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Abstract 

 

The properties of x-Exponantial Bathtub shaped failure rate model are discussed. Estimation 

process and failure rate behavior is explained.    
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I. Introduction 
 

There are many distributions for modeling lifetime data. Among the known parametric models, 

the most popular are the Lindley, Gamma, log-Normal, Exponentiated Exponential and the 

Weibull distributions. These five  distributions are suffer from a number of drawbacks. None of 

them exhibit bathtub shape for their failure rate functions. The  distributions exhibit only 

monotonically increasing, montonically decreasing or constant failure rates. Most real life system 

exhibit bathtub shapes for their failure rate functions. Generalized Lindley (GL), Generalized 

Gamma (GG) and Exponentiated Weibull (EW) distributions are proposed for modeling lifetime 

data having bathtub shaped failue rate model. In this paper we consider  a simple model but 

exhibiting bathtub shaped failure rate, x-Exponential distribution, and discuss the failure rate 

behavior of these distributions.  The x-Exponential distribution  has properties similar to 

Generalized Lindley, but it is more simple and can be used instead of Generalized Lindley, 

Generalized Gamma and Exponentiated Weibull. The inference procedure also become simple 

than these distributions. 

 Section II, discussed x-Exponential distribution and their properties, Generalized Lindley 

distribution, Generalised Weibull distribution, discussed Generalized Gamma distribution  and 

conclusions are given at the final section. 

 

II. Bathtub shaped failure rate models 

 
I. X-Exponential Distribution 

 

In this section, consider a simplified form of distribution function, 

                        𝐹(𝑥) = (1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0.                  (1) 

It is an alternative model GL, GG, EW distributions. A life time random variable X has                                                          

X-Exponential distribution if its cumulative distribution function is (1), [2].  

 Clearly F(0)=0, F(∞) = 1, F is non-decreasing and right continuous. More over F is 

absolutely continuous. 

The probability density function (pdf) of a x-Exponential random variable X, with scale parameter 

λ  is given by  
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𝑓(𝑥) = 𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0. 

It is positively skewed distribution. Failure rate function of x-Exponential distribution is 

ℎ(𝑥) =
𝛼𝑒^(−𝜆𝑥) (𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))^(𝛼 − 1)

1 − (1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼
, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0. 

 

 
 

Figure 1. Failure rate function of x-Exponential distribution for 𝛂=0.01 and  λ= 6 

 

 
 

Figure 2. Failure rate function of x-Exponential distribution for 𝛂=0.0001 and  λ= 6 
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Figure 3. Failure rate function of x-Exponential distribution for 𝛂=0.001 and  λ= 10 

 
 

 

Figure 4. Failure rate function of x-Exponential distribution for 𝛂=0.000000001 and  λ= 9 

 

From Figure 1,2,3 and 4, the shape of the hazard rate function appears monotonically decreasing or 

to initially decrease and then increase , a bathtub shape if α < 1 ; the shape appears monotonically 

increasing if α ≥ 1. So the proposed distribution allows for monotonically decreasing, 

monotonically increasing and bathtub shapes for its hazard rate function. As 𝛂 decreases from 1 to 

0, the graph shift above whereas if λ increases from 1 to ∞ the shape of the graph concentrate near 

to 0. It is the distribution of the failure of a series system with independent components. The 

equation (1) has two parameters, α and λ just like the Gamma, log Normal, Weibull and 

Exponentiated Exponential distributions. 

 

Moments  

Calculating moments of X requires the following lemma.  

Lemma 2.1: For 𝛂>0, λ>0, x>0, K(𝛂,λ,c)=∫ 𝑥𝑐 [1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

𝑒−𝜆𝑥𝑑𝑥
∞

0
, Then, 

K(α, λ, c) = ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗  [∫ 𝑥2𝑗+𝑐

∞

0

 𝑒−𝑖𝜆𝑥𝑒−𝜆𝑥𝑑𝑥  

𝑖

𝑗=0

] 

 

Proof: 
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We know (1 − 𝑧)𝛼−1 = ∑ 𝐶𝑖
𝛼−1(−1)𝑖  𝑧𝑖𝛼−1

𝑖=0 . Therefore 

                          K(𝛂,λ,c)=∫ 𝑥𝑐  [1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

𝑒−𝜆𝑥𝑑𝑥
∞

0
 

= ∫ 𝑥𝑐  ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

[(1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝑖
 𝑒−𝜆𝑥𝑑𝑥

∞

0

 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

∫ 𝑥𝑐
∞

0

    [(1 + 𝜆𝑥2)𝑒−𝜆𝑥]

