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 Abstract  

 
We consider a coherent binary system consisting of 𝑚 components of a-type and 𝑛 components of b-

type. The a-type and b-type components have i.i.d lifetimes with cdf 𝐹𝑎(𝑡) and 𝐹𝑏(𝑡), respectively. 

The a-type and b-type components are stochastically independent. Our system is UP if at least 𝑘 a-

type components are up and at least 𝑟 components of b-type are up.We present a simple formula for 

this system lifetime cumulative distribution function. 

 

Keywords: heterogeneous system; k-out-of-n system; survival signature. 

 

 

 

We consider the following generalization of a"standard" k-out-of-n  system. Our system has 

two types of components: 𝑛 components of a-type and 𝑚 components of b-type. The components 

of each type have iid lifetimes denoted as 𝐹𝑎(𝑡) and 𝐹𝑏(𝑡), respectively. The a-type and b-type 

components are stochastically independent. The standard 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 system is operational 

(i.e. in state UP) iff at least 𝑘 of its components are operational, i.e. are 𝑢𝑝. Our system is defined to 

be operational if and only if at least 𝑘 components of a-type and at least 𝑟 of b-type components are 

up. Formally, our system can be viewed as a series connection of two 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛-type 

subsystems. 

Suppose, without loss of generality, we number the a-type components by numbers 

1,2, . . . , 𝑚 and components of b-type by numbers 𝑚 + 1, . . . , 𝑚 + 𝑛. System state is therefore a binary 

vector 𝑥 = (𝑥1, . . . , 𝑥𝑚 , . . . , 𝑥𝑚+𝑛, where 𝑥𝑖 = 1 or 𝑥𝑖0 if component 𝑖 is up or down, respectively. 

System state is a binary function 𝜑(𝑥) which takes values 1 or 0 if the system is UP or 

DOWN, respectively. 

If 𝜑(𝑥1) = 1, then 𝑥1 is called an UP-vector or an UP-set.If the state vector 𝑥 is not an UP-

vector, we call it a DOWN-vector or DOWN-set 

According to the above description of our system, an UP-set must have at least 𝑘 ones on 

the first 𝑚 positions of vector 𝑥 and at least 𝑟 ones on the last 𝑛 positions. For example, for 𝑚 = 5 

and 𝑛 = 6, 𝑘 = 4, 𝑟 = 4, the vector 𝑥 = (0,1,1,1,1; 1,1,1,0,1,0) is an UP-vector. 

Denote by 𝑁𝑈(𝑣, 𝑤) the number of UP-vectors which have exactly 𝑣 ones on the first 𝑚 

positions and 𝑤 ones on the last 𝑛 positions. Obviously, 𝑣 ≥ 𝑘,𝑤 ≥ 𝑟. 

The following Lemma follows from the above description: 
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Lemma 

 

 𝑁𝑈(𝑣, 𝑤) = 𝐶𝑚
𝑣 ⋅ 𝐶𝑛

𝑤 =
𝑚!𝑛!

𝑣!(𝑚−𝑣)!𝑤!(𝑛−𝑤)!
. (1) 

 

The proof is obvious: there are 𝐶𝑚
𝑣  ways to locate 𝑣 ones on the first 𝑛 positions of the state 

vector 𝑥 and 𝐶𝑛
𝑤 ways to locate 𝑤 ones on the last 𝑛 positions of this vector.# 

For sake of brevity, an UP-vector with 𝑣 and 𝑤 components of a-type and b-type, will be 

called an (𝑣, 𝑤)-UP-vector. 

 

Now everything is ready to write the formula for system UP probability. Let us take an 

arbitrary time instant 𝑡 and denote by 𝑞𝑎 = 𝐹𝑎(𝑡) the probability that an a-type component is down 

at time instant 𝑡.Smilarly, 𝑞𝑏 = 𝐹𝑏(𝑡) is the down  probability that component of b-type is down at 

time instant 𝑡. Denote 𝑝𝑎 = 1 − 𝑞𝑎 and 𝑝𝑏 = 1 − 𝑞𝑏. 

By independence of all a-type and b-type components and by independence of a-type 

components from b-type components,the probability that a state vector 𝑥 is an (𝑣, 𝑤)-UP-vector 

equals 

 

 𝑃(𝑈(𝑣, 𝑤)) = 𝑝𝑎
𝑣𝑞𝑎

𝑛−𝑣𝑝𝑏
𝑤𝑞𝑏

𝑚−𝑤. (2) 

 

  Now we arrive at 

  Theorem 1 

 

 𝑃( 𝑠𝑦𝑠𝑡𝑒𝑚  𝑖𝑠  𝑈𝑃  𝑎𝑡  𝑡𝑖𝑚𝑒  𝑡 ) = ∑𝑣≥𝑘,𝑤≥𝑟 𝑁𝑈(𝑣, 𝑤) ⋅ 𝑃(𝑈(𝑣, 𝑤). (3) 

. 

