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Abstract 
 

We study symmetric queueing networks with moving servers and FIFO service discipline. 

The mean-field limit dynamics demonstrates unexpected behavior which we attribute to the 

metastability phenomenon. Large enough finite symmetric networks on regular graphs such as 

cycles are proved to be transient for arbitrary small inflow rates. However, the limiting non-linear 

Markov process possesses at least two stationary solutions. The proof of transience is based on 

martingale technique.1  

 

Keywords: ad hoc network, transience, metastability, mean field 

 

I  Introduction 
 

In this paper we consider networks with moving servers. The setting is the following: the 

network is living on a finite or countable graph 𝐺 = (𝑉, 𝐸) , at every node 𝑣 ∈ 𝑉 of which one 

server 𝑠 is located at any time. For every server, there are two incoming flows of customers: the 

exogenous customers, who come from the outside, and the transit customers, who come from 

some other servers. Every customer 𝑐 coming into the network (through some initial server 𝑠(𝑐)) is 

assigned a destination 𝐷(𝑐) ∈ 𝑉 according to some randomized rule. If a customer 𝑐 is served by a 

server located at 𝑣 ∈ 𝑉, then it jumps to a server at the node 𝑣′ ∈ 𝑉, such that 

dist(𝑣′ , 𝐷(𝑐)) =dist(𝑣, 𝐷(𝑐)) − 1, thereby coming closer to its destination. If there are several such 

𝑣′, one is chosen uniformly. There the customer 𝑐 waits in the FIFO queue until his service starts. If 

a customer 𝑐 completes his service by the server located at 𝑣, and it so happens that dist(𝑣, 𝐷(𝑐)) is 

1 or 0, the customer is declared to have reached its destination and leaves the network. 

The important feature of our model is that the servers of our network are themselves 

moving over the graph 𝐺. Namely, we suppose that any two servers 𝑠, 𝑠′ located at adjacent nodes 

of 𝐺 exchange their positions as the alarm clock associated to the edge rings. The time intervals 

between the rings of each alarm clock are i.i.d. exponential with rate 𝛽. When this happens, each of 

the two servers takes all the customer, waiting in its buffer or being served, to the new location. In 

particular, it can happen that after such a swap, the distance between the location of the customer 𝑐 

and its destination 𝐷(𝑐) increases (at most by one). We assume that the service times of all 

customers at all servers are i.i.d. exponential with rate 1. 

The motivation for this model comes from opportunistic multihop routing in mobile ad 

hoc wireless networks, see [5, 9, 7, 1, 3, 4]. Within this context, the servers represent mobile 

wireless devices. Each device moves randomly on the graph 𝐺 which represents the phase space of 

device locations. The random swaps represent the random mobile motions on this phase space. 

                                                           
1 The authors gratefully acknowledge the support of grants 16-29-09497, 14-01-00379, 14-01-00319, 13-01-12410 by Russian 
Foundation for Sciences. 
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Each node 𝑣 ∈ 𝐺 of the phase space generates an exogenous traffic (packetized information) with 

rate 𝜆𝑣 corresponding to the exogenous customers alluded to above. Each such packet has some 

destination, which is some node of 𝐺. In opportunistic routing, each wireless device adopts the 

following greedy routing policy: any given packet scheduled for wireless transmission is sent to 

the neighboring node which is the closest to the packet destination. The neighbor condition 

represents in a simple way the wireless constraints. It implies a multihop route in general. This 

routing policy is the most natural one to use in view of the lack of knowledge of future random 

swaps. 

In this paper we restrict consideration to cyclic graphs 𝐶𝐾 = ℤ1/𝐾ℤ1 and their  mean-field 

versions, see below. Our main results, however, can be easily extended to much wider classes of 

networks. 

The interest in mean-field versions is both of mathematical and practical nature. The 

mathematical interest of the mean-field version of a network is well documented. There are also 

practical motivations for analyzing such networks: their properties are crucial for understanding 

the long-time behavior of finite size networks. 

The results we obtain look somewhat surprising. First of all, we find that for finite graphs 

the network is transient once the diameter of the graph is large enough. For example, consider the 

network on the graph 𝐶𝐾 with Poisson inflows with rate 𝜆 > 0 at all nodes, exponential service 

times with rate 1, FIFO discipline and node swap rate 𝛽 > 0. Then for all 𝐾 ≥ 𝐾(𝜆, 𝛽) the queues at 

all servers tend to infinity as time grows. In words this means that the network is unstable for any 

𝜆, however small it is – once the network is large enough. 

The same picture takes place for mean-field graphs 𝐶𝐾
𝑁 with 𝑁 finite. They consist of 𝑁 

“parallel" copies of 𝐶𝐾 such that two nodes in different copies are adjacent if and only if the 

projections of these nodes to a single copy of 𝐶𝐾 are adjacent. However, the limiting picture, for 

𝑁 = ∞, is different: the corresponding NLM process on 𝐶𝐾 has stationary distributions, provided 

0 < 𝜆 ≤ 𝜆𝑐𝑟(𝐾, 𝛽), with 𝜆𝑐𝑟(𝐾, 𝛽) < ∞ for all 𝐾 ≤ ∞. Moreover, for all 𝜆 < 𝜆𝑐𝑟 there are at least two 

different stationary distributions, see Sect. 4 for more details. We demonstrate results of numerical 

modeling that suggest existence of three equilibria in some cases. 

On the other hand, the general convergence result of [2] claims the convergence of the 

networks on 𝐶𝐾
𝑁 to the one on 𝐶𝐾

∞ as 𝑁 → ∞, which seem to contradict to the statements above. The 

explanation of this ‘contradiction’ is that the convergence in [2] holds only on finite time intervals 
[0, 𝑇]. 

