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Abstract 
 

 We study repairable 𝑘-out-of-𝑛 system with single server who provides service to external 

customers also. N-policy is employed for the service of main customers. Once started, the repair of 

failed components is continued until all components become operational. When not repairing 

main customers, the server attends external customers (if there is any) who arrive according to a 

Poisson process. Once selected, the external customers receive a service of non-preemptive nature. 

When at least 𝑁 main customers accumulate in the system and/or when the server is busy with 

such customers, external customers are not allowed to join the system. Otherwise, they join an 

infinite capacity queue of external customers. Life time distribution of components, service time 

distribution of main and external customers are all assumed to follow independent exponential 

distributions. Steady state analysis has been carried out and several important system 

performance measures based on the steady state distribution derived. A numerical study 

comparing the current model with those in which no external customers are provided service, is 

carried out. This study suggests that rendering service to external customers helps to utilize the 

server idle time profitably, without affecting the system reliability.  

 

 Keywords: 𝑘-out-of-𝑛 system; non-preemptive service. 

 

 

 

1  Introduction 
 

A 𝑘-out-of-𝑛 system can be defined as an 𝑛-component system which works if and only if at least 𝑘 

of its components operational. Application of such systems can be seen in many real-world 

phenomena. For instance almost all machines, of different complexity, are subjected to failure. One 

would expect a machine to work, even if some of its components have failed. A hospital providing 
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emergency service is a typical example.We would expect the hospital to run even if some of its 

doctors/nurses/other staffs are on leave since it is supposed to have these personal in excess of the 

actual requirement. However, keeping these extra resources could be costly and not even feasible 

in some cases. A probabilistic study of a real world system such as a 𝑘-out-of-𝑛 system, often helps 

to develop an optimal strategy for maintaining high system reliability. Literature on such studies is 

vast (for example,see Chakravarthy et al.[1]). 

Dudin et al.[2], Krishnamoorthy et al.[3, 4, 5] are among the studies on the reliability of a 

𝑘-out-of-𝑛 system, where the server provides service to external customers in addition to repairing 

failed components of the main system. Such models are suitable for many real world situations. 

For example, a big telecom company may decide to share its resources like optical cables, mobile 

towers etc., for additional revenue. In doing so there is the risk that it may lead to dissatisfaction of 

the companies own customers. Therefore, the company would like to develop an optimal strategy 

for sharing its resources. Krishnamoorthy et al.[5] studied an N-policy for rendering service to 

external customers. They gave priority to the main customers through N-policy: the moment 𝑁 

failed components of the main system get accumulated, the ongoing service of an external 

customer (if there is any) is preempted and service to failed components is started. 

In the present study, we consider a variant of the model in [5]. We assume N-policy for 

starting repair of failed components. However, the priority of the main customers is a bit reduced 

by assuming that an ongoing service of an external customer is not preempted when the number of 

failed components reaches 𝑁. This can be a serious compromise on the reliability of the 𝑘-out-of-𝑛 

system. As in [5] it is assumed here also that an external customer, not allowed to join the system 

when the server is busy with service of main customers and/or when there are at least 𝑁 failed 

components in the system. The external customer joins a queue of infinite capacity. 

This paper is arranged as follows. In section 2 , we define the queuing model; section 3 

conducts the steady state analysis, where we have obtained the stability condition explicitly and 

we also present an efficient method for computing the steady state probability vector. In section 4, 

we derive some important system performance measures and in section 5 the effect of N-policy 

and rendering service to external customers on the system reliability is examined. A cost function 

has also been studied in section 5 . 

 

2  The queueing model 
 

Here we consider a 𝑘-out-of-𝑛 system with a single server, offering service to external 

customers also. Commencement of service to failed components of the main system is governed by 

N-policy. That is at the epoch the system starts with all components operational, the server starts 

attending one by one the external customers (if there is any).When the number of failed 

components in the system is ≥ 𝑁, the server in service of external customer (if there is any) is 

switched on to the service of the main customers after completing the ongoing service of the 

external customer. We assume that the failure rate of a component is 
𝜆

𝑖
, when 𝑖 components are 

operational so that the inter-failure time of components of the 𝑘-out-of-𝑛 system remains 

exponentially distributed with parameter 𝜆. Arrival of external customers follows a Poisson 

process with parameter 𝜆̅. External customers are not allowed to join the system when the server is 

busy with main customers or when there is ≥ 𝑁 failed components. An external customer, who on 

arrival finds an idle server is directly taken for service. Service times of main and external 

customers follow exponential distribution with parameters 𝜇 and 𝜇̅ respectively. 

 

2.1  The Markov Chain 

 

Let 𝑋1(𝑡) = number of external customers in the system including the one getting service 

(if any) at time 𝑡, 

𝑋2(𝑡) = number of main customers in the system including the one getting service (if any) 
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at time 𝑡, 

𝑆(𝑡) = (
0, if the server is idle or is busy with external customers
1, if the server is idle or is busy with main customers.

 

Let 𝑋(𝑡) = (𝑋1(𝑡), 𝑆(𝑡), 𝑋2(𝑡)) then 𝑋 = {𝑋(𝑡), 𝑡 ≥ 0} is a continuous time Markov chain on 

the state space  
 𝑆 = {(0,0, 𝑗2)/0 ≤ 𝑗2 ≤ 𝑁 − 1} ∪ {(𝑗1, 0, 𝑗2)/𝑗1 ≥ 1,0 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1} 
 ∪ {(𝑗1, 1, 𝑗2)/𝑗1 ≥ 0,1 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1}. 