If the system is UP at time instant 𝑡 its lifetime 𝜏𝑠 is greater or equal 𝑡, Therefore,  

 𝑃(𝜏𝑠 ≥ 𝑡) = ∑𝑣≥𝑘,𝑤≥𝑟 𝐶𝑚
𝑣 ⋅ 𝐶𝑛

𝑤 ⋅ [𝐹𝑎(𝑡)]
𝑣[1 − 𝐹𝑎(𝑡)]

𝑛−𝑣[𝐹𝑏(𝑡)]
𝑤[1 − 𝐹𝑏(𝑡)]

𝑚−𝑤 . # (4) 

  

  Remark 1. The central role for deriving formula (4) is played by the expression for 

𝑈𝑁(𝑣, 𝑤), see (1). Let us note that𝑁𝑈(𝑣, 𝑤) depend only on system structure function and they are, 

therefore, system structural invariants. It is quite obvious how to generalize the above derivation for 

the case when the system has more than two, say 𝐾 > 2 types of components. By definition, this 

system is UP iff it has at least 𝑣𝑖 up components of each type, 𝑖 = 1,2, . . . 𝐾.# 

   Remark 2. A system consisting of several 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 subsystems is, to the best of 

our knowledge, the only lucky case where we can find in a simple form (like in (1)) an explicit 

formula for the number of system UP-state vectors having exactly 𝑣𝑖 components of 𝑖-th type in up 

state, 𝑖 = 1,2, . . . , 𝐾. 

Samaniego and Navarro suggested to call the collection of all 𝑁𝑈(𝑣, 𝑤) values survival 

signature, see [1]. If 𝑁𝐷(𝑢,𝑤) is the number of system DOWN states with exactly 𝑣 a-components 

and 𝑤 b-components down, then it would be natural to call the collection of all 𝑁𝐷(𝑣, 𝑤) failure 

signature. # 

 

  Remark 3. There is a simple relationship between the values of 𝑁𝐷(𝑣, 𝑤) and 𝑁𝑈(𝑣,𝑤):  

 

 𝑁𝐷(𝑣, 𝑤) + 𝑁𝑈(𝑛 − 𝑣,𝑚 − 𝑤) =
𝑚!𝑛!

𝑣!(𝑚−𝑣)!𝑤!(𝑛−𝑤)!
. (5) 

 

Indeed, let us chose 𝑣 components of a-type and 𝑤 components of 𝑏-type and let them be 

down. Then we will obtain either a DOWN state or an UP state vector for the system. But having 

𝑣, 𝑤 components down, means having the remaining components up, which proves (5). From 

practical point of view, (5) shows that the knowledge of the survival signature provides us the 

knowledge its dual failure signature.# 
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  Remark 4. Let us return to coherent binary systems consisting of one type iid 

components. Crucial role in its reliability evaluations play so-called signature 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑛), see 

[2]. Let 𝐹(𝑗) = ∑𝑗
𝑘=1 𝑓𝑗, 𝑗 = 1,2, . . . , 𝑛 be the so-called cumulative signature or system D-spectrum 

[3,4]. 𝐹(𝑗) is the probability that the system is 𝐷𝑂𝑊𝑁 if 𝑗 of its components are down, i.e. the 

probability that system failure appeared after 𝑥 components have failed, 𝑥 = 1,2, . . . , 𝑗. If we know 

the D-spectrum of the system, we can find the number 𝑁𝐷(𝑟)-the number of system failure or 

DOWN states with exactly 𝑟 components down and 𝑛 − 𝑟 components up, by using the following 

simple formula, see [3,4]:  

 

 𝑁𝐷(𝑟) = 𝐹(𝑟)𝑛!/(𝑟! (𝑛 − 𝑟)!). (6) 

 

 For systems of real size, having 𝑛 > 8 − 10 components, there are efficient Monte Carlo algorithms 

for fast and accurate estimation of 𝐹(𝑗), see [4] 

In our opinion, in case of coherent systems having two types of independent and identical 

components, reliability calculations must be based on the knowledge of a two-dimensional 

analogue of the cumulative D-spectrum. It should be a function 𝐺(𝑘, 𝑟) expressing the probability 

that a random permutation of 𝑛 and 𝑚 components of both types contains a failure set with 𝑘 and 

𝑟 down  components of a- and b-type, respectively.# 
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Abstract 

 

In this paper we study a model of a system with imperfect repair, where also detection of failure might 

fail. For such a system we derive the lifetime distribution function of the system and give bounds for 

the mean life and the mean residual life function. 

 

Keywords: imperfect repair, redundancy, limiting reliability 

 

 

 

 

I. Introduction 
 

In order to improve the reliability of a system there are mainly two possibilities. The first one is to 

improve the reliability of the components, the second is to implement redundancy. Mainly this is 

done by using more than one component to fulfill the same function, see e.g. [1]. Redundancy 

means that in a technical system there are more possibilities present to ensure a function, than the 

necessary minimum. In a previous paper the authors have studied a model of a redundant system 

with imperfect switching to the redundant unit. There, we have studied two cases, one of them 

with hot standby, the other with cold standby, see [5]. 

These models with hot standby and cold standby describe just two extreme situations, where 

the redundant units are either completely unused (pure replacement) or used in parallel under full 

load (hot standby). 

There are many other possible models with different replacement or repair strategies.  