That is, for any 𝑇 there exists a value 𝑁 = 𝑁(𝑇), such that the network on 𝐶𝐾
𝑁 is close to the 

limiting network on 𝐶𝐾
∞ for all 𝑡 ∈ [0, 𝑇], provided 𝑁 ≥ 𝑁(𝑇). Putting it differently, the 𝐶𝐾

𝑁 network 

behaves like the limiting 𝐶𝐾
∞ network – and might even look as a stationary process – for quite a 

long time, depending on 𝑁, but eventually it departs from such regime and gets into the divergent 

one. Clearly, the picture we have is an instance of metastable behavior. We believe that more can 

be said about the metastable phase of our networks, including the formation of critical regions of 

servers with oversized queues, in the spirit of statistical mechanics, see e.g. [8], but we will not 

elaborate here on that topic. 

 

II  Finite networks 

2.1  The 𝑪𝑲 network 

 

The only case of a finite network we study here is the cyclic graph 𝐶𝐾 = ℤ1/𝐾ℤ1. As was 

mentioned, our main results proved for this graph are easily extendable to much wider classes of 

networks. We use notation 𝐶𝐾 = (𝑉𝐾 , 𝐸), where 𝑉𝐾 = {1, … , 𝐾} and 𝐸 = {(1,2), … , (𝐾 − 1, 𝐾), (𝐾, 1)}. 

For simplicity we take 𝐾 to be odd. 
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We study a continuous-time Markov process on a countable state 𝑄, related to the graph 

𝐶𝐾. Namely,  
 𝑄 = {𝑞𝑣: 𝑣 ∈ 𝑉𝐾} = (𝑉𝐾

∗)𝑉𝐾 , 

where 𝑉𝐾
∗ is the set of all finite words in the alphabet 𝑉𝐾, including the empty word ∅. 

The queue 𝑞𝑣 ∈ 𝑉𝐾
∗ at a server located at 𝑣 ∈ 𝑉𝐾 consists of a finite (≥ 0) number of 

customers which are ordered by their arrival times (FIFO service discipline) and are marked by 

their destinations which are vertices of the graph 𝐶𝐾. Since the destination of the customer is its 

only relevant feature, in our notations we sometime will identify the customers with their 

destinations. 

 

2.1.1  Dynamics 

 

Let us introduce the continuous-time Markov process ℳ ≪ ℳ(𝑡) with the state space 𝑄. 

Let ℎ𝑣 be the length of the queue 𝑞𝑣 at node 𝑣. We have 𝑞𝑣 = {𝑞1
𝑣, … , 𝑞ℎ𝑣

𝑣 } if ℎ𝑣 > 0 and 𝑞𝑣 = ∅ if 

ℎ𝑣 = 0. 

The following events may happen in the process ℳ. 

An arrival event at node 𝑣 changes the queue at this node. If the newly arrived customer 

has for its destination the node 𝑤, then the queue changes from 𝑞𝑣 to 𝑞𝑣 ⊕ 𝑤, that is, to 

{𝑞1
𝑣 , … , 𝑞ℎ𝑣

𝑣 , 𝑤} if ℎ𝑣 > 0 or from ∅ to {𝑤} if ℎ𝑣 = 0. 

In this paper we consider the situation where each exogenous customer acquires its 

destination at the moment of first arrival to the system, in a translation-invariant manner: the 

probability to get destination 𝑤 while arriving to our network at the node 𝑣 depends only on 𝑤 − 𝑣 

mod 𝐾. The case 𝑤 = 𝑣 is not excluded. We thus have the rates 𝜆𝑣,𝑤, 𝑣, 𝑤 ∈ 𝐶𝐾 , and the jump from 

𝑞𝑣 to 𝑞𝑣 ⊕ 𝑤, corresponding to the arrival to 𝑣 of the exogenous customer with final destination 𝑤 

happens with the rate 𝜆𝑣,𝑤. We introduce the rate 𝜆 of exogenous customers as  

 𝜆 = ∑𝑤 𝜆𝑣,𝑤 (1) 

 (according to our definitions it does not depend on 𝑣). 

Each node is equipped with an independent Poisson clock with parameter 1 (the service 

rate). As it rings, the service of the customer 𝑞1
𝑣 is over, provided ℎ𝑣 > 0; nothing happens if ℎ𝑣 = 0. 

In the former case the queue at node 𝑣 changes from 𝑞𝑣 to  

 𝑞−
𝑣 = {𝑞2

𝑣, … , 𝑞ℎ𝑣

𝑣 } 

(we also define ∅− = ∅) and immediately one of the two things happen: either the customer 𝑞1
𝑣 

leaves the network, or it jumps to one of the two neighboring queues, 𝑞𝑣±1. The customer 𝑞1
𝑣 leaves 

the network only if its current position, 𝑣, is at distance ≤ 1 from its destination, i.e. iff 𝑞1
𝑣 = 𝑣 − 1, 

𝑣, or 𝑣 + 1. (This is just one of many possible choices we make for simplicity.) Otherwise it jumps 

to one of the neighboring vertices 𝑤 = 𝑣 ± 1, which is the closest to its destination, i.e. to the one 

which satisfy: dist(𝑤, 𝑞1
𝑣) = dist(𝑣, 𝑞1

𝑣) − 1 (there is a unique such 𝑤 ∈ 𝑉𝐾  since we assume 𝐾 to be 

odd. The case of even 𝐾 requires small changes). 

The last type of event is the swap of two neighboring servers. Namely, there is an 

independent Poisson clock at each edge 𝑢𝑣 ∈ 𝐸 of 𝐶𝐾 , with rate 𝛽 > 0. As it rings, the queues at the 

vertices 𝑢 and 𝑣 swap their positions, that is,  
 𝑞𝑣(𝑡+) = 𝑞𝑢(𝑡),        𝑞𝑢(𝑡+) = 𝑞𝑣(𝑡). 