𝑖

 𝑒−𝜆𝑥𝑑𝑥 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

∫ 𝑥𝑐
∞

0

    [(1 + 𝜆𝑥2)]𝑖  𝑒−𝑖𝜆𝑥𝑒−𝜆𝑥𝑑𝑥 

                                              = ∑ 𝐶𝑖
𝛼−1(−1)𝑖𝛼−1

𝑖=0 ∫ 𝑥𝑐∞

0
    ∑ 𝐶𝑗

𝑖(𝜆𝑥2)𝑗𝑖
𝑗=0  𝑒−(𝑖+1)𝜆𝑥 𝑑𝑥 

 

                                             = ∑ 𝐶𝑖
𝛼−1(−1)𝑖𝛼−1

𝑖=0   ∑ 𝐶𝑗
𝑖𝜆𝑗 ∫ 𝑥𝑐∞

0
  (𝑥2)𝑗𝑖

𝑗=0 𝑒−(𝑖+1)𝜆𝑥𝑑𝑥 

 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗 ∫ 𝑥𝑐

∞

0

𝑥2𝑗 

𝑖

𝑗=0

𝑒−(𝑖+1)𝜆𝑥𝑑𝑥 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗 ∫ 𝑥2𝑗+𝑐

∞

0

  

𝑖

𝑗=0

𝑒−(𝑖+1)𝜆𝑥𝑑𝑥 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗  [

𝛤(2𝑗 + 𝑐 + 1)

((𝑖 + 1)𝜆)2𝑗+𝑐+1
  

𝑖

𝑗=0

] 

 

K(α, λ, c) = ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗  [

𝛤(2𝑗 + 𝑐 + 1)

((𝑖 + 1)𝜆)𝑗+𝑐+1
  

𝑖

𝑗=0

] 

It follows that 

𝐸(𝑋) = ∫ 𝑥𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1𝑑𝑥
∞

0

 

𝐸(𝑋𝑛) = ∫ 𝑥𝑛𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1𝑑𝑥
∞

0

 

𝐸(𝑋1) = 𝛼𝜆2K(α, λ, 3) − 2αλK(α, λ, 2) + 𝛂𝛌K(α, λ, 1) 

The moments are  

𝐸(𝑋𝑛) = 𝛼𝜆2K(α, λ, n + 2) − 2𝛼𝜆 K(α, λ, n + 1) + 𝛂𝛌K(α, λ, n), n=1,2,3,... 

 

Moment Generating Function 

𝑀𝑋(𝑡) = ∫ 𝑒𝑡𝑥  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−𝜆𝑥𝑑𝑥
∞

0

 

 

𝑀𝑋(𝑡) = ∫  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

 

 𝑀𝑋(𝑡) = 𝛼𝜆2K(α, λ − t, 3) − 2𝛼𝜆 K(α, λ − t, 2) + 𝛂𝛌K(α, λ − t, 1) 

 

 

Characteristic Function 

 𝛷𝑋(𝑡) = ∫ 𝑒𝑖𝑡𝑥  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−𝜆𝑥𝑑𝑥
∞

0

 

 

𝛷𝑋(𝑡) = ∫  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−(𝜆−𝑖𝑡)𝑥𝑑𝑥
∞

0
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𝛷𝑋(𝑡) =  𝛼𝜆2K(α, λ − it, 3) − 2𝛼𝜆 K(α, λ − it, 2) + 𝛂𝛌K(α, λ − it, 1) 

Shape of the density function 

Consider probability density function, 

𝑓(𝑥) = 𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0 

 

𝑙𝑜𝑔𝑓(𝑥) = log(𝛼) − 𝜆𝑥 + 𝑙𝑜𝑔 (𝜆2𝑥2 − 2𝜆𝑥 + 𝜆) +  (𝛼 − 1) 𝑙𝑜𝑔(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥)) , 𝑥, 𝜆, 𝛼 > 0 
d

dx
𝑙𝑜𝑔 𝑓(𝑥) = −𝜆 +

(2𝜆2𝑥 − 2𝜆)

(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)
+   

(𝛼 − 1)

(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))
((1 + 𝜆𝑥2)(−𝜆)𝑒−𝜆𝑥 + 2𝜆𝑥𝑒−𝜆𝑥  )  

d2

dx2 𝑙𝑜𝑔 𝑓(𝑥) = −
1

𝑥2 +   
(𝛼−1)

(1− (1+𝜆𝑥2)𝑒−𝜆𝑥 )1 ((−𝜆)((1 + 𝜆𝑥2)(−𝜆)𝑒−𝜆𝑥 + 2𝜆𝑥𝑒−𝜆𝑥 ) −

(𝜆2𝑥2−2𝜆𝑥)2𝑒−2𝜆𝑥

(1− (1+𝜆𝑥2)𝑒−𝜆𝑥 )2 ) , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0. 