In this paper, we will study a model, where in place of switching to a redundant unit, a 

minimal repair is carried out. In addition, the failure detection mechanism and subsequent 

minimal repair fail with a probability . Minimal repair is motivated by the use of a large unit, 

where only one small component is replaced so that the system itself can be seen as unchanged 

and the effect of using a new small component is negligible for the entire unit. 

In this short paper we will derive expressions for the life time distribution of such a system 

together with results for conservation of properties of the distribution function as the Increasing 

(Decreasing) Failure Rate Average. 
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II. The Model 

 
Assume a unit with minimal repair. The original lifetime distribution of the system is denoted by 

F(x) and hazard function (x) so that we have 

 

F(x) = 1 – exp(- (x)). 

 

Let us further denote the hazard rate, i.e. the derivative of (x), by (x). 

Assume further that 

 

F(0) = 0 

 

and 

 

lim F(x) =1

x→∞          
  

 

For a unit undergoing minimal repair at the time of failures, the unit is restored during repair 

to a functioning state, but with the same unit age as before. The unit is therefore used and re-used 

after repair and the failure times of the unit follow a Nonhomogeneous Poisson Process with 

cumulative intensity function (x), see [2]. The distribution of the time of the n-th repair is then 

defined by 

 

 Fn(x) = e-L(x) 
i=n

∞

L(x)n

n!
  (1) 

 
with density 

 

 fn(x) = (x) e- (x) (x)n-1/(n-1)!  (2) 

 
which gives for n=1 

 

 f1(x) = (x) e- (x). (3) 

 

Assume further that the repair is successful only with probability 1- , since  is the probability 

that the repair fails. Then the unit fails at the instant of n-th minimal repair with probability  

 

 (1- )n-1 ,  (4) 

 

i.e. n-1 minimal repairs were successful, the n-th not. Combining (2) and (4) and summing 

over n one gets the density of the lifetime distribution function of a unit with minimal and 

imperfect repair 
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g(x) = 
n=1

∞

 (1-g)n-1g fn(x)  =
n=1

∞

 (1-g)n-1g l(x) e-L(x) L(x)n-1/(n-1)!  =  (x) e-(1- ) (x) e- (x). 

 

 =  (x) exp(-  (x)). (5) 

 
The distribution function reads 

 

G(x) = 1 – exp(- (x)). (6) 

 

 

III. Results for the lifetime of a unit with imperfect and minimal repair 
 

The mean lifetime of the unit is derived by the distribution (6) by 

 mG = 

0

∞

 exp(-g L(x)) dx. (7) 

A distribution function F(x) is said to belong to the IFRA class (increasing failure rate average) 

/ DFRA (decreasing failure rate average), if  

 

(x)/x 

 
is an increasing / decreasing function, see [1]. Then, also G(x) belongs to the IFRA / DFRA 

class since 

 

(x)/ x 

 
is also increasing / decreasing, if the property holds for (x)/x. If now F is IFRA (DFRA), we 

have 

 

 (  x) / ( x) ≤ (≥) (x) / x,  (8) 

 
since ≤1. This inequality gives 

 

(  x) ≤ (≥)  (x). 

 
From here, it follows 

 

 exp(- (  x)) ≥ (≤) exp(-  (x)). (9) 

 
Integrating from 0 to ∞ yields 

 



0

∞

 exp(-L(g x)) dx ≥ (≤) 

0

∞

 exp(-g L(x)) dx . (10) 
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This is equivalent to 

 

mG ≤ (≥) mF/ , 

 
provided F(x) is IFRA (DFRA). Also, bounds on the residual life function can be derived. 

Writing 

 

 TRL  = 

x

∞

(1-G(t)) dt  = 

x

∞

exp(-g L(t)) dt  ≤ (≥) 

x

∞

exp(-L(g t)) dt = (1/ ) TRL,F(  x), (11) 

 
if F is IFRA (DFRA). Here, TRL,F denotes the residual life function of F. Since a distribution 

function that is IFRA (DRFRA) is also HNBUE (HNWUE), see [3], the result can be extended 

 
 TRL ≤ (≥) (1/ ) mF exp(- x/mF), (12) 

 
Where we have used the HNBUE (HNWUE) property of F, i..e. 

 



x

∞

(1-F(t))dt  ≤ (≥) mF exp(-x/mF). 

 
 

IV. Comparison and Conclusions 
 

In this paper, we have derived results for a model of a unit that undergoes minimal repair with 

imperfect detection of failures. We have derived the distribution function 

 

 G(x) = 1 – exp(- (x)) = 1-(1-F(x)) , (13) 

 

in closed form. This distribution function can be compared with the lifetimes distribution 

function of a system with hot standby and imperfect switching (repair), see [5]: 

 

 Ghs = F(x) /(1-(1- )F(x)) (14) 

 
One can now observe that  

 
Ghs(x) ≤ G(x). 

 
This follows from the fact that 

 

(1-F) ≤ (1-F) (1-(1- )F). 

 
This inequality can be proven using that the function 

 

h(x) = x +(1- )x1+ -x 
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is nonnegative in the interval [0,1]. This property is a result of the following facts 

 

h(0) =0, h(1) =0, 

 

h’(x) tends to infinity as x → 0, 

 
h’(1)=0, 

 

h’’(x) is negative for x<x0= /(1+ ) and  

 

h’’(x) is positive for x>x0. 

