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Abstract 
 

In this paper we study a 𝑘-out-of-𝑛 system with a single repair facility, which provides service to 

external customers also. We assume an 𝑁-policy for service to failed components(main customers) 

of the 𝑘-out-of-𝑛 system starts only on accumulation of 𝑁 of them. Once started, the repair of 

external customers is continued until all the components become operational. When not repairing 

failed components, the server attends external customers(if there is any) who arrive according to a 

Poisson process. Once selected for service, the external customers receive a service of non-

preemptive nature. When there are at least 𝑁 failed components in the system and/or when the 

server is busy with failed components, the external customers are not allowed to join the 

system.Otherwise they join an orbit of infinite capacity. Life time distribution of failed components, 

service time distribution of main and external customers and the inter retrial time distribution of 

orbital customers are all assumed to follow independent exponential distributions. Steady state 

analysis has been carried out and several important system performance measures, based on the 

steady state distribution, derived. A numerical study comparing the current model with those in 

which no external customers are considered has been carried out.This study suggests that rendering 

service to external customers helps to utilize the server idle time profitably, without sacrificing the 

system reliability.  

 

 Keywords: 𝑘-out-of-𝑛 system; non-preemptive service. 

 

 

1  Introduction 
 

In this paper, we consider a variant of the model studied in Krishnamoorthy et al. [1]. In part I (see 

Krishnamoorthy et al. [3]) of this paper we studied the reliability of a k-out-of-n system with a 

single server rendering non-preemptive service to external customers.In this paper we extend it to 
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retrial queue of unsatisfied external customers(orbital customers) with linear retrial rate.In effect 

we replace the infinite queue of external customers in part I by orbital customers and their retrial. 

However, the stability condition remains the same in both models. 

This paper is arranged as follows. In section 2 , we describe the model and in section 3 , its 

long run behavior is analyzed. The stability condition is derived explicitly in section 3 and 

computation of the steady state vector using the Neuts-Rao truncation procedure [2] has been 

discussed. Some important performance measures are derived in section 4 . The effect of rendering 

service to external customers and N-policy has been studied numerically in section 5 . 

 

2  The retrial model 
 

Here we consider a variant of the model discussed in section 2 of part I by assuming that 

an arriving external customer either gets immediate service if it finds the server is idle at that time 

or joins an orbit of infinite capacity, if the server is busy with external customers with ≤ 𝑁 − 1 

failed components of the 𝑘-out-of-𝑛 system. As in the model discussed in section 2 of part I, the 

external customers are not allowed to join the orbit when the server is busy with failed 

components of the system. An orbital customer retries for service with inter-retrial time following 

an exponential distribution with parameter 𝜃. All other assumptions and parameters remain the 

same as in model discussed in section 2 of part I. In this situation the system can be modeled as 

follows. 

Let 𝑋1(𝑡) = the number of external customers in the orbit at time 𝑡,  

𝑋2(𝑡) = the number of failed components of the 𝑘-out-of-𝑛 system, including the one 

getting service (if any) at time 𝑡. 

Define  

 𝑆(𝑡) = (

0, If the server is idle
1, If the server is busy with an external customer
2, If the server is busy with a main customer

 

Now, 𝑋(𝑡) = (𝑋1(𝑡), 𝑆(𝑡), 𝑋2(𝑡)) forms a continuous time Markov chain on the state space  

 
𝑆 = {(𝑗1, 0, 𝑗2)/𝑗1 ≥ 0,0 ≤ 𝑗2 ≤ 𝑁 − 1}⋃ {(𝑗1, 1, 𝑗2)/𝑗1 ≥ 0,0 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1}

⋃ {(𝑗1, 2, 𝑗2)/𝑗1 ≥ 0,1 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1}.
 

 

Arranging the states lexicographically and partitioning the state space into levels 𝑖, where 

each level 𝑖 corresponds to the collection of states with number of external customers in the orbit at 

any time 𝑡 equal to 𝑖, we get an infinitesimal generator of the above chain as  

 𝑄 =

[
 
 
 
 
 
 
 
 
 
𝐀10 𝐀0

𝐀21 𝐀11 𝐀0

𝐀22 𝐀12 𝐀0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝐀2𝑝 𝐀1𝑝 𝐀0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

]
 
 
 
 
 
 
 
 
 

. 