 Arranging the states lexicographically and partitioning the state space into levels 𝑖, where each 

level 𝑖 corresponds to the collection of the states with number of external customers in the system 

at any time 𝑡 equal to 𝑖, we get an infinitesimal generator of the above chain as  

 𝑄 =

[
 
 
 
 
 
𝐴10 𝐴00

𝐴20 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0

⋯
⋯]

 
 
 
 
 

. 

In order to describe the entries in the above matrix we introduce some notations below. 

[(i)]  

    1.  𝐼𝑚 denotes an identity matrix of order 𝑚 and 𝐼 denotes an identity matrix of 

appropriate order.  

    2.  𝑒𝑚 denotes a 𝑚×1 column matrix of 1s and 𝑒 denotes a column matrix of 1s of 

appropriate order.  

    3.  𝐸𝑚 denotes a square matrix of order m defined as  

 𝐸𝑚(𝑖, 𝑗) = (
−1 if j = i, 1 ≤ i ≤ m
1 if j = i + 1,1 ≤ i ≤ m − 1
0 otherwise

 

 

    4.  𝐸′𝑚 = Transpose (𝐸𝑚).  

    5.  𝑟𝑚(𝑖) denotes a 1×𝑛 row matrix whose 𝑖th entry is 1 and all other entries are zeros.  

    6.  𝑐𝑚(𝑖) = Transpose (𝑟𝑚(𝑖)).  

    7.  ⊗ denotes Kronecker product of matrices.  

 

The transition within level 0 is represented by the matrix  

 𝐴10 = [
𝐵1 𝐵2

𝐵3 𝐵4
] , where 

𝐵1 = 𝜆𝐸𝑁 − 𝜆𝐼𝑁. 

𝐵2 is a 𝑁×(𝑛 − 𝑘 + 1) matrix whose (𝑁, 𝑁)th entry is 𝜆 and all other entries are zeroes. 

𝐵3 is a 𝑁×(𝑛 − 𝑘 + 1) matrix whose (1,1)th entry is 𝜇 and all other entries are zeroes. 

𝐵4 = 𝜆𝐸𝑛−𝑘+1 + 𝜆𝑐𝑛−𝑘+1(𝑛 − 𝑘 + 1) ⊗ 𝑟𝑛−𝑘+1(𝑛 − 𝑘 + 1) + 𝜇𝐸𝑛−𝑘+1′. 

The transition from level 0 to level 1 is represented by the matrix 

 

 𝐴00 = [
𝜆𝐼𝑁 𝑂𝑁×(2𝑛−2𝑘+3−𝑁)

𝑂(𝑛−𝑘+1)×𝑁 𝑂(𝑛−𝑘+1)×(2𝑛−2𝑘+3−𝑁)

]. 

Transition from level 1 to 0 is represented by the matrix  

 𝐴20 = [

𝜇𝐼𝑁 𝑂
𝑂 𝐻
𝑂(𝑛−𝑘+1)×𝑁 𝑂

]where𝐻 = [𝑂(𝑛−𝑘+2−𝑁)×(𝑁−1) 𝜇𝐼(𝑛−𝑘+2−𝑁)]. 

Transition within level 1 is represented by the matrix  

 𝐴1 = [

𝐻11 𝐻12 0
0 𝐻22 0
𝐻31 0 𝐵4

]where 

 
 𝐻11 = 𝐵1 − 𝜇𝐼𝑁 , 𝐻12 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑛−𝑘+2−𝑁(1), 
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 𝐻22 = 𝜆𝐸𝑛−𝑘+2−𝑁 + 𝜆𝑐𝑛−𝑘+2−𝑁(𝑛 − 𝑘 + 2 − 𝑁) ⊗ 𝑟𝑛−𝑘+2−𝑁(𝑛 − 𝑘 + 2 − 𝑁) − 𝜇𝐼𝑛−𝑘+2−𝑁 . 

𝐻31 is an (𝑛 − 𝑘 + 1)×𝑁 matrix whose (1,1)th entry is 𝜇.  

 𝐴0 = [
𝜆𝐼𝑁 𝑂𝑁×(2𝑛−2𝑘+3−𝑁)

𝑂(2𝑛−2𝑘+3−𝑁)×𝑁 𝑂(2𝑛−2𝑘+3−𝑁)×(2𝑛−2𝑘+3−𝑁)

], 

 

 𝐴2 = [

𝜇𝐼𝑁 𝑂 𝑂

𝑂 𝑂(𝑛−𝑘+2−𝑁)×(𝑛−𝑘+2−𝑁) 𝐻

𝑂(𝑛−𝑘+1)×𝑁 𝑂 𝑂

], 

where 𝐻̃ = [𝑂(𝑛−𝑘+2−𝑁)×(𝑁−1) 𝜇𝐼(𝑛−𝑘+2−𝑁)]. 