 

h’’(x0) = 0 with h(x0) = (3- ) >0. 

 

Therefore, h(x) must be nonnegative on the interval [0,x0], since it is convex there. 

Furthermore, h(x) has an increasing first derivative on [x0,1], starts at a positive value at x0 and 

decreases to zero at 1. There is no inflection point on the interval (x0,1], which would be necessary 

for h(x) to take negative values in (x0,1], since h’(1)=0. Therefore, h(x) is also nonnegative on [x0,1]. 

Hence we have shown that the failure probability of a unit with minimal repair and imperfect 

failure detection is larger than for a unit with internal hot standby and imperfect failure detection. 

Now, we can also compare the bounds. If F belongs to the IFRA class, then the same holds for (13) 

and the following bounds hold are derived: 

 

 mG ≤  mF/ , (15) 

 

 TRL ≤ (1/ ) mF exp(- x/mF), (16) 

 
These results can be compared with the ones provided in [5] for hot and cold standby 

systems. We see immediately that the bounds (15) and (16) are the same as for cold standby 

systems, which is generally the absolutely upper bound for units of types of redundancies.  

Therefore, we have derived the distribution function, bounds on the mean lifetime and the residual 

life function for a unit with minimal repair and imperfect failure detection. 
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Abstract 

 
Opportunity of a quantitative estimation integrated parameters (IP) safety of ability to live (AL) is 

one of the basic directions of decrease in a traumatism and destruction of personnel EPS. In a basis 

of the developed method and algorithm of calculation IP AL there are differences of requirements of 

Rules AL observable in practice from a level of their execution. Quantitative estimations AL open 

new, earlier inaccessible opportunities regarding the analysis and the control. For example, to 

compare AL at enterprises EES, to reveal the directions reducing AL, to estimate AL on various 

categories of maintenance, tests and repair of the various equipment and devices EES 

Keywords: reliability safety of ability to live, integrated parameters 

 

 

I. Introduction 

As is known [1] AL concerns to number of the basic properties of reliability. However unlike non-

failure operation, maintainability, durability and a storage property, methods of quantitative 

which estimation of parameters, including, methods of calculation of accuracy and reliability, in 

many respects are developed, methods of a quantitative estimation of parameters AL are in an 

initial stage of development. It speaks not only variety of conditions of ability to live (many-sided 

nature and multidimensionality are characteristic features of a problem of reliability), but, first of 

all that there is a problem of an estimation of safety not the equipment and devices (objects) EPS, 

and the personnel, the person. 

In practice AL, be provided with strict performance and the control of performance of Rules of 

a labour safety, the safety precautions, fire-prevention technics at maintenance service and repair 

(MS&R) objects EPS. However, as well as for noted above the basic properties of reliability, 

qualitative characteristic AL appears insufficient, first of all, owing to imperfection of existing 

opportunities of its control. Sad acknowledgement to that is the statistics of a traumatism and 

destruction of personnel EPS. 

In [2] it is marked, that according to the theory of academician A.A.Doronisin in development 

of any science (and AL is a science about safe interaction of the person and a techno sphere) it is 

necessary to distinguish two periods: descriptive and exact. Descriptive period provided with 

accumulation of the information, revealing of influencing factors, "mechanical" classification of the 

information. The exact period characterized by development of methods of the quantitative 

characteristic of processes, methods of their modeling. Hence and from the point of view of 
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development of a science, research AL in EPS are in an initial stage of the development, and 

development of methods and algorithms of quantitative estimation IP AL at operation, tests and 

repair of objects EPS is one of the basic directions of maintenance AL of personnel EPS. 

It is necessary to make a reservation at once, that the official statistics about traumas and 

destructions of the personnel in EPS, certainly, analyzed and most carefully to exclude similar 

cases. But, in opinion of authors, it should not and cannot form a basis for calculation of 

parameters AL. Fortunately, for authentic calculations it is not enough these cases. 

 

 

II. Method and algorithm of quantitative estimation IP AL 
 

IP AL in a techno sphere average life expectancy of the person [3] is accepted. This parameter is 

objective enough at an estimation of influence on life expectancy, for example, ecologies of region, 

but unacceptable for the characteristic of safety at work in EPS. 

 For quantitative estimation, AL a number of the parameters describing non-failure operation 

and maintainability of technical objects recommended also. To them concern: 

- probability of functioning of objects without undue incident (failures, and accidents) during the 

set interval of time; 

- probability of occurrence even one incident; 

- average duration of incident; 

- average size of damage. 

 And though all these incidents, as a rule, occur not on fault of the personnel (but not without 

its participation), are a source the dangers noted above parameters AL, at presence of 

corresponding statistical data, can be demanded.  