 

The entries of 𝑄 are described as below: For 𝑖 ≥ 0, the transition within level 𝑖 is 

represented by the matrix 

 

 𝐀1𝑖 =

[
 
 
 𝐷11

(𝑖)
𝐷12 0 𝐷14

𝐷21 𝐷22 𝐷23 0
0 0 𝐷33 𝐷34

𝐷41 0 0 𝐷44]
 
 
 

, 

 where  

 𝐷11
(𝑖)

= 𝜆𝐸𝑁 − 𝜆𝐼𝑁 − 𝑖𝜃𝐼𝑁 , 𝐷12 = 𝜆𝐼𝑁 , 
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 𝐷14 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑛−𝑘+1(𝑁), 𝐷21 = 𝜇𝐼𝑁 , 

 𝐷22 = 𝐷11
(0)

− 𝜇𝐼𝑁 , 
 𝐷23 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑛−𝑘+2−𝑁(1), 
 𝐷33 = 𝜆𝐸𝑛−𝑘+2−𝑁 + 𝜆𝑐(𝑛 − 𝑘 + 2 − 𝑁) ⊗ 𝑟(𝑛−𝑘+2−𝑁)(𝑛 − 𝑘 + 2 − 𝑁) − 𝜇𝐼𝑛−𝑘+2−𝑁 , 

 𝐷34 = [𝑂𝑛−𝑘+2−𝑁×(𝑁−1) 𝜇𝐼(𝑛−𝑘+2−𝑁)], 
 𝐷44 = 𝜆𝐸𝑛−𝑘+1 + 𝜆𝑐𝑛−𝑘+1(𝑛 − 𝑘 + 1) ⊗ 𝑟𝑛−𝑘+1(𝑛 − 𝑘 + 1) + 𝜇𝐸′𝑛−𝑘+1, 
 𝐷41 = 𝜇𝑐𝑛−𝑘+1(1) ⊗ 𝑟𝑁(1). 

 

For 𝑖 ≥ 0 the transition from level 𝑖 to 𝑖 + 1 is represented by the matrix  

 𝐀0 = [

0𝑁×𝑁 0 0 0

0 𝜆𝐼𝑁 0 0
0 0 0 0

]. 

 For 𝑖 ≥ 1, the transition from level 𝑖 to 𝑖 − 1 is represented by the matrix 

 

 𝐀2𝑖 = [
0 𝑖𝜃𝐼𝑁 0 0
0 0 0 0

]. 

 

 

3  Steady state analysis of the retrial model 
 

3.1  Stability condition 

 

For finding the stability condition for the system study, we apply Neuts-Rao truncation [2] 

by assuming 𝐴1𝑖 = 𝐴1𝑀 and 𝐴2𝑖 = 𝐴2𝑀 for all 𝑖 ≥ 𝑀. Then the generator matrix of the truncated 

system will look like: 

 

 𝑄 =

[
 
 
 
 
 
 
 
 
 
 
𝐀10 𝐀0

𝐀21 𝐀11 𝐀0

𝐀22 𝐀12 𝐀0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝐀2𝑀 𝐀1𝑀 𝐀0

𝐀2𝑀 𝐀1𝑀 𝐀0

⋅ ⋅
⋅ ⋅

]
 
 
 
 
 
 
 
 
 
 

. 

 

Define 𝐀𝑀 = 𝐀0 + 𝐀1𝑀 + 𝐀2𝑀  ; then 

 

 𝐴𝑀 =

[
 
 
 
 
 𝐷11

(𝑀)
𝐷12

(𝑀)
0𝐷14

𝐷21 �̃�22 𝐷23 0
0 0 𝐷33 𝐷34

𝐷41 0 0 𝐷44

]
 
 
 
 
 

, 

 where 𝐷12
(𝑀)

= (𝜆 + 𝑀𝜃)𝐼𝑁, �̃�22 = 𝜆𝐸𝑁 − 𝜇𝐼𝑁. 

Let  
 𝜋𝑀 = (𝜋𝑀(0), 𝜋𝑀(1), �̃�𝑀(1), 𝜋𝑀(2)), where 
 𝜋𝑀(0) = (𝜋𝑀(0,0), 𝜋𝑀(0,1), … , 𝜋𝑀(0, 𝑁 − 1)), 
 𝜋𝑀(1) = (𝜋𝑀(1,0), … , 𝜋𝑀(1, 𝑁 − 1)), 
 �̃�𝑀(1) = (𝜋𝑀(1, 𝑁), … , 𝜋𝑀(1, 𝑛 − 𝑘 + 1)), 
 𝜋𝑀(2) = (𝜋𝑀(2,1), … , 𝜋𝑀(2, 𝑛 − 𝑘 + 1)). 

 be the steady state vector of the generator matrix 𝐀𝑀. Then the relation 𝜋𝑀𝐀𝑀 = 0 gives rise to the 

following equations:  

 𝜋𝑀(0)𝐷11
(𝑀)

+ 𝜋𝑀(1)𝐷21 + 𝜋𝑀(2)𝐷41 = 0, (1) 
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 𝜋𝑀(0)𝐷12
(𝑀)