 

 

3   Steady state analysis 
 

 

3.1  Stability condition 

 

Consider the generator matrix 𝐴 = 𝐴0 + 𝐴1 + 𝐴2  

 𝐴 = [
𝜆𝐸𝑁 𝐻12 0
0 𝐻22 𝐹23

𝐹31 0 𝐵4

]with 

 
 𝐹23 = [𝑂(𝑛−𝑘+2−𝑁)×(𝑁−1) 𝜇𝐼𝑛−𝑘+2−𝑁], 

 
 𝐹31 = 𝜇𝑐𝑛−𝑘+1(1) ⊗ 𝑟𝑁(1). 

Let 𝜁 = (𝜁0, 𝜁1, 𝜁2) be the steady state vector of the generator matrix 𝐴, where  
 𝜁0 = (𝜁(0,0), 𝜁(0,1), … , 𝜁(0,𝑁−1)), 

 𝜁1 = (𝜁(0,𝑁), 𝜁(0,𝑁+1), … , 𝜁(0,𝑛−𝑘+1)), 

 𝜁2 = (𝜁(1,1), 𝜁(1,2), … , 𝜁(1,𝑛−𝑘+1)). 

 

The Markov chain {𝑋(𝑡), 𝑡 ≥ 0} is stable if and only if 𝜁𝐴0𝑒 < 𝜁𝐴2𝑒  

(please refer Neuts [6]). 

It follows that 𝜁𝐴0𝑒 = 𝜆𝜁0𝑒 and 𝜁𝐴2𝑒 = 𝜇(𝜁0𝑒 + 𝜁1𝑒). Therefore the stability condition 

becomes  

 
𝜆

𝜇

𝜁0𝑒

(𝜁0𝑒+𝜁1𝑒)
< 1. (1) 

 It follows from the relation 𝜁𝐴 = 0 that  

 𝜁0𝜆𝐸𝑁 + 𝜁2𝐹31 = 0, (2) 

  

 𝜁0𝐻12 + 𝜁1𝐻22 = 0, (3) 

  

 𝜁1𝐹23 + 𝜁2𝐵4 = 0. (4) 

 From (4), it follows that  

 𝜁2 = −𝜁1𝐹23𝐵4
−1. (5) 

 Substituting this in (2) we get  

 𝜁0𝜆𝐸𝑁 − 𝜁1𝐹23𝐵4
−1𝐹31 = 0. (6) 

  

 𝜆𝜁0𝑒 = (−𝜁1𝐹23𝐵4
−1𝐹31)(−𝐸𝑁

−1𝑒). (7) 

 

Notice that the first column of the matrix 𝐹31 is −𝐵4𝑒 and all other columns of it are zero 

columns. This implies that the first column of the matrix 𝐵4
−1𝐹31 is −𝑒 and its all other columns are 

zero columns. Hence the first column of the matrix −𝐹23𝐵4
−1𝐹31 is 𝜇𝑒 and all other columns are zero 

columns. The first entry of the row matrix −𝜁1𝐹23𝐵4
−1𝐹31 is thus 𝜇𝜁1𝑒 and its all other entries are 



 
Krishnamoorthy A., Sathian M., Narayanan C Viswanath 
RELIABILITY of k-out-of-n SYSTEM. PART I 

RT&A, No3 (42) 
Volume 11, September 2016  

66 

zeros. It can be seen that the first entry of the column matrix −𝐸𝑁
−1𝑒 is 𝑁. These two facts together 

tell us that (−𝜁1𝐹23𝐵4
−1𝐹31)(−𝐸𝑁

−1𝑒) is 𝑁𝜇𝜁1𝑒. Thus, equation (7) becomes  
 𝜆𝜁0𝑒 = 𝑁𝜇𝜁1𝑒. 

Adding 𝑁𝜇𝜁0𝑒 on both sides of the above equation, we get  
 (𝜆 + 𝑁𝜇)𝜁0𝑒 = 𝑁𝜇(𝜁0𝑒 + 𝜁1𝑒), 

which implies  

 
𝜁0𝑒

(𝜁0𝑒+𝜁1𝑒)
=

𝑁𝜇

(𝜆+𝑁𝜇)
. 

Hence the stability condition (1) becomes  

 
𝜆

𝜇

𝑁𝜇

(𝜆+𝑁𝜇)
< 1. 

 

3.2  Computation of steady state vector 

 

Let 𝜋 = (𝜋(0), 𝜋(1), 𝜋(2), … ) the steady state vector of the Markov chain 𝑋, where 𝜋(0) =

(𝜋(0,0), 𝜋(0,1)) with 𝜋(0,0) = (𝜋(0,0,0), 𝜋(0,0,1), … , 𝜋(0,0,𝑁−1))  

and 𝜋(0,1) = (𝜋(0,1,1), … , 𝜋(0,1,𝑛−𝑘+1)). For 𝑖 ≥ 1, 𝜋(𝑖) = (𝜋(𝑖,0), 𝜋̃(𝑖,0), 𝜋(𝑖,1)) with 𝜋(𝑖,0) =

(𝜋(𝑖,0,0), 𝜋(𝑖,0,1), … , 𝜋(𝑖,0,𝑁−1)), 𝜋̃(𝑖,0) = (𝜋(𝑖,0,𝑁), … , 𝜋(𝑖,0,𝑛−𝑘+1)), 

𝜋(𝑖,1) = (𝜋(𝑖,1,1), 𝜋(𝑖,1,2), … , 𝜋(𝑖,1,𝑛−𝑘+1)). Now from 𝜋𝑄 = 0, we can write  

 𝜋(0,0)𝐵1 + 𝜋(0,1)𝐵3 + 𝜋(1,0)𝜇𝐼𝑁 = 0, (8) 