Here f(x) first increases and then decreases, it is unimodel. 

 

Mean Deviation about Mean 

The amount of scatter in a population is evidently measured to some extent by the totality of  

deviations from the mean and median. Mean deviation about the mean defined by 

 

MD(Mean)=2µ𝐹(µ) − 2µ + 2 ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

µ
 

      𝑀𝐷(𝑀𝑒𝑎𝑛) = 2µ𝐹(µ) − 2µ + 2(𝛼𝜆2L(α, λ, 3, µ) − 2𝛼𝜆 L(α, λ, 2, µ) + 𝛂𝛌L(α, λ, 1, µ) 

where   𝐿(𝛼, 𝜆, 𝑐, µ) = ∫ 𝑥𝑐  [1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−𝜆𝑥𝑑𝑥
∞

µ
 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖𝛼−1

𝑖=0   ∑ 𝐶𝑗
𝑖𝜆𝑗  [∫ 𝑥2𝑗+𝑐+1𝑒−(𝑗+1)𝜆𝑥∞

µ
𝑑𝑥𝑖

𝑗=0 ]. 

Mean deviation about the Median defined by 

 

MD(Median)=−𝑀 + 2 ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

𝑀
 

      𝑀𝐷(𝑀𝑒𝑎𝑛) = −𝑀 + 2(𝛼𝜆2L(α, λ, 3, M) − 2𝛼𝜆 L(α, λ, 2, M) + 𝛂𝛌L(α, λ, 1, M) 

Estimation 

Here, we consider estimation by the methods of moments and maximum likelihood. We also 

consider estimation issues for censored data. Let 𝑋1, 𝑋2, … , 𝑋𝑛 are random sample taken from                    

x-Exponential distribution.  Let 𝑚1 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1    𝑚2 =

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 . Equating sample moments to 

population moments we get moment estimators for parameters. 

 
 𝑚1 = 𝛼𝜆2K(α, λ, 3) − 2αλK(α, λ, 2) + 𝛂𝛌K(α, λ, 1) 
𝑚2 = 𝛼𝜆2K(α, λ, 4) − 2αλK(α, λ, 3) + 𝛂𝛌K(α, λ, 2) 

The solution of these equations are moment estimators. 

To find maximum likelihood estimator, consider likelihood function as, 

𝐿(𝛼, 𝜆) = ∏ 𝑓(𝑥𝑖)
𝑛

𝑖=1
 

𝐿(𝛼, 𝜆) = ∏ 𝛼𝑒−𝜆𝑥𝑖(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)(1 − (1 + 𝜆𝑥𝑖

2)𝑒^(−𝜆𝑥𝑖))𝛼−1
𝑛

𝑖=1
 

𝐿(𝛼, 𝜆) = (𝛼)𝑛 𝑒−𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1 ∏(𝜆2𝑥𝑖

2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

∏   (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))𝛼−1

𝑛

𝑖=1
 

 

𝑙𝑜𝑔𝐿(𝛼, 𝜆) = 𝑛𝑙𝑜𝑔 (𝛼) − 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑  𝑙𝑜𝑔(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

+ ∑  (𝛼 − 1)𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1

 

= 𝑛𝑙𝑜𝑔 (𝛼) − 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑  𝑙𝑜𝑔(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆) +

𝑛

𝑖=1

(𝛼 − 1) ∑  𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1
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∂

∂α
 𝑙𝑜𝑔 𝐿(𝛼, 𝜆) =

𝑛

𝛼
+ ∑  𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖

2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1

 

𝛼̂ = −1/𝑛 ∑  𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1

 

∂

∂λ
  𝑙𝑜𝑔 𝐿(𝛼, 𝜆) =  − ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑
(2𝜆2𝑥𝑖 − 2𝑥𝑖)

(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

+ (𝛼 − 1) ∑  
1

(1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

 ((1 + 𝜆𝑥𝑖
2)(−𝑥𝑖)𝑒−𝜆𝑥𝑖 + 𝑥𝑖

2𝑒−𝜆𝑥𝑖)  

𝑛

𝑖=1

 

 

 

The MLE of λ will be solution of the following non-linear equation. 