+ 𝜋𝑀(1)�̃�22 = 0, (2) 

  

 𝜋𝑀(1)𝐷23 + �̃�𝑀(1)𝐷33 = 0, (3) 

  

 𝜋𝑀(0)𝐷14 + �̃�𝑀(1)𝐷34 + 𝜋𝑀(2)𝐷44 = 0. (4) 

 

It follows from equation (4) that  

 𝜋𝑀(2) = −𝜋𝑀(0)𝐷14(𝐷44)
−1 − �̃�𝑀(1)𝐷34(𝐷44)

−1. (5) 

 Substituting for 𝜋𝑀(2) in equation (1), we get  

 𝜋𝑀(0)𝐷11
(𝑀)

+ 𝜋𝑀(1)𝐷21 − 𝜋𝑀(0)𝐷14(𝐷44)
−1𝐷41 − �̃�𝑀(1)𝐷34(𝐷44)

−1𝐷41 = 0. (6) 

 It follows from equation (3) that  

 �̃�𝑀(1) = −𝜋𝑀(1)𝐷23(𝐷33
−1). (7) 

 

Substituting for �̃�𝑀(1) in equation (6), we get  

 
𝜋𝑀(0)𝐷11

(𝑀)
+ 𝜋𝑀(1)𝐷21 − 𝜋𝑀(0)𝐷14(𝐷44)

−1𝐷41

+𝜋𝑀(1)𝐷23(𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 = 0.
 (8) 

 

We notice that the first column of the matrix 𝐷41 is −𝐷44𝑒 and its all other columns are zero 

columns. Hence the first column of the matrix (𝐷44)
−1𝐷41 is −𝑒 and its all other columns are zero 

columns. This implies that the first column of the matrix −𝐷14(𝐷44)
−1𝐷41 is 𝐷14𝑒 = 𝜆𝑐𝑁(𝑁) and its 

all other columns are zero columns. In other words −𝐷14(𝐷44)
−1𝐷41 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). Also, the 

first column of the matrix 𝐷34(𝐷44)
−1𝐷41 is −𝐷34𝑒 and its all other columns are zero columns. Since 

−𝐷34𝑒 = 𝐷33𝑒, the first column of the matrix (𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 is 𝑒 and its all other columns are 

zero columns. Hence it follows that 𝐷23(𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 is 𝐷23𝑒 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). Thus 

equation (8) becomes  

 𝜋𝑀(0)(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝜋𝑀(1)(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) = 0. (9) 

 Adding equations (2) and (9), we get  

 𝜋𝑀(0)(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝐷12
(𝑀)

) + 𝜋𝑀(1)(�̃�22 + 𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) = 0. (10) 

 

Since 𝐷11
(𝑀)

+ 𝐷12
(𝑀)

= �̃�22 + 𝐷21 = 𝜆𝐸𝑁, equation (10) reduces to 

 

 (𝜋𝑀(0) + 𝜋𝑀(1))(𝜆𝐸𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) = 0. (11) 

 which implies that 𝜋𝑀(0) + 𝜋𝑀(1) is a constant multiple of the steady state vector 
1

𝑁
𝑒′𝑁 of the 

generator matrix 𝜆𝐸𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) and hence,  

 𝜋𝑀(0) + 𝜋𝑀(1) = 𝑣
1

𝑁
𝑒𝑁

′ . (12) 

 where 𝑣 is a constant. Equation (2) implies that 

 

 𝜋𝑀(0) = −𝜋𝑀(1)�̃�22(𝐷12
(𝑀)

)−1. (13) 

 Since (𝐷12
(𝑀)

)−1 =
1

(𝜆+𝑀𝜃)
𝐼𝑁, (13) gives  

 lim
𝑀→∞

𝜋𝑀(0) = 0. (14) 

 and hence  

 lim
𝑀→∞

𝜋𝑀(1) = 𝑣
1

𝑁
𝑒𝑁

′ , (15) 

 and  

 lim
𝑀→∞

𝜆𝜋𝑀(1)𝑒 = 𝑣𝜆. (16) 

 Again from (13),  

 𝑀𝜃𝜋𝑀(0)𝑒 = −𝑀𝜃𝜋𝑀(1)�̃�22(𝐷12
(𝑀)

)−1𝑒. (17) 

 Since, lim𝑀→∞𝑀𝜃(𝐷12
(𝑀)

)−1𝑒 = lim𝑀→∞
𝑀𝜃

(𝜆+𝑀𝜃)
𝑒𝑁 = 𝑒𝑁, (17) implies that  
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 lim
𝑀→∞