 

2.1.2  Submartingales 

 

Here we introduce some martingale technique that will be used for the proof of transience 

of ℳ for 𝐾 large enough. To begin with, we label the 𝐾 servers by the index 𝑘 = 1, . . . , 𝐾; this 

labelling will not change during the evolution. Together with the original continuous-time Markov 

process ℳ(𝑡) we will consider the embedded discrete time process 𝑀(𝑛), which is the value of 

ℳ(𝑡) immediately after the 𝑛-th event. The state of the process 𝑀 consists of the states of all 𝐾 



 
Baccelli F., Rybko A., Shlosman S., Vladimirov A. 
METASTABILITY OF LARGE NETWORKS WITH MOBILE SERVERS 

RT&A, No4 (43) 
Volume 11, December 2016  

69 

servers and all their locations. 

The general theorem below will be applied to the quantities 𝑋𝑛
𝑘, which are, roughly 

speaking, the lengths of the queues at the servers 𝑘, 𝑘 = 1, . . . , 𝐾, of the process 𝑀(Λ𝑛). The integer 

parameter Λ = Λ(𝐾, 𝜆, 𝛽) will be chosen large enough, so that, in particular, after time Λ, the 

locations of the servers are well mixed on the graph 𝐶𝐾 , and the joint distribution of their location 

on 𝐶𝐾 is close to the uniform one. Moreover, we want the expectations of all the differences 𝑋𝑛+1
𝑘 −

𝑋𝑛
𝑘 to be uniformly positive. 

We start with the following theorem. 

 

Theorem 1  Let ℱ = ℱ𝑛, 𝑛 = 0,1, …, be a filtration and let 𝑋𝑛
𝑘, 𝑘 = 1, … , 𝐾, be a finite family of 

non-negative integer-valued submartingales adapted to ℱ, such that for all 𝑘 = 1, … , 𝐾, and all 𝑛 = 0,1, …, 

the following assumptions hold: 

(1) For some 𝜌 > 0 the inequality  

 𝔼ℱ𝑛
(𝑋𝑛+1

𝑘 − 𝑋𝑛
𝑘) ≥ 𝜌 (2) 

 holds whenever 𝑋𝑛
𝑘 > 0. 

(2) The increments are bounded by a constant 𝑅:  

 |𝑋𝑛+1
𝑘 − 𝑋𝑛

𝑘| ≤ 𝑅    a. s. (3) 

 

Then there exists an initial state (𝑋0
1, … , 𝑋0

𝐾) such that, with positive probability, 𝑋𝑛
𝑘 → +∞ 

as 𝑛 → +∞ for all 𝑘 = 1, … , 𝐾.  

 

In order to prove the theorem we begin with an auxiliary lemma. 

 

Lemma 2  Let 𝒴𝑘 = {𝑌𝑛
𝑘: 𝑛 = 0,1, …, 𝑘 = 1, … , 𝐾, be a finite family of submartingales adapted to 

the same filtration ℱ and such that 𝑌𝑛
𝑘 ∈ 0,1] for all 𝑘, 𝑛. Suppose also that for any 𝜀 > 0 there exists a 𝛿 >

0 such that  

 𝔼(𝑌𝑛+1
𝑘 − 𝑌𝑛

𝑘) > 𝛿    once    0 < 𝑌𝑛
𝑘 < 1 − 𝜀 

for all 𝑘 and 𝑛. Suppose that the initial vector 𝑌0 ∈ 𝐴 = [0,1]𝐾 is deterministic and satisfies the 

condition  

 ∑𝐾
𝑘=1 𝑌0

𝑘 > 𝐾 − 1., (4) 

 Then, with positive probability, 𝑌𝑛
𝑘 → 1 as 𝑛 → ∞, for all 𝑘 = 1, … , 𝐾.  

 

 

Proof. Since all submartingales 𝑌𝑘 are bounded, there is a limit lim𝑛→∞𝑌𝑛
𝑘 almost surely for 

all 𝑘, see the Martingale Convergence Theorem in [6]. The value of this limit vector with 

probability 1 is either the ‘maximal’ vertex (1, … ,1) of the cube 𝐴 or a point 𝑎 on the ‘lower 

boundary’ 𝐵 of 𝐴: 𝐵 = {𝑎: min𝑘=1,…,𝐾𝑎𝑘 = 0}. Indeed, for all other vectors 𝑣 ∈ 𝐴, we have  

 𝔼(𝑌𝑛+1
𝑘 − 𝑌𝑛

𝑘) > 0    if    𝑌𝑛
𝑘 = 𝑣𝑘 = 𝑣,    𝑘 = 1, … , 𝐾. 

Note that  

 ∑𝐾
𝑘=1 𝑏𝑘 ≤ 𝐾 − 1 (5) 

 for any vector 𝑏 ∈ 𝐵. By the submartingale property, we conclude that  

 𝔼 ∑𝐾
𝑘=1 𝑌𝑛

𝑘 ≥ ∑𝐾
𝑘=1 𝑌0

𝑘 > 𝐾 − 1 (6) 

 for all 𝑛 = 1, …. Inequalities (4)-(6) rule out the option that the limit of 𝑌𝑛 belongs to 𝐵 with 

probability 1.  

 

Now, in order to derive Theorem 1 from Lemma 2, we make the following change of 

variables for submartingales 𝑋𝑛
𝑘. For a positive parameter 𝛼 < 1 we define an ‘irregular lattice’ ℎ𝑖 ∈

ℝ+, by  

 ℎ0 = 0,    ℎ𝑖+1 = ℎ𝑖 + 𝛼𝑖,    𝑖 = 0,1, …. 