∑ 𝑥𝑖

𝑛

𝑖=1

= ∑
(2𝜆2𝑥𝑖 − 2𝑥𝑖)

(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

+ (𝛼 − 1) ∑  
1

(1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

 ((1 + 𝜆𝑥𝑖
2)(−𝑥𝑖)𝑒−𝜆𝑥𝑖 + 𝑥𝑖

2𝑒−𝜆𝑥𝑖)  

𝑛

𝑖=1

 

 

II. Generalized Lindley Distribution 

 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  are independent random variables distributed according to Lindley 

distribution and  𝑇 = min (𝑋1, 𝑋2, … , 𝑋𝑛)  represent the failure time of the components of a series 

system, assumed to be independent, [2]. Then the probability that the system will fail before time x 

is given by 
𝐹(𝑥) = [1 −  (1 + 𝜆 + 𝜆𝑥)/(1 + 𝜆) 𝑒^(−𝜆𝑥)]𝑛, 𝑥 > 0, 𝜆 > 0. 

It is the distribution of the failure of a series system with independent components. The 

cumulative distribution function and pdf of Generalized Lindley distribution are 
𝐹(𝑥) = [1 − (1 + 𝜆 + 𝜆𝑥)/(1 + 𝜆) 𝑒^(−𝜆𝑥)]𝛼 , 𝑥 > 0, 𝜆 > 0, 𝜶 > 0 

𝑓(𝑥) =
𝛼𝜆(1 + 𝑥)

1 + 𝜆
[1 −  (1 + 𝜆 + 𝜆𝑥)/(1 + 𝜆) 𝑒^(−𝜆𝑥)]𝛼−1𝑒−𝜆𝑥 , 𝑥 > 0, 𝜆 > 0, 𝜶 > 0 

The equation has two parameters, λ and 𝛂 just like the Gamma, log Normal, Weibull and 

Exponentiated Exponential distribution.  For   n= 1 it  reduces to Lindley  distribution. 

The failure rate function is 

ℎ(𝑥) =

𝛼𝜆(1 + 𝑥)
1 + 𝜆

[1 −
1 + 𝜆 + 𝜆𝑥

1 + 𝜆
𝑒−𝜆𝑥]

𝛼−1

𝑒−𝜆𝑥

1 − [1 −
1 + 𝜆 + 𝜆𝑥

1 + 𝜆
𝑒−𝜆𝑥]

𝛼 ,  

𝑥 > 0, 𝜆 > 0, 𝜶 > 0 

The shape of the failure rate function appears monotonically decreasing or to initially decrease and 

then increase, a bathtub shape if 𝛂< 1, the shape appears monotonically increasing if 𝛂≥1. So the 

Generalized Lindley distribution allows for monotonically decreasing, monotonically increasing 

and bathtub shapes for its failure rate function. 
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Figure 5. Failure rate function of Generalized Lindley distribution 

 

III.  Exponentiated Weibull Distribution 

 

Exponentiated Weibull (EW) distribution has a scale parameter and two shape parameters, [4]. The 

Weibull family and the Exponentiated Exponential (EE) family are found to be particular cases of 

this family. The cumulative distribution function of the EW distribution is given by 

𝐹(𝑥) = (1 − 𝑒
−(

𝑥
𝛽

)
𝛼

)

𝜆

, 𝜆 > 0, 𝜶 > 0, 𝛽 > 0. 

Here λ and 𝛂 denote the shape parameters and  β  is the scale parameter. For When  λ= 1, the 

distribution   reduces to the Weibull Distribution with parameters.  When β = 1, 𝛂=1 it represents 

the EE family. Thus, EW is a generalization of EE family as well as the Weibull family. 

Then the corresponding density function is 

𝑓(𝑥) = (
𝛼𝜃

𝜎
) [1 − exp {−(𝑥/𝜎)𝛼}]𝜃−1exp {−(

𝑥

𝜎
)𝛼}(

𝑥

𝜎
)𝛼−1, 𝑥 ≥ 0. 

The failure rate function is  

ℎ(𝑥) =
(

𝛼𝜃
𝜎

) [1 − 𝑒𝑥 𝑝 {− (〖
𝑥
𝜎

)〗𝛼}]
𝜃−1

𝑒𝑥 𝑝 {− (
𝑥
𝜎

)
𝛼

} (
𝑥
𝜎

)
𝛼−1

1 − [1 − 𝑒𝑥 𝑝 {− (〖
𝑥
𝜎

)〗𝛼}]
𝜃

, 𝑥 ≥ 0, 𝛼, 𝜃, 𝜎 > 0. 

 

 
Figure 6: Plot of the failure rate function of EW distribution 
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 The EW distribution is constant for 𝛂= 1 and  = 1.  The EW distribution is IFR for 𝛂 > 1 and 𝛉≥1.  