𝑀𝜃𝜋𝑀(0)𝑒 = − lim
𝑀→∞

𝜋𝑀(1)�̃�22𝑒 

 = −𝜈
1

𝑁
𝑒𝑁

′ (−𝜆𝑐𝑁(𝑁) − �̅�𝑒) 

 = 𝜈(
𝜆

𝑁
+ �̅�). (18) 

 The truncated system is stable if and only if  

 𝜋𝑀𝐴0𝑒 < 𝜋𝑀𝐴2𝑀𝑒, (19) 

 𝜋𝑀𝐴0𝑒 = 𝜆̅𝜋𝑀(1)𝑒, (20) 

 𝜋𝑀𝐴2𝑀𝑒 = 𝑀𝜃𝜋𝑀(0)𝑒. (21) 

 Making use of equations (16), (18), (20) and (21), the stability condition for the truncated system as 

𝑀 → ∞ is given by  

 𝜈𝜆̅ < 𝜈(
𝜆

𝑁
+ �̅�) , 

 which can be re-arranged as  

 
𝜆

�̅�

𝑁�̅�

(𝜆+𝑁�̅�)
< 1 . 

 Hence, we conclude that the retrial problem has the same stability condition as the queueing 

problem, which was obtained in section 3.1 of part I. 

 

3.2  Computation of Steady State Vector 

 

We find the steady state vector of {𝑋(𝑡), 𝑡 ≥ 0}, by approximating it with the steady state 

vector of the truncated system. Let 𝜋 = (𝜋0, 𝜋1, 𝜋2, … ) where each 𝜋𝑖 =

(𝜋𝑖(0,0), 𝜋𝑖(0,1), … , 𝜋𝑖(0, 𝑁 − 1), 𝜋𝑖(1,1), … , 𝜋𝑖(1, 𝑛 − 𝑘 + 1), 𝜋𝑖(2,0), 𝜋𝑖(2,1), … , 𝜋𝑖(2, 𝑛 − 𝑘 + 1)) be 

the steady state vector of the Markov chain {𝑋(𝑡), 𝑡 ≥ 0}. 

Suppose 𝐴1𝑖 = 𝐴1𝑀 and 𝐴2𝑖 = 𝐴2𝑀 for all 𝑖 ≥ 𝑀. Let 𝜋𝑀+𝑟 = 𝜋𝑀−1𝑅
𝑟+1, 𝑟 ≥ 0, then from 

𝜋𝑄 = 0 we get  
 𝜋𝑀−1𝐴0 + 𝜋𝑀𝐴1𝑀 + 𝜋𝑀+1𝐴2𝑀 = 0, 
 𝜋𝑀−1𝐴0 + 𝜋𝑀−1𝑅𝐴1𝑀 + 𝜋𝑀−1𝑅

2𝐴2𝑀 = 0, 
 𝜋𝑀−1(𝐴0 + 𝑅𝐴1𝑀 + 𝑅2𝐴2𝑀) = 0. 

 Choose 𝑅 such that 𝐴0 + 𝑅𝐴1𝑀 + 𝑅2𝐴2𝑀 = 0. We call this 𝑅 as 𝑅𝑀. Also we have  
 𝜋𝑀−2𝐴0 + 𝜋𝑀−1𝐴1𝑀−1 + 𝜋𝑀𝐴2𝑀 = 0, 
 𝜋𝑀−2𝐴0 + 𝜋𝑀−1(𝐴1𝑀−1 + 𝑅𝑀𝐴2𝑀) = 0, 
 𝜋𝑀−1 = −𝜋𝑀−2𝐴0(𝐴1𝑀−1 + 𝑅𝑀𝐴2𝑀)−1 
 = 𝜋𝑀−2𝑅𝑀−1  . 

 where  
 𝑅𝑀−1 = −𝐴0(𝐴1𝑀−1 + 𝑅𝑀𝐴2𝑀)  . 

Next,  
 𝜋𝑀−3𝐴0 + 𝜋𝑀−2𝐴1𝑀−2 + 𝜋𝑀−1𝐴2𝑀−1 = 0, 
 𝜋𝑀−3𝐴0 + 𝜋𝑀−2(𝐴1𝑀−2 + 𝜋𝑀−1𝐴2𝑀−1) = 0, 
 𝜋𝑀−2 = −𝜋𝑀−3𝐴0(𝐴1𝑀−2 + 𝑅𝑀−1(𝐴2𝑀−1)

−1 
 = 𝜋𝑀−3𝑅𝑀−2. 

 Where  
 𝑅𝑀−2 = −𝐴0(𝐴1𝑀−2 + 𝑅𝑀−1𝐴2𝑀−1)

−1. 

and so on. 