We get lim𝑖→∞ℎ𝑖 = 𝐻 = (1 − 𝛼)−1 < ∞. Now, for each 𝑘 = 1, … , 𝐾, we define the process 𝑌𝑛
𝑘 on the 

same filtration ℱ by the relation  
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 𝑌𝑛
𝑘(𝜔) = ℎ𝑋𝑛

𝑘(𝜔). 

The processes 𝑌𝑛
𝑘 take values at the ‘lattice’ {ℎ𝑖} for 𝑘 = 1, … , 𝐾. They are still submartingales if 1 −

𝛼 is small enough. Indeed, for such 𝛼 the local structure of the lattice in an 𝑅-neighborhood of a 

given point is modified only slightly. Since |𝑋𝑛+1
𝑘 − 𝑋𝑛

𝑘| ≤ 𝑅 and 𝔼(𝑋𝑛+1
𝑘 − 𝑋𝑛

𝑘) ≥ 𝜌 > 0, we 

conclude that the submartingale property is preserved. 

Then the hypothesis of Lemma 2 holds (up to a constant factor 𝐻) and Theorem 1 is 

proved. 

2.1.3  Transience 

 

Let us return to the process ℳ(𝑡). Suppose that the parameters 𝜆 > 0 and 𝛽 > 0 are fixed. 

We remind the reader that our service rate is set to 1. 

 

Theorem 3  For each 𝜆 > 0 and 𝛽 > 0, there exists 𝐾∗ ∈ ℤ+ such that for any 𝐾 ≥ 𝐾∗ the process 

ℳ is transient.  

 

Proof. First of all, we construct a discrete time Markov chain 𝒟 on the state space 𝑄. To 

define it, we start with the embedded Markov chain 𝑀(𝑛), defined earlier, and then pass to the 

chain 𝑀(Λ𝑛), with the integer Λ to be specified later. To get the chain 𝒟 ≪ {𝒟𝑛}, we modify the 

chain 𝑀(Λ𝑛) as follows: if for some 𝑛 at least one of the 𝐾 queues is at most Λ, we add to all such 

queues extra customers, to make these queues to be of length exactly Λ and then stop the process 

forever. Otherwise we do no changes. The obtained Markov chain is denoted by 𝒟. 

We start the process 𝒟 at some configuration 𝑄0 with all queues longer than Λ. 

We now prove the following statement: if Λ is large enough, the queue length process 𝒟 at 

any given server is a submartingale satisfying the conditions of Theorem 1, with respect to the 

filtration defined by our discrete-time Markov chain 𝑀(𝑛) (the individual queue length processes 

are clearly adapted to this filtration). This completes the proof because of Theorem 1. We need the 

following lemmas. 

 

Lemma 4  (1) Let us consider the following function 𝜋(𝑡) of the process ℳ. At each 𝑡 ≥ 0, 𝜋(𝑡) is 

the current permutation of indices of 𝐾 servers with respect to indices of 𝐾 nodes. Then the evolution of 𝜋(𝑡) 

is a continuous time Markov process, independent of service and arrival processes, and, as 𝑡 → ∞, the 

distribution of 𝜋(𝑡) converges to the uniform one on the set 𝑆𝐾  of all permutations. 

(2) Let us fix index 𝑖 and denote by 𝑣(𝑖, 𝑡) the position of the server 𝑖 at time 𝑡. Then the 

distribution of 𝑣(𝑖, 𝑡) converges to the uniform distribution on {1, … , 𝐾} as 𝑡 → ∞.  

 

Proof. Let us introduce the graph structure on the permutation group 𝑆𝐾 . Namely, we 

consider all the transpositions 𝜏 ∈ 𝑆𝐾  corresponding to the exchanges of pairs of neigboring 

servers, and we call two permutations 𝜋′, 𝜋′′ to be connected by an edge iff 𝜋′ = 𝜋′′𝜏 for some 𝜏. 

The resulting graph on 𝑆𝐾  is connected – because 𝐺 is connected. The process of migration 

of servers is, obviously, a random walk on this graph, that is, a reversible process. Hence, as 𝑡 → ∞, 

the distribution of permutations converges to the uniform one uniformly on all initial states. The 

assertion of the lemma clearly follows.  

 

Lemma 5  For any initial state 𝑄0, the probability of a customer with position 𝐻 > 0 in the queue 

to leave the network after being served, tends to 3/𝐾 as 𝐻 → ∞, uniformly in 𝑄0.  

 

Proof. As the waiting time of the customer tends to infinity with 𝐻 → ∞, the distribution of 

its server on 𝑉𝐾 tends to the uniform one on 𝐶𝐾 (see Lemma 4). In order for the customer 𝑐 to exit 

the network, the last server of 𝑐 has to be located at this moment at one of the three nodes: 𝐷(𝑐) +

1, 𝐷(𝑐), or 𝐷(𝑐) − 1. The lemma follows.  
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Now we see that for all the customers in the initial queues whose positions are at least 𝐻, 

the mean chance of exit approaches 3/𝐾 as 𝐻 → ∞, and the rate of this approach does not depend 

on the particularities of the initial state 𝑄0, but only on 𝐻. 

The next remark is that if a customer is served and then jumps to a different server, then 

the index 𝑗 of that server is distributed almost uniformly over the remaining 𝐾 − 1 indices. This 

fact follows from Lemma 5. Again, the rate of convergence is independent of 𝑄0 because the 

servers swap positions independently of anything else. So we have established a lemma, 

analogous to Lemma 5: 

 

Lemma 6  The probability of a customer with position 𝐻 on server 𝑖 to jump to server 𝑗 tends to 

1/(𝐾 − 1) as 𝐻 → ∞ uniformly in 𝑖, 𝑗, and in the initial states 𝑄0 ∈ 𝑄.  