  

 𝜋(0,0)𝐵2 + 𝜋(0,1)𝐵4 + 𝜋̃(1,0)𝐻 = 0, (9) 

 and for 𝑖 ≥ 1,  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖,1)𝐻31 + 𝜋(𝑖+1,0)𝜇𝐼𝑁 = 0, (10) 

  

 𝜋(𝑖,0)𝐻12 + 𝜋̃(𝑖,0)𝐻22 = 0, (11) 

  

 𝜋(𝑖,1)𝐵4 + 𝜋̃(𝑖+1,0)𝐻 = 0. (12) 

 From (11), we get, for 𝑖 ≥ 1  

 𝜋̃(𝑖,0) = −𝜋(𝑖,0)𝐻12(𝐻22
−1). (13) 

 From (12), we get  

 𝜋(𝑖,1) = −𝜋̃(𝑖+1,0)𝐻(𝐵4
−1). (14) 

 Substituting (13) in (14), we get  

 𝜋(𝑖,1) = 𝜋(𝑖+1,0)𝐻12(𝐻22
−1)𝐻(𝐵4

−1). (15) 

 Substituting (15) in (10), we get  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖+1,0)𝐻12(𝐻22
−1)𝐻(𝐵4

−1)𝐻31 + 𝜋(𝑖+1,0)𝜇𝐼𝑁 = 0. (16) 

 We notice that the first column of the matrix 𝐻31 is −𝐵4𝑒 and all other columns of 𝐻31 are zero 

columns. Hence the first column of the matrix (𝐵4
−1)𝐻31 is −𝑒 and its all other columns are zero 

columns. This tells us that the first column of the matrix 𝐻(𝐵4
−1)𝐻31 is −𝜇𝑒 and all other columns 

are zeros. But −𝜇𝑒 is 𝐻22𝑒 and hence the first column of the matrix (𝐻22
−1)𝐻(𝐵4

−1)𝐻31 is 𝑒 and all 

other columns are zeros. This fact leads us to conclude that the first column of the matrix 

𝐻12(𝐻22
−1)𝐻(𝐵4

−1)𝐻31 is 𝐻12𝑒 = 𝜆𝑐𝑁(𝑁) and all other columns are zeros. In other words  

 𝐻12(𝐻22
−1)𝐻(𝐵4

−1)𝐻31 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). 

Now equation (16) becomes  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖+1,0)𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝜋(𝑖+1,0)𝜇𝐼𝑁 = 0. 

That is  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖+1,0)(𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝜇𝐼𝑁) = 0. (17) 

 Now from equation (9), we can write  

 𝜋(0,1) = −𝜋(0,0)𝐵2(𝐵4
−1) − 𝜋̃(1,0)𝐻(𝐵4

−1). (18) 

 However, from equation (13), we have  

 𝜋̃(1,0) = −𝜋(1,0)𝐻12(𝐻22
−1). (19) 

 Hence equation (18) becomes  



 
Krishnamoorthy A., Sathian M., Narayanan C Viswanath 
RELIABILITY of k-out-of-n SYSTEM. PART I 

RT&A, No3 (42) 
Volume 11, September 2016  

67 

 𝜋(0,1) = −𝜋(0,0)𝐵2(𝐵4
−1) + 𝜋(1,0)𝐻12(𝐻22

−1)𝐻(𝐵4
−1). (20) 

 

Substituting (20) in (8), we get  

 𝜋(0,0)𝐵1 + (−𝜋(0,0)𝐵2(𝐵4
−1) + 𝜋(1,0)𝐻12(𝐻22

−1)𝐻(𝐵4
−1))𝐵3 + 𝜋(1,0)𝜇̅𝐼𝑁 = 0. (21) 

 Since the first column of the matrix 𝐵3 is −𝐵4𝑒, a similar reasoning as for equation (16) leads us to 

write:  
 −𝐵2(𝐵4

−1)𝐵3 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1), 
 𝐻12(𝐻22

−1)𝐻(𝐵4
−1)𝐵3 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). 

 Hence equation (21) becomes  

 𝜋(0,0)(𝐵1 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝜋(1,0)(𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝜇𝐼𝑁) = 0. (22) 

 Equations (17) and (22) shows that the vector 𝜋̂ = (𝜋(0,0), 𝜋(1,0), 𝜋(2,0), … ) satisfies the relation 𝜋̂𝑄̃ =

0, where 𝑄̃ is a generator matrix defined as  

 𝑄̃ =

[
 
 
 
 
 
 
𝐴̃10 𝐴̃0

𝐴̃2 𝐴̃1 𝐴̃0

𝐴̃2 𝐴̃1 𝐴̃0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

]
 
 
 
 
 
 

 

In the above, 𝐴̃10 = 𝐵1 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1), 𝐴̃0 = 𝜆̅𝐼𝑁 , 𝐴̃1 = 𝐻11 and 𝐴̃2 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝜇̅𝐼𝑁. 