Finally  
 𝜋0𝐴10 + 𝜋1𝐴21 = 0 

becomes  
 𝜋0(𝐴10 + 𝑅1𝐴21) = 0. 

For finding 𝜋, first we take 𝜋0 as the steady state vector of 𝐴10 + 𝑅1𝐴21.Then 𝜋𝑖 for 𝑖 ≥ 1 can be 

found using the recursive formula, 𝜋𝑖 = 𝜋𝑖−1𝑅𝑖 for 1 ≤ 𝑖 ≤ 𝑀. 

Now the steady state probability distribution of the truncated system is obtained by 

dividing each 𝜋𝑖 with the normalizing constant  
 [𝜋0 + 𝜋1 + ⋯]𝑒 = [𝜋0 + 𝜋1 + ⋯ + 𝜋𝑁−2 + 𝜋𝑀−1(𝐼 − 𝑅𝑀)−1]𝑒. 
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3.3  Computation of the matrix 𝑹𝑴 

 

Consider the matrix quadratic equation  

 𝐴0 + 𝑅𝑀𝐴1𝑀 + 𝑅𝑀
2 𝐴2𝑀 = 0, (22) 

 which implies  

 𝑅𝑀 = −𝐴0(𝐴1𝑀 + 𝑅𝑀𝐴2𝑀)−1. (23) 

 

The structure of the 𝐴0 matrix implies that the matrix 𝑅𝑀 has the form:  

 𝑅𝑀 =

[
 
 
 
 
0 0 0 0
𝑅𝑀1 𝑅𝑀2 𝑅𝑀3 𝑅𝑀4

0 0 0 0
0 0 0 0

]
 
 
 
 

. (24) 

 In other words, the non-zero rows of the 𝑅𝑀 matrix are those, where the 𝐴0 matrix has at least one 

nonzero entry. Now,  

 𝑅𝑀
2 = [

0 0 0 0
𝑅𝑀2𝑅𝑀1 𝑅𝑀2

2 𝑅𝑀2𝑅𝑀3 𝑅𝑀2𝑅𝑀4

0 0 0 0
0 0 0 0

]. (25) 

 Equation (22) gives rise to the following equations:  

 𝑅𝑀1𝐷11
(𝑀)

+ 𝑅𝑀2𝐷21 + 𝑅𝑀4𝐷41 = 0, (26) 

  

 𝑅𝑀2𝑅𝑀1𝑀𝜃𝐼𝑁 + 𝑅𝑀1𝐷12 + 𝑅𝑀2𝐷22 + 𝜆𝐼𝑁 = 0, (27) 

  

 𝑅𝑀2𝐷23 + 𝑅𝑀3𝐷33 = 0, (28) 

  

 𝑅𝑀1𝐷14 + 𝑅𝑀3𝐷34 + 𝑅𝑀4𝐷44 = 0. (29) 

 From equation (28), we can write  

 𝑅𝑀3 = −𝑅𝑀2𝐷23(𝐷23)
−1. (30) 

 From equation(29), we can write  

 𝑅𝑀4 = −𝑅𝑀1𝐷14(𝐷44)
−1 − 𝑅𝑀3𝐷34(𝐷44)

−1. (31) 

 Substituting for 𝑅𝑀3 from (30) in equation (31), we get  

 𝑅𝑀4 = −𝑅𝑀1𝐷14(𝐷44)
−1 + 𝑅𝑀2𝐷23(𝐷33)

−1𝐷34(𝐷44)
−1. (32) 

 Substituting for 𝑅𝑀4 from (32) in equation (26), we get  

 
𝑅𝑀1𝐷11

(𝑀)
+𝑅𝑀2𝐷21 − 𝑅𝑀1𝐷14(𝐷44)

−1𝐷41

+𝑅𝑀2𝐷23(𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 = 0.
 (33) 

 Using the same reasoning, that lead us to equation (9), equation (33) becomes  

 𝑅𝑀1(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝑅𝑀2(𝐷21 + 𝜆𝑐𝑛(𝑁) ⊗ 𝑟𝑁(1)) = 0. (34) 

 From (34), it follows that  

 𝑅𝑀1 = −𝑅𝑀2(𝐷21𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1. (35) 

 Substituting for 𝑅𝑀1 in (27), we get  

 −𝑅𝑀2
2 (𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11

(𝑀)
+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁 

 −𝑅𝑀2(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12 

 +𝑅𝑀2𝐷22 + 𝜆𝐼𝑁 = 0. 