 

We need a third combinatorial lemma, and we start with some definitions, and then 

formulate and prove it. Let {𝑢, 𝑣} ⊂ 𝐶𝐾 be an ordered pair of elements. We define the map 𝑇 from 

the set of all such pairs into the union 𝑉𝐾 ∪ {∗}, by 

 𝑇{𝑢, 𝑣} = {
𝑤

for𝑤definedby|𝑢 − 𝑤| = 1, |𝑣 − 𝑤| = |𝑢 − 𝑣| − 1,

provided|𝑢 − 𝑣| > 1,
∗ otherwise.

 

For 𝐾 odd the map 𝑇 is well-defined. In case 𝑇{𝑢, 𝑣} = 𝑤 we say that a customer transits through 𝑤 

(on his way from 𝑢 to 𝑣). 

Let 𝐷: 𝑉𝐾 → 𝑉𝐾  be an arbitrary map. We want to compute the quantity 

 𝑝𝐾 =
1

𝐾!
∑𝜋∈𝑆𝐾,𝑖∈𝑉𝐾

𝕀{𝑇{𝜋(𝑖),𝐷(𝑖)}=𝜋(𝑗)}, (7) 

 where 𝑆𝐾  is the symmetric group, 𝜋 runs over all permutations from 𝑆𝑁 , while 𝑖 and 𝑗 are taken 

from some fixed labelling of the elements of 𝑉𝐾 . Thus 𝑝𝐾  is the probability of transit through the 

node 𝜋(𝑗) in the ensemble defined by the uniform distribution on 𝑆𝐾 . Of course, it does not depend 

on 𝑗. (Note that we consider the action of 𝑆𝐾  on pairs {𝑢, 𝑣} given by 𝜋{𝑢, 𝑣} = {𝜋𝑢, 𝑣}. ) 

 

Lemma 7  

 𝑝𝐾 =
𝐾−3

𝐾
. 

 

 

Proof of the Lemma. Let 1,2, . . . , 𝐾 be the labelling fixed; without loss of genelarily we can 

take 𝑗 = 1. Instead of performing the summation in (7) over whole group 𝑆𝐾 , we partition 𝑆𝐾  into 

(𝐾 − 2)! subsets 𝐴𝜋, and perform the summation over each 𝐴𝜋 separately. If the result will not 

depent on 𝜋, we are done. Here 𝜋 ∈ 𝑆𝐾 , and, needless to say, for 𝜋, 𝜋′ different we have either 𝐴𝜋 =

𝐴𝜋′  or 𝐴𝜋 ∩ 𝐴𝜋′ = ∅. 

Let us describe the elements of the partition {𝐴𝜋}. So let 𝜋 is given, and the string 

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝐾 is the result of applying the permutation 𝜋 to the string 1,2, . . . , 𝐾. Then we 

include into 𝐴𝜋 the permutation 𝜋, and also 𝐾 − 1 other permutations, which correspond to the 

cyclic permutations, e.g. we add to 𝐴𝜋 the strings 𝑖𝐾 , 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . ., 

𝑖𝐾−1, 𝑖𝐾 , 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . ., and so on. We call these transformations ‘cyclic moves’. Now with 

each of 𝐾 permutations already listed we include into 𝐴𝜋 also 𝐾 − 2 other permutations, where the 

element 𝑖1 does not move, and the rest of the elements is permuted cyclically, i.e., for example from 

𝑖𝐾−1, 𝑖𝐾 , 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . ., we get 𝑖𝐾 , 𝑖2, 𝑖1, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝐾−1, 𝑖2, 𝑖3, 𝑖1, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝐾−1, 𝑖𝐾 , and 

so on. We call these transformations ‘restricted cyclic moves’. The main property of thus defined 

classes of configurations is the following: Let 𝑎 ≠ 𝑏 ∈ {1,2, . . . , 𝐾} be two arbitrary indices, and 𝑙 ∈

{2, . . . , 𝐾} be an arbitrary index, different from 1. Then in every class 𝐴𝜋 there exists exactly one 

permutation 𝜋′, for which 𝑖1 = 𝑎 and 𝑖𝑙 = 𝑏. 

Given 𝜋, take the customer 𝑙 ≠ 1(= 𝑗), and its destination, 𝐷(𝑙). If we already know the 

position 𝑖1 of customer 1 on the circle 𝐶𝐾 , then in the class 𝐴𝜋 there are exactly 𝐾 − 1 elements, each 
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of them corresponds to a different position of the server 𝑙 on 𝐶𝐾 . If it so happens that 𝑖1 = 𝐷(𝑙), then 

for no position of the server 𝑙 the transit from 𝑙 through 𝑖1 happens. The same also holds if 𝑖1 =

(𝐷(𝑙) +
𝐾−1

2
) 𝑚𝑜𝑑𝐾 or 𝑖1 = (𝐷(𝑙) +

𝐾+1

2
) 𝑚𝑜𝑑𝐾. For all other 𝐾 − 3 values of 𝑖1 the transit from 𝑙 

through 𝑖1 happens precisely for one position of 𝑙 (among 𝐾 − 1 possibilities). Totally, within 𝐴𝜋 

we have (𝐾 − 1)(𝐾 − 3) transit events. Since |𝐴𝜋| = 𝐾(𝐾 − 1), the lemma follows. + 

End of the proof of the theorem. Now we define the submartingales 𝑋𝑛
𝑘 and show that 

they satisfy all the properties of Theorem 1. We define 𝑋𝑛
𝑘 to be the length of the queue of the 𝑘-th 

server in the process 𝒟𝑛, from which the constant Λ is subtracted. Clearly, 𝑋𝑛
𝑘 ≥ 0. We now show 

that if 𝐾 and Λ are both suitably large, then the properties (1) and (2) of Theorem 1 hold. 