Hence the vector 𝜋̂ is a constant multiple of the steady state vector 𝜏 = (𝜏(0), 𝜏(1), … ) of the 

generator matrix 𝑄̃. The vector 𝜏 can be obtained by applying the matrix analytic methods (see 

Neuts [6]) as  

 𝜏(𝑖) = 𝜏(0)𝑅𝑖 ,    𝑖 ≥ 0, (23) 

 where the matrix 𝑅 is the minimal non-negative solution of the matrix quadratic equation:  

 𝐴̃0 + 𝑅𝐴̃1 + 𝑅2𝐴̃2 = 0. (24) 

 Equation (23) implies  
 𝜋(0,0) = 𝒦𝜏(0), 

 𝜋(𝑖,0) = 𝜋(0,0)𝑅
𝑖 ,    𝑖 ≥ 0. 

 Now the vector 𝜋̂ is obtained up to a constant 𝒦 as 𝜋̂ = 𝒦𝜏, the other component vectors 𝜋̃(𝑖,0), 𝑖 ≥

1, 𝜋(𝑖,1), 𝑖 ≥ 0 of 𝜋 can be obtained from the equations (13), (14) and (20), up to the constant 𝒦, 

which is finally obtained from the normalizing condition 𝜋𝑒 = 1. 

 

 

4  Performance measures 
 

4.1  Busy period of the server with the failed components of the main system 
 

Let 𝑇𝑖  denote the server busy period with failed components which starts with 𝑖 failed 

components and with 𝑗 external customers in the system. Consider the absorbing Markov chain 

𝑌 = {𝑌(𝑡), 𝑡 ≥ 0}, where 𝑌(𝑡) is the number of failed components of the main system, with the state 

space {0,1,2, … , 𝑁, 𝑁 + 1,… , 𝑛 − 𝑘 + 1} and having infinitesimal matrix given by  

 𝐻𝐵𝐹 = [
0 0
−𝐻𝐵𝐹𝑒 𝐻𝐵𝐹

]  , 

where  
 𝐻𝐵𝐹 = 𝜆𝐸𝑛−𝑘+1 + 𝜆𝑐𝑛−𝑘+1(𝑛 − 𝑘 + 1) ⊗ 𝑟𝑛−𝑘+1 + 𝜇𝐸𝑛−𝑘+1

′ . 

Notice that 𝑌(𝑡) = 0 is an absorbing state. 𝑇𝑖  is the time until absorption in the Markov chain {𝑌(𝑡)} 

assuming that it starts in the state 𝑖. The expected value 𝐸𝑇𝑖  of 𝑇𝑖  is therefore the 𝑖𝑡ℎ entry of the 

column matrix −𝐻𝐵𝐹
−1𝑒 as given by (please see Krishnamoorthy et al. [5]):  

 𝐸𝑇𝑖 =
1

𝜇
(𝑖 ∑𝑛−𝑘+1−𝑖

𝑗=0 (
𝜆

𝜇
)

𝑗

+ ∑𝑛−𝑘
𝑗=𝑛−𝑘+2−𝑖 (𝑛 − 𝑘 + 1 − 𝑗) (

𝜆

𝜇
)

𝑗

). 

We notice that once the service of failed components starts, the external customers has no effect on 

it and hence 𝐸𝑇𝑖  is independent of 𝑗 the number of external customers. Define  
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 𝑃𝑓(𝑁) = 𝜋(0,0,𝑁−1) + ∑∞
𝑗=1 𝜋(𝑗,0,𝑁)    and 

 𝑃𝑓(𝑖) = ∑∞
𝑗=1 𝜋(𝑗,0,𝑖)    for𝑁 < 𝑖 ≤ 𝑛 − 𝑘 + 1 

 𝑃𝑓(𝑖) will then denote the system steady state probability just before starting service to failed 

components with 𝑖 number of failed components. The expected length of the busy period of the 

server with failed components is then given by  

 𝐸𝐻̂ =
∑𝑛−𝑘+1

𝑖=𝑁 𝑃𝑓(𝑖)𝐸𝑇𝑖

∑𝑛−𝑘+1
𝑖=𝑁 𝑃𝑓(𝑖)

. 

 

 

4.2  Other performance measures 
 

  

    1.  Fraction of time the system is down,  
 𝑃𝑑𝑜𝑤𝑛 = ∑∞

𝑗1=0 𝜋(𝑗1,0,𝑛−𝑘+1) + ∑∞
𝑗1=0 𝜋(𝑗1,1,𝑛−𝑘+1). 

  

    2.  System reliability, 𝑃𝑟𝑒𝑙 = 1 − 𝑃𝑑𝑜𝑤𝑛 .  

    3.  Average number of external customers waiting in the queue,  

 𝑁𝑞 = ∑∞
𝑗𝑖=0 𝑗𝑖(∑

𝑛−𝑘+1
𝑗3=0 𝜋(𝑗1,1,𝑗3)) + ∑∞

𝑗1=1 (𝑗1 − 1)(∑𝑛−𝑘+1
𝑗3=0 𝜋(𝑗1,0,𝑗3)). 

  

    4.  Average number of failed components of the main system,  

 𝑁𝑓𝑎𝑖𝑙 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=0 𝜋(𝑗1,0,𝑗3)) + ∑𝑛−𝑘+1

𝑗3=1 𝑗3(∑
∞
𝑗1=0 𝜋(𝑗1,1,𝑗3)). 