 That is  

 𝑅𝑀2
2 (−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11

(𝑀)
+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁) 

 +𝑅𝑀2(−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12 + 𝐷22) 

 +𝜆𝐼𝑁 = 0. (36) 

 We notice that −(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))𝑒 = (𝐷12 + 𝑀𝜃𝐼𝑁)𝑒. and therefore  

 
−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11

(𝑀)
+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1(𝐷12 + 𝑀𝜃𝐼𝑁)𝑒

= (𝐷21𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))𝑒.
 (37) 

 Also,  
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 𝐷22𝑒 + (𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))𝑒 + 𝜆𝑒 = 0. 

and hence  

 

(−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁)𝑒 +    

(−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12 + 𝐷22)𝑒

+𝜆̅𝑒 = 0.

 (38) 

 Equation (38) shows that the matrix 𝑅𝑀2 is the minimal non-negative solution of the matrix 

quadratic equation (36). Once obtaining 𝑅𝑀2, the matrices 𝑅𝑀1, 𝑅𝑀3, and 𝑅𝑀4 can be found using 

equations (35), (30) and (31) respectively. Hence the matrix 𝑅𝑀 can be found. From the form of the 

matrix 𝐷11
(𝑀)

, we notice that,  

 −(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) 

                 = 𝑀𝜃𝐼𝑁 − (𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) 

                 = 𝑀𝜃 (𝐼𝑁 −
1

𝑀𝜃
(𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))). 

 and hence  

 −(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))
−1

 

                 =
1

𝑀𝜃
(𝐼𝑁 −

1

𝑀𝜃
(𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)))

−1

 

                 =
1

𝑀𝜃
(𝐼𝑁 +

1

𝑀𝜃
(𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + ⋯ ). 

 Therefore  

 lim
𝑀→∞

(−(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁) = 𝐼𝑁 . 

and  

 lim
𝑀→∞

(−(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12) = 0. 

Hence as 𝑀 → ∞ equation (36) becomes  

 𝑅𝑀2
2 (𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝑅𝑀2𝐷22 + 𝜆̅𝐼𝑁 = 0. (39) 

 We identify 𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) as �̃�2, 𝐷22 as �̃�1 and 𝜆̅𝐼𝑁 as �̃�0, which were defined in section 3.2 

of part I. Hence equation (39) is the same as equation (24) of section 3.2 of part I. That is the matrix 

𝑅𝑀 tends to the matrix 𝑅, the minimal non-negative solution of (24) of section 3.2 of part I, as 𝑀 →

∞. This fact can be utilized in determining the truncation level 𝑀. 

 

4  System Performance Measures 
 

The following system performance measures were calculated numerically.   

    1.  Fraction of time the system is down,  

 𝑃𝑑𝑜𝑤𝑛 = ∑∞
𝑗1=0 (𝜋𝑗1(1, 𝑛 − 𝑘 + 1) + 𝜋𝑗1(2, 𝑛 − 𝑘 + 1)). 

 

    2.  System reliability, 𝑃𝑟𝑒𝑙 = 1 − 𝑃𝑑𝑜𝑤𝑛  

 = 1 − ∑∞
𝑗1=0 (𝜋𝑗1(1, 𝑛 − 𝑘 + 1) + 𝜋𝑗1(2, 𝑛 − 𝑘 + 1)). 

 

    3.  Average number of external customers in the orbit,  

 𝑁𝑜𝑟𝑏𝑖𝑡 = ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=1 𝜋𝑗1

(1, 𝑗3)) + ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=0 𝜋𝑗1

(2, 𝑗3)). 

 

    4.  Average number of failed components in the system,  

 𝑁𝑓𝑎𝑖𝑙 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=0 𝜋𝑗1(0, 𝑗3)) + ∑𝑛−𝑘+1

𝑗3=1 (∑∞
𝑗1=0 𝜋𝑗1(2, 𝑗3)). 

 

    5.  Average number of failed components waiting when server is busy with external 

customers  

 𝑁𝑓𝑎𝑖𝑙𝑒𝑥𝑡𝑏 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=1 𝜋𝑗1(0, 𝑗3)). 

 

    6.  Expected rate at which external customers joining the system  

 𝐸𝑒𝑥𝑡𝑟𝑎𝑡𝑒 = 𝜆̅{∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=0 𝜋𝑗1(0, 𝑗3)) + ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3)}. 
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    7.  Expected number of external customers on its arrival gets service directly,  

 𝐸𝑒𝑥𝑡𝑑𝑖𝑟𝑒𝑐𝑡 = ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3). 

 

    8.  Fraction of time server is busy with external customers,  

 𝑃𝑒𝑥𝑡𝑏𝑢𝑠𝑦 = ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=0 𝜋𝑗1(0, 𝑗3)). 

 

    9.  Probability that the server is found idle,  

 𝑃𝑖𝑑𝑙𝑒 = ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3) = 𝑁𝜋0(0,0). 