Relation (3) is evidently satisfied with 𝑅 = Λ. Let us check (2). Let us start the process 𝑀 at 

a configuration where all the queue lengths are of the form 𝑋0
𝑘 + Λ with 𝑋0

𝑘 > 0, 𝑘 = 1, . . . , 𝐾. We 

want to show that after time Λ, we have 𝔼(𝑋1
𝑘 − 𝑋0

𝑘) ≥ 𝜌, for some 𝜌 > 0. Let 𝐻 = 𝐻(𝐾) be the time 

after which the distribution of the 𝐾 servers is almost uniform on 𝐶𝐾 , see Lemma 5. Before this 

moment, we do not know much about our network, so we bound the lengths of the queues 𝑀𝐻
𝑘  

roughly, by 𝑀𝐻
𝑘 ≥ 𝑀0

𝑘 − 𝐻. After the time 𝐻 the probability that a customer leaving a server leaves 

the network is almost 1/𝐾, and the probabilities that it jumps to the left or the right are both close 

to 
𝐾−1

2𝐾
. 

More precisely, by Lemma 7, the rate of arrival to every server after time 𝐻 is almost 𝜆 +

(𝐾 − 3)/𝐾, which is higher than the exit rate, 1, provided 𝐾 is large enough (namely, 𝐾 > 𝐾∗ = 3/

𝜆). Hence the expected queue lengths in the process 𝑀 grow linearly in time, at least after time 𝐻, 

which implies the existence of Λ > 0 such that 𝔼(𝑀Λ
𝑘) ≥ 𝑀0

𝑘 + 𝜌. So, Theorem 1 applies.  

 

III  Infinite networks  
 

3.1  NLMP on ℤ𝟏 

 

In this section we consider the limit of the network (ℤ1)𝑁 as 𝑁 → ∞, i.e. the NLMP on ℤ1. 

The limit of the network 𝐶𝐾
𝑁 can be studied in the same way. This NLMP is described in details in 

[2], and we use the notations therein. Here we are interested in its stationary distributions. 

The NLMP is the evolution of the measure ⊗ 𝜇𝑣 on the states (queues 𝑞𝑣) of the (jumping) 

servers at the nodes 𝑣 ∈ ℤ1, given by the equations  

 
𝑑

𝑑𝑡
𝜇𝑣(𝑞𝑣 , 𝑡) = 𝒜 + ℬ + 𝒞 + 𝒟 + ℰ (8) 

 with  

 𝒜 = −
𝑑

𝑑𝑟𝑖∗(𝑞𝑣)(𝑞𝑣)
𝜇𝑣(𝑞𝑣 , 𝑡) (9) 

 being the derivative along the direction 𝑟(𝑞𝑣) (in our case of the exponential service time with rate 

1 we have, of course, that 
𝑑

𝑑𝑟𝑖∗(𝑞𝑣)(𝑞𝑣)
𝜇𝑣(𝑞𝑣 , 𝑡) = 𝜇𝑣(𝑞𝑣 , 𝑡) )  

 ℬ = 𝛿 (0, 𝜏(𝑒(𝑞𝑣))) 𝜇𝑣(𝑞𝑣! 𝑒(𝑞𝑣), 𝑡)[𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) + 𝜎𝑒(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣)] (10) 

 where 𝑞𝑣 is created from 𝑞𝑣! 𝑒(𝑞𝑣) by the arrival of 𝑒(𝑞𝑣) from 𝑣′, and 𝛿 (0, 𝜏(𝑒(𝑞𝑣))) takes into 

account the fact that if the last customer 𝑒(𝑞𝑣) has already received some amount of service, then 

he cannot arrive from the outside;  

 𝒞 = −𝜇𝑣(𝑞𝑣 , 𝑡) ∑𝑞𝑣
′ [𝜎𝑡𝑟(𝑞𝑣 , 𝑞𝑣

′ ) + 𝜎𝑒(𝑞𝑣 , 𝑞𝑣
′ )], (11) 

 which corresponds to changes in queue 𝑞𝑣 due to customers arriving from other servers and from 

the outside (in the notations of (1), 𝜎𝑒(𝑞𝑣 , 𝑞𝑣 ⊕ 𝑤) = 𝜆𝑣,𝑤);  

 𝒟 = ∫
𝑞𝑣

′ :𝑞𝑣
′ !𝐶(𝑞𝑣

′ )=𝑞𝑣
𝑑𝜇𝑣(𝑞𝑣

′ , 𝑡)𝜎𝑓(𝑞𝑣
′ , 𝑞𝑣

′ ! 𝐶(𝑞𝑣
′ )) − 𝜇𝑣(𝑞𝑣 , 𝑡)𝜎𝑓(𝑞𝑣 , 𝑞𝑣! 𝐶(𝑞𝑣)), (12) 

 where the first term describes the situation where the queue 𝑞𝑣 arises after a customer was served 
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in a queue 𝑞𝑣
′  (longer by one customer), and 𝑞𝑣

′ ! 𝐶(𝑞𝑣
′ ) = 𝑞𝑣 , while the second term describes the 

completion of service of a customer in 𝑞𝑣;  

 ℰ = ∑𝑣′n.n.𝑣 𝛽𝑣𝑣′[𝜇𝑣′(𝑞𝑣 , 𝑡) − 𝜇𝑣(𝑞𝑣 , 𝑡)], (13) 

 where the 𝛽-s are the rates of exchange of the servers. 