  

    5.  Average number of failed components waiting when server is busy with external 

customers  

 𝑁𝐵𝑓𝑎𝑖𝑙 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=1 𝜋(𝑗1,0,𝑗3)). 

 

    6.  Expected number of external customers joining the system,  

 𝜃3 = 𝜆̅{∑∞
𝑗1=1 (∑𝑁−1

𝑗3=0 𝜋(𝑗1,0,𝑗3)) + ∑𝑁−1
𝑗1=0 𝜋(0,0,𝑗3)}. 

  

    7.  Expected number of external customers on its arrival gets service directly  

 𝑁𝐸𝑋𝑑𝑖𝑟𝑒𝑐𝑡 = ∑𝑁−1
𝑗3=0 𝜋(0,0,𝑗3). 

 

    8.  Fraction of time the server is busy with external customers,  

 𝑃𝑒𝑥𝑡,𝑏𝑢𝑠𝑦 = ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=0 𝜋(𝑗1,0,𝑗3)). 

  

    9.  Probability that server is found idle,  

 𝑃𝑖𝑑𝑙𝑒 = ∑𝑁−1
𝑗3=0 𝜋(0,0,𝑗3) = 𝑁𝜋(0,0,0). 

  

    10.  Probability that the server is found busy,  

 𝑃𝑏𝑢𝑠𝑦 = 1 − ∑𝑁−1
𝑗3=0 𝜋(0,0,𝑗3) = 1 − 𝑁𝜋(0,0,0). 

  

    11.  Expected loss rate of external customers,  

 𝜃4 = 𝜆̅{∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=1 𝜋(𝑗1,1,𝑗3)) + ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=𝑁 𝜋(𝑗1,0,𝑗3))}. 

  

    12.  Expected service completion rate of external customers,  

 𝜃5 = 𝜇̅ ∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=0 𝜋(𝑗1,0,𝑗3)). 

  

    13.  Expected number of external customers when server is busy with external 

customers,  

 𝜃6 = ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=0 𝜋(𝑗1,0,𝑗3)). 
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5  Numerical Study of the Performance of the System 
  

5.1  The Effect of N Policy on the Server Busy Probability 
  

The main purpose of introducing N-policy while studying a 𝑘-out-of-𝑛 system with a 

single server offering service to external customers, in a non pre-emptive nature, was optimization 

of the system revenue, by utilizing the server idle time, without compromising the reliability of the 

system much. Tables 1 and 2 reports the variation in the server busy probability when external 

customers are allowed and not allowed respectively. A comparison of the two tables suggest that 

there is an increase in the server busy probability, when external customers are allowed. Table 3, 

which report the effect of the N-policy level on the fraction of time the server remains busy with 

external customers, tells that there is an increase in the reported measure with an increase in 𝑁. 

Hence, it can be concluded that the N-policy has helped in improving the attention towards 

external customers slightly. Now, we want to check whether the introduction of the N-policy has 

badly affected the system reliability. 

 

5.2  The effect of N policy on system reliability 
 

We study two cases 𝜆 < 𝜇 and 𝜆 > 𝜇 . We expected a decrease in 𝑃𝑟𝑒𝑙  with an increase in 𝑁. 

This is because as 𝑁 increases, the server spends more time for external customers, which we 

thought might cause a decrease in the system reliability. This was verified from Table 4, where we 

assumed 𝜆 < 𝜇. However, Table 4 shows very high system reliability over 95 %. The magnitude of 

decrease in reliability was found lesser when the total number of components 𝑛 was high. In short 

Table 4 shows that reliability of the system is not much affected by increasing N-policy level. In 

Table 5 where it was assumed that the component failure rate 𝜆 is greater than their service rate 𝜇, 

it was again found that 𝑃𝑟𝑒𝑙  decreases with increase in 𝑁 and that the magnitude of decrease is not 

high. More importantly, the reliability of the system was found less than 91.5 %. To check whether 

this was actually due to the introduction of external customers, we compared the system reliability 

of the current model with that of a 𝑘-out-of-𝑛 system where no external customers are entertained. 

Table 6 shows that allowing external customers in the system has only a narrow effect on the 

system reliability and the decrease in reliability is actually due to the assumption 𝜆 > 𝜇 . 

 

5.3  Analysis of a Cost function 
 

Table 1 shows that as 𝑁 increases, even though the server busy probability increases first, 

it decreases as 𝑁 crosses some value. Note that the overall server busy probability is the sum of the 

server busy probability with external customers and the server busy probability with main 

customers. Table 3 shows that the fraction of time server remaining busy with external customers 

is ever increasing with N. Now as 𝑁 increases, there is a decrease in the server busy probability 

with main customers. Hence, the above said behavior of the overall server busy probability can be 

concluded to be due to the conflicting nature of the two entities constituting it. This behavior of the 

server busy probability lead us to construct a cost function in the hope of finding an optimal value 

for the N-policy level defined as follows:  
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 

 = 𝐶1 ⋅ 𝑃down + 𝐶2 ⋅ 𝑁𝑞 + 𝐶4 ⋅ 𝜃4 + 𝐶5 ⋅ 𝑁𝑓𝑎𝑖𝑙 +
𝐶3

𝐸𝐻̂

+ 𝐶6 ⋅ 𝑃𝑖𝑑𝑙𝑒  

 In the above, 𝐶1 denote the cost per unit time incurred if the system is down, 𝐶2 denote the 

holding cost per unit time per external customer in the queue, 𝐶3 denote the cost incurred for 

starting failed components service, 𝐶4 denote the cost due to loss of 1 external customer, 𝐶5 denote 

the holding cost per unit time of one failed component, 𝐶6 denote the cost per unit time if the 

server is idle. The values of the cost function presented in Table 7, for various failure rates of the 
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components, shows an optimal value for N in each case. 