 

    10.  Probability that the server is found busy,  

 𝑃𝑏𝑢𝑠𝑦 = 1 − ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3) = 1 − 𝑁𝜋0(0,0). 

 

    11.  Expected loss rate of external customers  

 𝜃4 = 𝜆̅{∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=1 𝜋𝑗1(1, 𝑗3)) + ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=𝑁 𝜋𝑗1(0, 𝑗3))}. 

 

    12.  Expected service completion rate of external customers,  

 𝜃5 = �̅� ∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=0 𝜋𝑗1(0, 𝑗3)). 

 

    13.  Expected number of external customers when server is busy with external customers  

 𝜃6 = ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=0 𝜋𝑗1(0, 𝑗3)). 

 

    14.  Expected successful retrial rate  

 𝜃7 = 𝜃 ⋅ ∑𝑗1=1 (∑𝑁−1
𝑗3=0 𝜋𝐽1(0, 𝑗3)). 

 

 

 

5  Numerical study of the performance of the system 
  

5.1  The effect of N policy on the server busy probability 

 

A comparison of Table 1 of part I, which report the behaviour of server busy probability 

with variation in the N-policy level, with that of part II shows that the models described in section 

2 of part I and its variant where external customers are sent to the orbit, which was described in 

section 2 of part II have similar behaviour as far as the server busy probability is considered. 

Comparison of Table 3 of part I, which report the variation in the fraction of time the server 

remains busy with external customers with increase in 𝑁, with table 2 of part II also points to 

similar behaviour for both models. Table 4 of part I and table 3 of part II indicate that the two 

models have similar reliability. 

 

5.2  Cost Analysis 

 

As in the case of the queueing model discussed in section 2 of part I, we analyzed a cost 

function for the retrial model for finding an optimal value for the N-policy level. For defining the 

cost function, let 𝐶1 be the cost per unit time incurred if the system is down, 𝐶2 be the holding cost 

per unit time per external customer in the orbit, 𝐶3 is the cost incurred for starting failed 

components service after accumulation of 𝑁 of them, 𝐶4 be the cost due to loss of 1 external 

customer, 𝐶5 be the holding cost per unit time of one failed component, 𝐶6 be the cost per unit time 

if the server is idle. We define the cost function as:  
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 

 = 𝐶1 ⋅ 𝑃𝑑𝑜𝑤𝑛 + 𝐶2 ⋅ 𝑁𝑜𝑟𝑏𝑖𝑡 + 𝐶4 ⋅ 𝜃4 + 𝐶5 ⋅ 𝑁𝑓𝑎𝑖𝑙 +
𝐶3

𝐸�̂�

+ 𝐶6 ⋅ 𝑃𝑖𝑑𝑙𝑒. 

 where 𝐸�̂� is found exactly in the same lines as in section 4.1 of part I. 

Our numerical study, as presented in Table 4, show that an optimal value for 𝑁 can be 

found for different parameter choices and also that this optimal value happens to be a much 

smaller value like 𝑁 = 6. This shows the care needed in selecting the N-policy level. 

 

6  Conclusion 
 

We analyzed a 𝑘-out-of-𝑛 system where the server renders service to external customers also. In 

the case of a system where a minimum number of working components is necessary for its 

operation, the service to external customer should be carefully managed so that it does not affect 

the system reliability much. Krishnamoorthy et al. [1] managed to do that by introducing an N-

policy , in which the ongoing service of an external customer is preempted at the moment when 𝑁 

failed components have accumulated for repair. Differing from Krishnamoorthy et al.[1], here we 

considered a non-preemptive service for external customers thereby making their service more 

attractive. We analyzed two models: one in which the external customers joins a queue and 

another in which they moving to an orbit of infinite capacity. Our numerical study showed that 

rendering non-preemptive service to external customers has not affected the system reliability 

much, thereby re-asserted that the same could be an effective idea for utilizing the server idle time 

and there by earning more profit to the system. Analysis of a cost function has helped us in finding 

an optimal value for the N-policy level. 

  

Table  1: Variation in the server busy probability when external customers are allowed 𝑘 = 20, 𝜆 =

4, 𝜆̅ = 3.2, 𝜇 = 5.5, �̅� = 8, 𝜃 = 5 

  

 N  n=45  n=50  n=55  n=60  

1 0.82349 0.82352 0.82353 0.82353 

3 0.82995 0.82999 0.83 0.83 

5 0.83222 0.83228 0.83229 0.83229 

7 0.83328 0.83336 0.83338 0.83338 

9 0.83385 0.83398 0.83401 0.83401 

11 0.83417 0.83437 0.83442 0.83442 

13 0.8343 0.83463 0.8347 0.83471 

15 0.83424 0.83479 0.8349 0.83493 

17 0.83394 0.83486 0.83505 0.83509 

19 0.83325 0.83483 0.83515 0.83521 

21 0.83192 0.83465 0.8352 0.83531 

23 0.82945 0.83424 0.83518 0.83538 
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Table  2: Effect of the N-policy level on the fraction of time server is busy with external customers 