 Recommended for practical application IP AL in EPS and a method of its quantitative 

estimation based on a following axiom: «danger of ability to live arises at infringement of Rules 

AL. Real AL that above, than above a level of execution of Rules AL». In other words, the reflecting 

level of execution of Rules AL in EPS recommended IP AL. Generally Rules AL consist of various 

Rules (in EPS they reflect three directions: a labour safety, the safety precautions, fire-prevention 

safety), their chapters, sections and positions. We estimate the level of execution of each position of 

Rules in five-point system. This choice not assignable: 

- the five-point system is habitual, since reminds usual system of an estimation of knowledge; 

- on the basis of practice of calculations affirms [4], that for the maximal values of the parameters 

measured in a serial scale, it is expedient to apply estimations within the limits of from 3 up to 6; 

- on Strebjes 5 - is an optimum number of intervals when the number of measurements changes in 

an interval [11÷23] [5] that reflects, as a rule, the maximal number of positions in sections of Rules. 

 The participant of «ability to live» can execute estimation of a real level of execution of Rules 

AL, i.e. the executor of concrete work at operation, tests and repair of objects EPS or the Expert on 

maintenance AL. As the Expert executions of Rules AL responsible for the control, heads of 

divisions of the enterprise can participate. Advantage of this way (a direct five-ball estimation of a 

level of execution of Rules AL) is the knowledge the Expert of a real level of execution of positions 

of Rules AL. 

 Serious lack is subjectivity of estimations. Well-known, that estimation in this case depends not 

only on knowledge and on qualification of the Expert. Maintenance of independence of 

examination, decrease in subjectivity reached by specification of concept corresponding this or that 

estimation «a level of execution of positions of Rules AL». It reminds tests for examinations, but 

only reminds. In our case, each position is set by five possible levels of execution of the positions 

corresponding estimations in five-point system. If besides the made levels of execution to place in 

the casual order and to limit time of the answer for conformity of each level of execution real, 

objectivity of the analysis on this computer technology will be practically deprived subjectivity. 

 Thus, generally some estimation of a level of real execution Li,j,k,s where i=1,mg is compared 
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with each position of Rules AL; j=1,mh,i; k=1,mr,i,j; s=1,mc,i,j,k; mg – number of Rules; mh,i - number of 

chapters in i-th Rule; mr,i,j – number of sections in j -th chapter i-th Rules; mc,i,j,k – number of 

positions k-th section, j-th chapter i-th Rules. 

It would seem to receive IP a level of execution of positions enough to combine these 

estimations and to divide into the general number of positions. However, it would be a serious 

mistake, same, as well as an estimation of average progress at school, in classes, etc. [6]. The 

mistake consists in that, the mathematical theory of measurements does not suppose performance 

of elementary mathematical operations above parameters with a serial scale of measurements (in 

this case their addition). And levels of performance of positions of Rules AL just are measured in a 

serial scale. 

 Naturally there is a question – whether «much it 5m∑», where m∑- - the general number of 

positions. Probably, one undoubtedly – loading on the Expert will be very big. But this problem is 

equivalent to a problem of an estimation of reliability and profitability EPS as a whole which as 

well so, is bulky. Therefore in this bulkiness not anything surprising. 

 For this reason significant interest estimations IP AL not as a whole, and on each concrete 

work of personnel EPS (represent analogue: non-failure operation of objects EPS). The Method of 

calculation IP AL (BJ) generally reduced to following sequence of calculations: 

1. For each section of Rules distribution of estimations of a level of execution of positions is 

calculated. We shall designate number of display L-th estimation, where L=1÷5, through ri,j,k,L. 

It is obvious, that 
5

i, j,k,L c,i, j,k

i 1

r m


  

2. Frequency of display L-th estimation under the formula is defined 

* i, j,k,L
i, j,k

c,i, j,k

r
f (L)

m
       (1) 

where i=1,mg; j=1,mh,i; k=1,mr,i,j; 

 We shall notice, that ri,j,k,L and fi,j,k(L) are measured in a quantitative scale and to them 

known mathematical operations can be applied. As 

*

i, j,k

5
*

i, j,k

i 1

0 f (L) 1

f (L) 1


 



 




      (2) 

That sizes fi,j,k(L) can be considered as normalized the random variables unequivocally describing 

estimations of execution of positions of sections of Rules AL. 

3. Discrete values of statistical function of distribution (s.f.d) estimations L=1÷5 under the 

formula: 
L

* *

i, j,k i, j,k

L1 1

* *

i, j,k i. j.k

*

i, j,k

g h,i r.i. j

F (L) f (L1)

F (1) f (1)

F (5) 1

i 1,m ; j 1,m ; k 1,m




 


 


   


    (3) 

4. According to order a method [7] estimation IP of a level of execution k-th section j-th chapter i 

Rules is calculated under the formula; 

L

5
**

5
i, j i, j,k

L 1

L L

BJ (k) F (L)

L

2 1






 





   

      (4) 

where i=1,mg; j=1,mh,i; k=1,mr,i,j 

In table 1 numerical values are resulted L for of some values L 
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Table 1. Settlement values L. 

L 1 2 3 4 5 

L 1 2 0,75 0,5 0,31 

 

5. For i Rules estimation IP of execution j-th chapter is calculated under the formula: 
c,i , jm

* *

i i, j

k 1

BJ (J) BJ (k)


 
    (5) 

where i=1,mg; j=1,mh,i; k=1,mr,i, j 

6. Estimation IP of a level of execution i Rules under the formula is calculated 

h ,i

h ,i

m

* *m
i

j 1

BJ (I) BJ (J)


 
     (6) 

where i=1,mg; j=1,mh,i; k=1,mr,i,j 

7. Estimation IP of a level of execution of Rules AL or parameter AL is calculated 
g

g

m

* *m

i 1

BJ BJ (I)


 
      (7) 

 The Estimation of importance IP spent on a scale of the importance, which presented in table 2. 