For the convenience of the reader we repeat the equation (8 − 813) once more:  

 
𝑑

𝑑𝑡
𝜇𝑣(𝑞𝑣 , 𝑡) = −

𝑑

𝑑𝑟𝑖∗(𝑞𝑣)(𝑞𝑣)
𝜇𝑣(𝑞𝑣 , 𝑡) 

 +𝛿 (0, 𝜏(𝑒(𝑞𝑣))) 𝜇𝑣(𝑞𝑣! 𝑒(𝑞𝑣))[𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) + 𝜎𝑒(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣)] 

 −𝜇𝑣(𝑞𝑣 , 𝑡) ∑𝑞𝑣
′ [𝜎𝑡𝑟(𝑞𝑣 , 𝑞𝑣

′ ) + 𝜎𝑒(𝑞𝑣 , 𝑞𝑣
′ )] + ∫

𝑞𝑣
′ :𝑞𝑣

′ !𝐶(𝑞𝑣
′ )=𝑞𝑣

𝑑𝜇𝑣(𝑞𝑣
′ )𝜎𝑓(𝑞𝑣

′ , 𝑞𝑣
′ ! 𝐶(𝑞𝑣

′ )) (14) 

 −𝜇𝑣(𝑞𝑣)𝜎𝑓(𝑞𝑣 , 𝑞𝑣! 𝐶(𝑞𝑣)) + ∑𝑣′n.n.𝑣 𝛽𝑣𝑣′[𝜇𝑣′(𝑞𝑣) − 𝜇𝑣(𝑞𝑣)]. 

 

We are looking for the fixed points 𝜇 of the evolution (14). Then the measures 𝛿𝜇 (on 

measures) will be stationary measures of our NLMP. Note that the dynamical system (14) might 

have other stationary measures (on measures) then those corresponding to the fixed points. We 

will simplify our setting. Namely, we make the following changes: 

  

    1.  for the graph 𝐺 we take the lattice ℤ1; 

 

    2.  all the customers have the same class; 

 

    3.  the service time distribution 𝜂 is exponential, with the mean value 1; 

 

    4.  the service discipline considered is FIFO; 

 

    5.  the exogenous customer 𝑐 arriving to the node 𝑣 has for its destination the same node 

𝑣, i.e. 𝐷(𝑣) = 𝑣; inflow rates at all the nodes are constant, equal to 𝜆; 

 

    6.  the two servers at 𝑣, 𝑣′, which are neighbors in ℤ1 can exchange their positions with 

the same rate 𝛽 ≡ 𝛽𝑣𝑣′ ;  

 

The queue 𝑞𝑣 can in this setting be identified with the sequence of destinations 𝐷(𝑐𝑖) of its 

customers. The equation for the fixed point then becomes:  

 0 = 𝜇𝑣(𝑞𝑣! 𝑒(𝑞𝑣))[𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) + 𝜎𝑒(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣)] 

 −𝜇𝑣(𝑞𝑣) ∑𝑞𝑣
′ [𝜎𝑡𝑟(𝑞𝑣 , 𝑞𝑣

′ ) + 𝜆] + ∑𝑞𝑣
′ :𝑞𝑣

′ !𝐶(𝑞𝑣
′ )=𝑞𝑣

𝜇𝑣(𝑞v
′ ) 

 −𝜇𝑣(𝑞𝑣)𝕀𝑞𝑣≠∅ + ∑𝑣′=𝑣±1 𝛽[𝜇𝑣′(𝑞𝑣) − 𝜇𝑣(𝑞𝑣)]. 

 

We are interested in translation-invariant solutions. In that case the queue 𝑞𝑣 can be 

identified with the sequence of (signed) distances between the node 𝑣 and the destinations 𝐷(𝑐𝑖) of 

its customers, so it becomes a finite integer sequence 𝒩 ≡ {𝑛1, . . . , 𝑛𝑙; 𝑛𝑖 ∈ ℤ1}, where 𝑙 ≥ 0 is the 

length of the queue 𝑞𝑣 . The rate of the arrival of the transit customer, 𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) ≡

𝜎𝑡𝑟([𝑛1, . . . , 𝑛𝑙−1], [𝑛1, . . . , , 𝑛𝑙−1, 𝑛l]) is then a function of one integer, 𝑛𝑙, and so we adopt the notation 
 𝜆𝑛𝑙

≡ 𝜎𝑡𝑟([𝑛1, . . . , 𝑛𝑙−1], [𝑛1, . . . , , 𝑛𝑙−1, 𝑛𝑙]). 

According to our definitions, we thus have 

 𝜆𝑘 ≡ 𝜆𝑘(𝜇) = {
∑𝒩 𝜇(𝑘 + 1, 𝒩) if𝑘 > 0,
∑𝒩 𝜇(𝑘 − 1, 𝒩) if𝑘 < 0,
0 if𝑘 = 0.

 (15) 

 

In what follows we look only for states 𝜇 which have symmetric rates 𝜆𝑘 : 

 𝜆𝑘 = 𝜆−𝑘. (16) 

 The probability 𝜇𝑣(𝑞𝑣) then turns into 𝜇(𝒩); note, however, that for 𝑣′ = 𝑣 ± 1 we need to 

interpret 𝜇𝑣′(𝑞𝑣) as 𝜇(𝑛1 ∓ 1, . . . , 𝑛𝑙 ∓ 1). The equation now becomes: 

 𝜇(𝑛1, . . . , 𝑛𝑙−1)[𝜆𝑛𝑙
+ 𝜆𝛿(𝑛𝑙 , 0)] − 𝜇(𝑛1, . . . , 𝑛𝑙)(∑𝑘 𝜆𝑘 + 𝜆) 
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 + ∑𝑘 𝜇(𝑘, 𝑛1, . . . , 𝑛𝑙) − 𝜇(𝑛1, . . . , 𝑛𝑙)𝕀𝑙≠0 (17) 
 +𝛽[𝜇(𝑛1 + 1, . . . , 𝑛𝑙 + 1) + 𝜇(𝑛1 − 1, . . . , 𝑛𝑙 − 1) − 2𝜇(𝑛1, . . . , 𝑛𝑙)] = 0. 