𝑘 = 20, 𝜆 = 4, 𝜆̅ = 3.2, 𝜇 = 3.2, �̅� = 8, 𝜃 = 5 

  

 N  n=40  n=45  n=50  n=55   n=60  

1 0.09635 0.09628 0.09626 0.09626 0.09626 

3 0.10287 0.10276 0.10273 0.10273 0.10273 

5 0.10523 0.10506 0.10503 0.10502 0.10502 

7 0.10644 0.10618 0.10612 0.10611 0.10611 

9 0.10725 0.10685 0.10676 0.10675 0.10674 

11 0.10798 0.10732 0.10719 0.10716 0.10716 

13 0.10879 0.10772 0.1075 0.10746 0.10745 

15 0.10991 0.10811 0.10775 0.10768 0.10766 

17 0.11461 0.10858 0.10798 0.10786 0.10783 

19 0.11983 0.10925 0.10822 0.10801 0.10797 

21  0.1103 0.10851 0.10815 0.10808 

23  0.11208 0.10893 0.10831 0.10818 

25  0.11522 0.10959 0.1085 0.10828 

27   0.1107 0.10877 0.10839 

29   0.11265 0.1092 0.10852 

31   0.11615 0.10991 0.1087 

33    0.11116 0.10898 

35    0.1134 0.10945 

37     0.11026 

39     0.11172 

41     0.11435 
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Table  3: Variation in the system reliability with increase in 𝑁 𝑘 = 20, 𝜆 = 4, 𝜆̅ = 3.2, 𝜇 = 5.5, �̅� = 8, 
𝜃 = 5 

  

 N  n=40  n=45  n=50   n=55  n=60  

1 0.99963 0.99993 0.99998 1 1 

3 0.99948 0.99989 0.99998 1 1 

5 0.99924 0.99985 0.99997 0.99999 1 

7 0.99885 0.99977 0.99995 0.99999 1 

9 0.9982 0.99964 0.99993 0.99998 1 

11 0.99712 0.99942 0.99988 0.99998 1 

13 0.9953 0.99905 0.99981 0.99996 0.99999 

15 0.99217 0.99843 0.99968 0.99994 0.99999 

17 0.9769 0.99736 0.99947 0.99989 0.99998 

19  0.9955 0.99909 0.99982 0.99996 

21  0.99223 0.99844 0.99968 0.99994 

23  0.98638 0.9973 0.99945 0.99989 

25  0.97578 0.99528 0.99905 0.99981 

27   0.99165 0.99833 0.99966 

29   0.98509 0.99705 0.9994 

31   0.97315 0.99475 0.99894 

33    0.99058 0.99812 

35    0.98297 0.99663 

37     0.99393 

39     0.989 
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Table  4: Analysis of a cost function 𝑛 = 50, �̅� = 3.2, 𝜇 = 5.5, �̅� = 8, 𝐶1 = 2000, 𝐶2 = 1000, 𝐶3 =

800, 𝐶4 = 1000, 𝐶5 = 10, 𝐶6 = 200, 𝜃 = 5 

  

 N  𝜆 = 4  𝜆 = 4.5  𝜆 = 5 

1 6235.23047 6440.20947 6671.65918 

2 6137.3877 6343.84668 6576.75928 

3 6109.98389 6317.7207 6551.88965 

4 6102.75391 6311.82178 6547.30566 

5 6102.27734 6312.30322 6548.71436 

6 6104.71094 6315.28613 6552.17676 

7 6108.70947 6319.521 6556.51709 

8 6113.67188 6324.50439 6561.33057 

9 6119.2749 6329.98047 6566.44873 

10 6125.32666 6335.80176 6571.76465 

11 6131.69824 6341.87891 6577.22021 

12 6138.31006 6348.14307 6582.78711 

13 6145.10449 6354.55762 6588.43018 

14 6152.04492 6361.09961 6594.13086 

15 6159.104 6367.74854 6599.88428 

17 6173.53564 6381.33594 6611.51611 

19 6188.38672 6395.33936 6623.31689 

21 6203.78809 6409.88037 6635.37354 

23 6220.13477 6417.44531 6647.98535 

25 6238.73828 6443.09375 6662.8042 

27 6266.49854 6471.54688 6690.0752 

29 6356.05566 6571.71631 6799.88672 

31 7073.24658 7340.11523 7618.78223 
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