Here for comparison the known scale of Harrington desirability [4], which with success is put into 

practice at analysis IP is resulted. Some distinction of a uniform scale (the length of an interval is 

constant) from scale Harrington formally. It executed for convenience of an estimation of 

interrelation of discrete argument and function of Harrington desirability looking like: 

 

 
i

i

i,k i,k

i,k i,max i,min

i,k

i,max i,min

i,max i, j j 1,m

i,min i, j j 1,m

d exp[ exp( y )

2 y (y y )
y

y y

y max y

y min y





  


   









     (8) 

Here 
i,ky  - absolute size of argument of Harrington function, having a quantitative scale of 

measurement 

Table 2. A scale of the importance of parameter AL 

Categories of 

the importance 

Intervals 

functions of 

distribution 

Harrington Scale  

Categories of desirability Intervals of function 

of distribution 

It is 

inadmissible 

0 – 0,19 Critical (Very badly) 0 – 0,19 

Badly 0,0 – 0,39 Dangerous (badly) 0,2 – 0,36 

Satisfactory 0,4 – 0,59 Admissible (well) 0,37 – 0,62 

Well 0,6 – 0,79 Comprehensible (well) 0,63 – 0,79 

It is indicative 0,8 – 1,00 Background (very good)) 0,8 – 1,00 

  

Results of calculations under formulas 4÷7 allow: 

- to compare with a level of execution of sections, chapters and Rules, to reveal «weak parts » and 

to plan ways of their elimination; 

- to compare with conditions of maintenance AL at different enterprises EES, in shops of power 

stations, in regional electric networks, etc. 

 It is necessary to note repeatedly, that as IP reliability and profitability (efficiency) of work of 

power station it is useless at formation of the basic directions of increase of an overall performance 

of concrete boiler installation of the same power station as the average estimation of a parameter of 

reliability of power transformers not in a condition to solve questions on classification of a 



 
Farhadzadeh E.M., Muradaliyev A.Z., Ismailova S.M.  

QUANTITATIVE ESTIMATION OF THE INTEGRATED PARAMETER  

RT&A, No3 (42) 
Volume 11, September 2016  

20 

technical condition of power transformers, and IP BJ it is useless at analysis AL of the personnel at 

performance of concrete version MS&R of objects EPS. This statement in any to a measure does not 

reduce the importance of an integrated estimation of a level of execution of Rules AL, and only 

testifies to necessity of automated control AL for set of versions of corresponding operation, a kind 

and type of test and repair of set of objects EPS. And if, for example, non-failure operation of work 

of power station is defined by non-failure operation of the equipment and devices AL on power 

station it is defined AL at performance of separate works.  

On fig.1 the integrated block diagram of algorithm of quantitative estimation IP AL is resulted. 

As initial data of algorithm (fig.1, the block 1) results of an estimation of a level of execution of 

positions of Rules AL serve.  

 

 
 

Figure 1 Integrated block diagram of algorithm of estimation IP AL. 

 

The integrated block diagram of the automated system of formation of estimations of a level of 

execution of positions of Rules AL in dialogue with the Expert is resulted on fig.2. An essence of 

dialogue – acknowledgement (1) or denying (0) statements about a level of execution of position. 

Essential decrease in time of dialogue at acknowledgement of conformity of a level of 

execution to real execution of positions is reached by automatic deleting from the list of the 

remained variants of execution of position. The general number of positions of Rules AL is less; the 

application of a method is more effective. Therefore, the method also recommended for control AL 

of concrete operative works, test and restoration of deterioration of object EPS. 



 
Farhadzadeh E.M., Muradaliyev A.Z., Ismailova S.M.  

QUANTITATIVE ESTIMATION OF THE INTEGRATED PARAMETER  

RT&A, No3 (42) 
Volume 11, September 2016  

21 

 
 

Figure.2. Integrated block diagram of algorithm formation levels execution positions of Rules AL 

 

Conclusion 
 

1. One of the basic directions of decrease in a traumatism and destruction of the personnel on 

objects EPS, is transition from qualitative to quantitative characteristic AL; 

2. For such properties of reliability as non-failure operation, maintainability, durability and 

storage property questions of a quantitative estimation in many respects solved. Calculation 

corresponding reliability parameters based mainly on statistical data about refusals and 

reconstruction deterioration. For AL these questions are in an initial stage of the decision. In 

many respects it speaks distinction of solved problems; 

3. The statistics of a traumatism and destruction of the personnel demands increase of efficiency 

of the analysis of each case. At the same time it should not form the basis for a quantitative 

estimation of parameters AL. Parameter AL – average "life expectancy" for characteristic AL of 

personnel EPS is unacceptable; 

4. AL, certainly, depends on damageability of objects EPS. For example, the more service life of 

objects, their reliability below, and danger of maintenance service above. The likelihood 

parameters AL describing occurrence of failures and ethnogeny accidents as sources of danger 

at presence of the corresponding information can be useful. 