  

Table  1: Variation in the server busy probability when external customers are allowed 𝑘 = 20, 𝜆 =

4, 𝜆̅ = 3.2, 𝜇 = 5.5, 𝜇̅ = 8 

  

 N  n=45   n=50   n=60   n=65  

1 0.823494 0.823522 0.823529 0.823529 

3 0.829935 0.829973 0.829983 0.831354 

5 0.832187 0.832243 0.832256 0.832891 

7 0.833255 0.833338 0.833358 0.833717 

9 0.833839 0.833968 0.834 0.83423 

11 0.834162 0.834367 0.834417 0.834577 

13 0.834295 0.834627 0.834708 0.834827 

15 0.834239 0.834789 0.834923 0.835093 

17 0.833936 0.834861 0.835085 0.835224 

19 0.833252 0.834829 0.835211 0.835329 

21 0.831922 0.834652 0.835306 0.835413 

23 0.829445 0.834239 0.835375 0.83548 

25 0.824871 0.833426 0.835412 0.83553 

  

  
Table  2: Variation in the server busy probability when external customers are not allowed 𝑘 =
20, 𝜆 = 4, 𝜇 = 5.5 

  

 N   n=45   n=50   n=60   n=65  

1 0.72722 0.72726 0.72727 0.72727 

3 0.7272 0.72726 0.72727 0.72727 

5 0.72717 0.72725 0.72727 0.72727 

7 0.72711 0.72724 0.72727 0.72727 

9 0.72703 0.72722 0.72727 0.72727 

11 0.72688 0.72719 0.72727 0.72727 

13 0.72663 0.72714 0.72727 0.72727 

15 0.72622 0.72706 0.72726 0.72727 

17 0.7255 0.72691 0.72726 0.72727 

19 0.72425 0.72666 0.72725 0.72727 

21 0.72206 0.72623 0.72723 0.72726 

23 0.71814 0.72546 0.7272 0.72726 
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Table  3: Effect of the N-policy level on the fraction of time server is busy with external customers 

with 𝑘 = 20, 𝜆 = 4, 𝜆̅ = 3.2, 𝜇 = 5.5, 𝜇̅ = 8 

  

 N  n=40  n=45  n=50  n=55  n=60 

1 0.096351 0.096276 0.096261 0.096257 0.096257 

2 0.100557 0.100464 0.100445 0.100441 0.10044 

3 0.102853 0.10274 0.102717 0.102712 0.102711 

4 0.104255 0.104117 0.104089 0.104083 0.104082 

5 0.105198 0.105028 0.104993 0.104986 0.104985 

6 0.105882 0.105672 0.105629 0.105621 0.105619 

7 0.106413 0.106153 0.1061 0.106089 0.106087 

8 0.106853 0.106528 0.106462 0.106449 0.106446 

9 0.107241 0.106832 0.106749 0.106733 0.106729 

10 0.107605 0.107088 0.106984 0.106963 0.106958 

11 0.107968 0.107313 0.10718 0.107153 0.107148 

12 0.108354 0.107517 0.107348 0.107314 0.107307 

13 0.108786 0.107711 0.107495 0.107451 0.107442 

14 0.109291 0.107904 0.107626 0.10757 0.107559 

15 0.109905 0.108106 0.107747 0.107675 0.10766 

17 0.111651 0.108581 0.107976 0.107854 0.107829 

19 0.114606 0.109249 0.108092 0.108008 0.107966 

21  0.110301 0.108216 0.108153 0.10808 

23  0.112079 0.10851 0.108308 0.108182 

25  0.115216 0.108928 0.1085 0.108281 

27   0.110699 0.108771 0.108387 

29   0.112652 0.109196 0.108516 

31   0.116153 0.10991 0.108697 

33    0.111158 0.108978 

35    0.113399 0.109446 
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Table  4: Variation in the system reliability with increase in 𝑁 (𝜆 < 𝜇 case) 𝑘 = 20, 𝜆 = 4, 𝜆̅ =
3.2, 𝜇 = 5.5, 𝜇̅ = 8 

  

 N  n=40  n=45  n=50  n=55  n=60  n=65  

1 0.99963 0.99993 0.99998 1 1 1 

3 0.99948 0.99989 0.99998 1 1 1 

5 0.99924 0.99985 0.99997 0.99999 1 1 

7 0.99885 0.99977 0.99995 0.99999 1 1 

9 0.9982 0.99964 0.99993 0.99998 1 1 

11 0.99712 0.99942 0.99988 0.99998 1 1 

13 0.9953 0.99905 0.99981 0.99996 0.99999 1 

15 0.99217 0.99843 0.99968 0.99994 0.99999 1 

17 0.98668 0.99736 0.99947 0.99989 0.99998 1 

19 0.97689 0.9955 0.99909 0.99982 0.99996 0.99999 

21 0.95915 0.99223 0.99844 0.99968 0.99994 0.99999 

23  0.98638 0.9973 0.99945 0.99989 0.99998 

25  0.97578 0.99528 0.99905 0.99981 0.99996 

27   0.99165 0.99833 0.99966 0.99993 

29   0.98509 0.99705 0.9994 0.99988 

31   0.97315 0.99475 0.99894 0.99979 
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Table  5: Variation in the system reliability with increase in 𝑁 (𝜆 > 𝜇 case) 𝜆 = 6, 𝜇 = 5.5, 𝜆̅ =
3.2, 𝜇̅ = 8 