The EW distribution is DFR for 𝛂< 1 and 𝛉≤1.  The EW distribution is BT(Bathtub) for 𝛂> 1 and 𝛉< 

1.  The EW distribution is UBT (Upside down Bathtub) for 𝛂 < 1 and 𝛉 > 1. 

 

IV.  Exponentiated Gamma Distribution 

 

The Gamma distribution is the most popular model for analyzing skewed data and hydrological 

processes, [3]. This model is flexible enough to accommodate both monotonic as well as non-

monotonic failure rates. The Exponentiated Gamma (EG) distribution is one of the important 

families of distributions in lifetime tests. The EG distribution has been introduced  as an alternative 

to Gamma and Weibull distributions.  

The Cumulative Distribution function of the Exponentiated Gamma  distribution is given by 

𝐺(𝑥) = [1 − exp{−𝜆𝑥} (1 + 𝜆𝑥)]𝜃 , 𝑥 > 0, 𝜆, 𝜽 > 0. 

where  λ and  𝛉 are scale and shape parameters respectively.  Then the corresponding probability 

density function (pdf) is given by 

𝑔(𝑥) = 𝜃𝜆2𝑥 exp {−𝜆𝑥}([1 − exp{−𝜆𝑥} (1 + 𝜆𝑥)]𝜃−1, 𝑥 > 0, 𝜆, 𝜽 > 0. 

The failure rate function is 

ℎ(𝑥) =
𝜃𝜆^2 𝑥 𝑒𝑥𝑝 {−𝜆𝑥}([1 − 𝑒𝑥𝑝 {−𝜆𝑥} (1 + 𝜆𝑥) ]^(𝜃 − 1)

1 − [1 − 𝑒𝑥𝑝 {−𝜆𝑥} (1 + 𝜆𝑥) ]^𝜃
, 𝑥 > 0, 𝜆, 𝜽 > 0. 

Then the other advantage is that it has various shapes of failure function for different values of  . It 

has increasing failure function when 𝛉≥ 1/2 and its failure function takes Bath-tub shape for 𝛉<1/2. 

 

 
 

Figure 7: Failure rate function of EG distribution. 

 

 

III. Generalized X-Exponential Class Distribution 
 

Consider the Distribution function, 

𝐹(𝑥) = (1 − ( 𝛽 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0, 𝛽 > 0. 

 

The failure rate function, provided various Bathtub shaped models as see in Figure 8,9,10. For 

𝛂=0.001, λ=6 and β=5, the failure rate function is  

ℎ(𝑥) =
𝛼𝑒^(−𝜆𝑥) (𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (𝛽 + 𝜆𝑥2)𝑒^(−𝜆𝑥))^(𝛼 − 1)

1 − (1 − (𝛽 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼
, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0, 𝛽 > 0. 
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Figure 8. Generalized X-Exponential failure rate function 𝛂=0.01, λ=9 and β=5 

 
Figure 9. Generalized X-Exponential failure rate function 𝛂=0.01, λ=9 and β=50 

 
Figure 10. Generalized X-Exponential failure rate function 𝛂=0.001, λ=5 and β=50 
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Upside down Bathtub shaped failure rate  viewed for 𝐹(𝑥) = (1 − ( 𝛽 + 𝜆𝑥 )𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 >

0, 𝛼 > 0, 𝛽 > 0 𝛂=0.001, λ=6 and β<1, see figure 11. 

 

 
Figure 11. Generalized X-Exponential failure rate function 𝛂=0.001, λ=6 and β=0.1 

 

All the procedure for finding moments, moment generating function, characteristic function, and 

estimation are same as that of X-Exponential distribution. If we insert one more parameter 𝛉 in the 

model still we get beautiful Bathtub and Upside down bathtub shapes for its failure rate functions 

as seen below. For 𝐹(𝑥) = (1 − ( 𝛽 + 𝜆𝑥 + 𝜃𝑥2)𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0. 

 

 
Figure 11. Generalized X-Exponential failure rate function 𝛂=0.001, λ=6, β=0.1, 𝛉=6. 

 

Generalized Lindely distribution is a special case of Generalized X-Exponential distribution. 

 

IV. Conclusions 
 

There are many distributions in reliability which exhibit Bathtub shaped failure rate model, but 

most of them are complicated in finding the moments, reliability etc. Moreover the increased 

number of parameters make complication and difficulty in estimation process. The proposed 

model is similar to Generalized Lindley, so all the computational procedures are like GL 

distribution.  The complication in using GL,GG,GE distributions is reduced in the proposed model. 

Moreover MLE of 𝛂 is readily available and that of λ can be computed numerically. Generalized X-
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Exponential distribution provided various Bathtub shaped and Upside down Bathtub shaped 

failure rates. 
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