 ≤ 𝐿𝑚(𝑋) + 𝐶′𝔼𝑋 ∫
∞

0
𝔼𝑋1(𝑠 ≤ 𝑡 ∧ 𝜏0)(1 + 𝑠)𝑘−1−ℓ𝐿𝑚+ℓ(𝑋𝑠) 𝑑𝑠 ≤ 

  

 ≤ 𝐿𝑚(𝑋) + 𝐶′𝔼𝑋 ∫
∞

0
(1 + 𝑠)𝑘−1−ℓ𝔼𝑋𝐿𝑚+ℓ(𝑋𝑠∧𝑡∧𝜏0

) 𝑑𝑠 ≤ 

  
 ≤ 𝐿𝑚(𝑋) + 𝐶′'𝐿𝑚+ℓ(𝑋) ≤ 𝐶′''𝐿𝑚+ℓ(𝑋). 

 Again, by virtue of Fatou’s Lemma this imples,  

 𝔼𝑋𝐿𝑚,𝑘(𝜏0, 𝑋𝜏0
) + 𝐶′𝔼𝑋 ∫

𝜏0

0
(1 + 𝑠)𝑘𝐿𝑚−1(𝑋𝑠) 𝑑𝑠 ≤ 𝐶′''𝐿𝑚+ℓ(𝑋). 

 Since 𝐿𝑚−1(𝑋𝑠) ≥ 1(𝑠 < 𝜏0), we obtain,  

 𝔼𝑋𝜏0
𝑘+1 ≤ 𝐶𝐿𝑚+ℓ(𝑋), (29) 

 with some new constant 𝐶 > 0, which does admits some effective bound similarly to all earlier 

constants. 

  

  6. The estimate (29) – along with the remark about an exponential moment for time to hit 

state (1,0,0) starting from state (0,0,∗) mentioned eralier – suffices for the desired inequality, and 

there are various ways to show it, including the coupling method (cf., e.g., [15, 17]), or renewal 

theory (see, e.g., [3]). Hence, for many readers a recommendation would be to stop reading here. 

However, for the convenience of the wider audience (as well as simply for the sake of 

completeness) we will now briefly recall the scheme of the coupling method mentioned earlier 

about how the proof may be completed without any big theory “by hand”. Let (𝑋𝑡) and (𝑋̃𝑡) be  

two independent copies of our Markov process where the first process starts at 𝑋0 = 𝑋, while the 

second has a stationary initial distribution 𝜇, which  existence was mentioned earlier. (At the 

moment uniqueness is not proved, so we let  any stationary distribution if there are more than 

one.) Denote 𝜏0̅: = inf(𝑡 ≥ 0:𝑋𝑡 = (0,0,∗), & 𝑋̃𝑡 = (0,0,∗)) (the third components may be equal or 

different). Quite similarly to (29), the inequality  

 𝔼𝑋𝜏0̅
𝑘+1 ≤ 𝐶𝐿𝑚+ℓ(𝑋), (30) 

 can be established, see, e.g., [18], with a new constant 𝐶, which also admits some effective bound. 

The proof follows from integration and from the fact that ∫ 𝐿𝑚+ℓ 𝑑𝜇 < ∞ – which integral also 

allows some effective bound – due to (25), the latter guaranteed by the choice of large enough 

value of 𝐶0, see (22). 

  

  7. Finally, by the  coupling inequality (“c.i.”) (see, for exampe, [16]),  

 |(𝜇𝑡
𝑋 − 𝜇)(𝐴)| = |𝔼𝑋(1(𝑋𝑡 ∈ 𝐴) − 1(𝑋̃𝑡 ∈ 𝐴))|1(𝑡 ≥ 𝜏0̅) 

  

 +|𝔼𝑋(1(𝑋𝑡 ∈ 𝐴) − 1(𝑋̃𝑡 ∈ 𝐴))|1(𝑡 < 𝜏0̅) 

  

 ≤
   𝑐.𝑖.

𝔼𝑋1(𝑡 < 𝜏0̅) = ℙ𝑋(𝑡 < 𝜏0̅) ≤
𝔼𝑋𝜏̅0

𝑘+1

𝑡𝑘+1 ≤
𝐶𝐿𝑚+ℓ(𝑋)

𝑡𝑘+1 . 

 Note that, in particular, the uniqueness of the stationary distribution follows from this 

convergence. Finally, by the definition of the total variation ∥ 𝜇𝑡
𝑋 − 𝜇 ∥𝑇𝑉: = 2sup

𝐴
(𝜇𝑡

𝑋 − 𝜇)(𝐴), and 

hence, the obtained inequality (30) provides the claim of the Theorem. 
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