  

 N  n=40  n=50  n=55  n=60  

1 0.90191 0.91106 0.91312 0.91441 

2 0.90118 0.91081 0.91297 0.91431 

3 0.90041 0.91055 0.91281 0.91421 

4 0.89961 0.91028 0.91264 0.91411 

5 0.89876 0.91 0.91247 0.914 

6 0.89758 0.90971 0.91229 0.91389 

7 0.89696 0.90941 0.91211 0.91377 

8 0.896 0.9091 0.91192 0.91366 

9 0.895 0.90878 0.91173 0.91354 

10 0.89396 0.90845 0.91153 0.91341 

11 0.89287 0.90812 0.91133 0.91329 

12 0.89174 0.90777 0.91112 0.91316 

13 0.89055 0.90741 0.9109 0.91303 

14 0.88932 0.90705 0.91068 0.91289 

15 0.88804 0.90667 0.91046 0.91275 

16 0.8867 0.90628 0.91 0.91261 

17 0.88531 0.90589 0.90951 0.91247 

18 0.88386 0.90548 0.90901 0.91232 

19 0.88235 0.90507 0.90848 0.91217 

21 0.88079 0.90464 0.90794 0.91186 

23 0.87916 0.90421 0.90738 0.91155 

25  0.90331 0.90679 0.91122 

27  0.90237 0.9062 0.91088 

29  0.90139 0.90558 0.91053 

31  0.90036 0.90494 0.91018 

33  0.8993 0.90462 0.90981 

35    0.90944 

37    0.90905 

39    0.90866 

41    0.90827 

 

  

  

Table  6: Variation in the system reliability with increase in 𝑁 (case when no external customers 

are allowed) 𝑘 = 20, 𝜆 = 6, 𝜇 = 5.5 

  

 N  n=40  n=45  n=50  n=55  n=60  n=65  

1 0.902225 0.907874 0.911180 0.913196 0.914453 0.915247 

3 0.900740 0.907001 0.910662 0.912877 0.914252 0.915120 

5 0.899093 0.906080 0.910108 0.912537 0.914040 0.914985 

7 0.897301 0.905082 0.909519 0.912176 0.913815 0.914843 

9 0.895355 0.904014 0.908894 0.911796 0.913578 0.914693 

11 0.893242 0.902873 0.908232 0.911395 0.913329 0.914537 

13 0.890948 0.901655 0.907531 0.910974 0.913069 0.914373 

15 0.888461 0.900358 0.906793 0.910533 0.912797 0.914202 

17 0.885763 0.898979 0.906016 0.910071 0.912514 0.914025 
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19 0.882837 0.897514 0.905200 0.909589 0.912219 0.913841 

21 0.879662 0.895960 0.904345 0.909087 0.911913 0.913651 

23  0.894313 0.903450 0.908566 0.911597 0.913454 

25  0.892570 0.902514 0.908025 0.911271 0.913252 

27   0.901539 0.907465 0.910934 0.913044 

29   0.900523 0.906886 0.910588 0.912831 

31   0.899465 0.906289 0.910233 0.912613 

33    0.905674 0.909868 0.912390 

35    0.905041 0.909495 0.912162 

37     0.909114 0.911930 

39     0.908724 0.911693 

41     0.908327 0.911453 

43      0.911209 

45      0.910961 

 

Table  7: Analysis of a cost function for finding optimal 𝑁 value , 𝑛 = 50, 𝑘 = 20, 𝜇 = 5.5, 𝜆̅ =
3.2, 𝜇̅ = 8, 𝐶1 = 2000, 𝐶2 = 20, 𝐶3 = 800, 𝐶4 = 1000, 𝐶5 = 10, 𝐶6 = 200 

  

 N  𝜆 = 4  𝜆 = 4.5  𝜆 = 5  𝜆 = 5.5  

1 4925.877 4937.695 5079.029 5226.181 

3 4710.059 4856.852 5057.425 5221.212 

5 4630.354 4825.835 5050.332 5218.775 

7 4591.702 4812.151 5048.243 5216.965 

9 4571.3 4806.745 5048.411 5215.313 

11 4561.086 4806.248 5049.849 5213.713 

13 4558.217 4809.556 5052.345 5212.268 

15 4563.915 4817.604 5056.578 5211.373 

17 4588.216 4835.444 5064.896 5211.922 

18 4605.19 4846.938 5070.21 5212.65 

19 4624.185 4859.68 5076.196 5213.701 

21 4670.646 4890.628 5091.4 5217.34 

23 4735.585 4934.206 5114.597 5224.719 

25 4837.829 5004.721 5155.522 5240.069 

27 5032.125 5144.138 5241.815 5274.736 

29 5546.901 5525.659 5482.957 5371.341 

31 8780.95 7911.995 6932.789 5918.758 
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