5. The method and algorithm of a quantitative estimation recommended IP AL developed. In a 

basis of a method of calculation of this parameter there is an information on levels of execution 

of positions of Rules AL.; 

6. Results of quantitative estimation IP AL allow: 

- to compare AL at various enterprises EES, their divisions; 

- to reveal «weak parts», being a principal cause of discrepancy real AL to shown 
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requirements; 

- to operate AL by liquidation of «weak parts»; 

- to calculate objective IP AL on various categories of maintenance, tests and repair of a various 

kind of objects EPS 
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Abstract 
 

In this paper the application of logical and probabilistic (LP) models for operational risk 

estimation in bank is described, the method for economic capital calculation to cover 

losses, caused by operational risk, with top and bottom capital limits is offered. The 

influence of repeated events on credit and operational risks is demonstrated. Significances 

of such repeated events are higher and actions to their minimization should be top-

priority.  
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I. Operational risk… What’s problem ? 
 

Quality increase, cost reducing, issue of new bank products and services are impossible 

without upgrading of the risk management framework in a bank. Operational risk plays large role. 

It leads to financial, human, reputation losses. Operational risk can take place in any bank activity 

but its realization influences on functioning of whole bank and values of profits. Main feature of 

operational risk is fundamentality. Operational risk can lead to other risks. We observe in detailed 

consideration: the reasons of any risk are the human factor, business process defects, technical 

system failure or external factors. All these reasons are operational risk factors [1]. Moreover, we 

can suppose the following: the higher operational risk, the higher other bank risks and more losses. 

Operational risk is the indicator of the bank reliability and reflects the personnel qualification level 

and possibility of counteraction to unfavorable events.   

In comparison with financial risks, operational risk is realized in events: power system failure, 

personnel mistake, flood, earthquake or terrorism actions. Elimination of these events or 

minimization of consequences requires large resources. Volume of resources should be calculated 

and resources are reserved beforehand to save a bank from bankruptcy in case of unfavorable 

events. Operational risk events have accumulative nature, they are similar to “snow ball”. In 

bank’s activity some ordinary mistakes and failures occur daily. If personnel will not pay attention 

to ordinary events, bank administration will finally face consequences, which can be eliminated 

with large expenses only. Also, another problem is: banks try to hide appeared operational risk 

events in order to save reputation.  

Problem of estimation and identification of operational risk in bank is very complex. 

Operational risk is caused by different factors and difficult for formalization and modeling. 

Existing methods of operational risk estimation are used for solution of particular tasks within one 

business process. Determination of risk value within one business process is not correct, it would 

be better to determine risk value in interconnection with other bank processes and systems. 
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Operational risk leads to market and credit risks [2]. Influence and “interaction” of the 

operational risk with other risks can cause large expenses and reputation loss. Central banks 

formulate task of development of internal procedures and systems, providing allocation of 

necessary resources (economic capital), which will equal to business goals of bank, volume of 

performed operations and risk profile. System for operational risk estimation should be integrated 

in risk management processes in bank and results should be a part of monitoring process and 

operational risk profile control [3]. 

Important task is integration of all risk models in one general model for estimation of “total 

risk” of bank. This allows calculate integrated risk value (risk index) for bank. Risk index is useful 

for owners, partners, and Bank’s Management Board. 

Basel III regulatory framework allows calculates economic capital more precisely [4]. New 

demands appoint the use of advanced methods only for credit risks while but this event causes 

banks to develop and implement their internal risk estimation technologies. The Basel Committee 

on Banking Supervision (BCBS) pays large attention to operational risk. Thus, in Basel III the 

estimation of economic capital adequacy is equal to coefficient 12,5 (the same coefficient is applied 

for market risk estimation) rather than 10, as earlier.  Basel III cause banks to realize less risky 

politics, spend money for personal training and implementation of IT systems in order to reduce 

technological and administrative losses. However, in period of Basel III framework realization the 

value of operational risk will probably increase. 

 

II. How to formalize operational risk ? 
 
  Let consider the logical and probabilistic (LP) model for operational risk estimation [5].  

LP-model is constructed with use of the event classification, assigned by BCBS.  

In advanced approach every business line is considered separately. In every business line 

seven kinds of unfavorable operational risk events are considered: internal fraud Z1; external fraud 

Z2; personnel policy and labor safety Z3; clients, products and business practice Z4; physical 

damage of assets Z5; faults in business and system failures Z6; execution, delivery and process 

control Z7. These are derivative events. Every event from Z1, …, Z7 is caused by concrete elementary 

events, i.e. initiating events. Initiating events are considered as independent casual events. In 

overall, 98 events were entered. Final derivative event Y is possible losses at business line. The 

number of initiating events for every business line is equal to 70 and they are the same by 

description but their probabilities for every business line will be different. Logical variable 

corresponds to every initiating event. This variable takes values 1 or 0 (events will occur or not) 

with the certain probability. Initiating events have probabilities of occurrence. These probabilities 

can be obtained from statistical data accumulated during last period of bank’s activity (Basel II 

Accord recommended three years long period) or by expert way (in case of absence of statistics) 

[6,7].  