 As we see later, the equations (15) − (1517) can have several solutions, one solution or no 

solution, depending on the value of the parameter 𝜆. If 𝜇 is a solution of the equations (15) −

(1517) for some 𝜆, then we denote by  
 𝜈(𝜇) = ∑𝑘 𝜆𝑘(𝜇) 

the rate of the transit customers to every node in the state 𝜇, and by 𝜂(𝜇) the rate of the total flow 

to every node in the state 𝜇: 
 𝜂(𝜇) = 𝜈(𝜇) + 𝜆. 

 

Theorem 8 For every positive 𝜂 < 1 there exist a unique value 𝜆(𝜂) of the exogenous flow rate 

𝜆  and the state 𝜇𝜂 on the set of the queues {𝒩}, satisfying the equations (15) − (1517) with 𝜆 = 𝜆(𝜂), such 

that  

 𝜂(𝜇𝜂) = 𝜂. 

 

Proof. Consider the process which is described just by the relation (17), with arbitrary 

parameters 𝜆𝑘 , 𝑘 = 0, ±1, . .. and 𝜆. This is an ordinary queuing system with a single server and 

with infinitely many types of customers. The customer of type 𝑘 arrives with rate 𝜆𝑘 (and with rate 

𝜆0 + 𝜆 for 𝑘 = 0). Consider the random variable 𝜉𝜂, which is the total time a customer spends in 

such a server in the stationary state. It has exponential distribution, which depends only on 𝜂 =

∑𝑘 𝜆𝑘 + 𝜆 (and which does not depend on the type of the customer), namely, 𝔼(𝜉𝜂) = (1 − 𝜂)−1. 

Suppose a customer of type 𝑘 arrives to such a server. When it leaves the server, its type is 

changed to 𝑘 + 𝜏𝜂, where 𝜏𝜂 is a random (integer valued) variable. That change happens due to the 

𝛽-terms in (17). By symmetry, 𝔼(𝜏𝜂) = 0. The distribution of 𝜏𝜂 is the following. Consider a 

random walker 𝑊(𝑡), living on ℤ1, which starts at 0 – i.e. 𝑊(0) = 0, and which makes ±1 jumps 

with rates 𝛽. Then 𝜏𝜂 = 𝑊(𝜉𝜂). 

We now are going to present a choice of the rates 𝜆𝑘 and 𝜆 in such a way that the equations 

(15) is satisfied as well. Our choice of the rates 𝜆𝑘 , 𝜆 is related to the stationary distribution of a 

certain ergodic Markov process on ℤ1, which we describe now. Define the matrix of transition 

probabilities 𝑃1 = {𝜋𝑠𝑡} by 𝜋𝑠𝑡 = Pr(𝜏𝜂 = 𝑠 − 𝑡). Of course, this Markov chain on ℤ1 is not positive 

recurrent since its mean drift is zero. Let 𝑃2 be the second Markov chain, with transition 

probabilities 

 𝜌𝑠𝑡 = {

1 for𝑡 > 0, 𝑠 = 𝑡 + 1,
1 for𝑡 = 0, 𝑠 = 1,0, −1,
1 for𝑡 < 0, 𝑠 = 𝑡 − 1,
0 inothercases.

 

I.e. 𝑃2 is non-random map of ℤ1 into itself. Consider the composition Markov chain, with transition 

matrix 𝑄 being the product, 𝑄 = 𝑃1𝑃2. This chain is, in contrast, positive recurrent (it has a positive 

drift towards the origin), and it has a stationary state 𝑞 = {𝑞𝑘 , 𝑘 ∈ ℤ1}. We take  

 𝜆𝑘 = 𝜂𝑞𝑘 , 𝑘 ≠ 0;   𝜆 = 𝜂𝑞0. (18) 

 

The relations (15) are satisfied since the process 𝑄 describes the evolution of the type of 

the customer in the stationary state of the process (15) − (1517).  

 

We now state some properties of the function 𝜆(𝜂) as the parameter 𝜂 varies in (0,1). 

 

Proposition 9  There is a 𝜆+ > 0 such that, for any positive 𝜆 < 𝜆+, there are at least two different 

velues 𝜂 = 𝜂−(𝜆) and 𝜂 = 𝜂+(𝜆) satisfying the relation 𝜆(𝜂) = 𝜆 and such that 𝜂−(𝜆) → 0 and 𝜂+(𝜆) → 1 

as 𝜆 → 0.  

 

Proof. Clearly, 𝜆(𝜂) → 0 as 𝜂 → 0. We want to argue that 𝜆(𝜂) → 0 also when 𝜂 → 1. Indeed, 

in this regime every customer spends more and more time waiting in the queue, so for every 𝑘 the 
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probability Pr(𝜉𝜂 ≤ 𝑘) → 0 as 𝜂 → 1. Therefore the distribution of the random variable 𝜏𝜂 becomes 

more and more spread out: for every 𝑘, Pr(|𝜏|𝜂 ≤ 𝑘) → 0 as 𝜂 → 1. Therefore the same property 

holds for the stationary distribution 𝑞, and the claim follows from relations (18) and Proposition 9. 

In particular, it means that the following equation on 𝜂:  
 𝜆(𝜂) = 𝑎 > 0 

has at least two solutions for small 𝑎: the corresponding 𝜂 is either small or close to 1. Indeed, this 

follows from the continuity of 𝜆(𝜂).  

 

IV  Some examples 
 

Let us look at the function 𝜆(𝜂) for some finite cyclic graphs 𝐶𝐾 with different parameters, 

that is, with different randomized rules for the destination assignment. As we see, there are cases 

with one, two, and three equilibrium solutions. 

 

Typical case: two solutions 

 
Single solution 

 
 



 
Baccelli F., Rybko A., Shlosman S., Vladimirov A. 
METASTABILITY OF LARGE NETWORKS WITH MOBILE SERVERS 

RT&A, No4 (43) 
Volume 11, December 2016  

76 

 

Three solutions 

 
 

Three solutions: closer look 
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