Structural, logical and probabilistic risk models are constructed for every business line.  

Structural risk model for one line. As example, let consider first business line of bank (Corporate 

Finance). We construct the structural model and write the logical function of risk for seven kinds of 

unfavorable events Z1, Z2, Z3, … Z7 (fig. 1).  

 
Figure 1. Structural model of operational risk for first business line (Corporate Finance). 
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Structural model is a risk scenario. Scenario is formulated so: event Y1 (losses at first business-

line) will occur if event Z1 or event Z2, or Z3,  …, or Z7 will occur. By other words, Y1 will occur if, at 

least, any one event from set Z1,…, Z7, will take place, or any combination of events, or all of them 

will occur at the same time (probability of such variant is very small but not equal to 0). Let Z1,…, 

Z7 are logical variables, every Zj, j = 1, 2,…,7 is equal 1 (if events took place) or equal to 0 (in 

opposite case) with some probability. 

Logical operational risk model for seven kinds of unfavorable events Z1, Z2,…, Z7 of operational 

risk for first business line is written in disjunctive normal form by following way:  

 

           Y1 = Z1 Z2 Z3 Z4 Z5 Z6 Z7.                            (1) 

 

In order to obtain probabilistic model we have to write equation (1) in orthogonal disjunctive 

normal form. This operation is not simple. Here we are faced with problem of fast increasing of 

function dimension and we are not stating intermediate mathematical expressions in this paper 

due to large volume. Methods and procedures of orthogonalization are described in [8]. After 

orthogonalization procedures we obtain orthogonal logical function  

 

Y1 = Z1  Z2 1Z
  Z3 1Z 2Z

  Z4 1Z 2Z 3Z
  Z5 1Z 2Z 3Z 4Z

  Z6 1Z 2Z 3Z 4Z 5Z
  

        Z7 1Z 2Z 3Z 4Z 5Z 6Z
 

 

where logical variables and signs of logical operations can be substituted with corresponding 

probabilities and signs of arithmetical operations. In result, we obtain probabilistic operational risk 

model: 

 

        P{Y1=1} = P(Z1)+P(Z2)(1-P(Z1)) + P(Z3)(1-P(Z1))(1-P(Z2)) +  

          + P(Z4)(1-P(Z1))(1-P(Z2)) (1-P(Z3)) + P(Z5)(1-P(Z1))(1-P(Z2))(1-P(Z3))(1-P(Z4)) + 

          + P(Z6)(1-P(Z1))(1-P(Z2))(1-P(Z3))(1-P(Z4))(1-P(Z5)) +        

P(Z7)(1-P(Z1))(1-P(Z2))(1-P(Z3))(1-P(Z4))(1-P(Z5))(1-P(Z6)).                                                        (2) 

 

Probabilistic risk model for one business line permits calculate the probability of losses at this 

business line if probabilities of initiating events are known. 

Such models are constructed for eight business lines to calculate probabilities of events Y1, …, 

Y8.  

Let construct probabilistic model for calculation of bank’s operational risk. Operational risk of 

bank is logical sum of probabilities of losses at eight business lines. 

Structural operational risk model is represented at fig. 2. 

 
Figure 2. Structural model of bank’s operational risk. 
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   Y = Y1  Y2  Y3  Y4  Y5  Y6  Y7  Y8,                                                                 (3) 

where:  

Y- bank’s operational risk, 

Yi – event on i bank’s business-line, i = 1,…,8. 

 

We obtain probabilistic model from logical model by orthogonalization way: 

 

    P{Y=1}=P1+P2(1-P1)+…+P8(1-P1)(1-P2)(1-P3)(1-P4)(1-P5) (1-P6)(1-P7).                                  (4)      

 

Note, this model can be applied for estimation of bank operational risk by the standardized 

approach with use of values P(Y1), P(Y2), …, P(Y8) instead of coefficients  in formula of capital 

resevation. Such modified formula permits determine the volume of the capital for covering losses 

more precisely because it takes into account functioning features of the concrete bank in 

comparison with coefficients , averaged on whole branch [9]. 

In practice, we don’t need use classification of events, offered by Basel II Capital Accord. LP-

models can be adopted for business lines and kinds of events in concrete bank. For example, in 

some Russian banks the additional ninth business line is used. Events, which were not classified on 

eight standard business lines, are referred to ninth business line. Basel II Capital Accord 

recommends refer these events to line where the most profit is.   

 

III. How to calculate economic capital volume ? 
 
In general case, for calculation of economic capital we have to calculate probabilities Pi,j,k and 

losses Li,j,k for every initiating event Zi,j,k by statistical data. Here: 

i = 1,2,…,8 – the number of business line;  

j = 1, 2,…,7 – kind of events;  

k =1,2,…,Nj – initiating events indexes in j-kind of events:  

Nj = 220 – the number of initiating events of the kind j. 

Initiating events probabilities are calculated by formula: 

 

                                                                     Pi,j,k = Ni,j,k / N,                                                            (5) 

       

where: Ni,j,k – the number of appearance of losses at business line i due to reason j and 

initiating event k; N – the number of operations at the business line of the bank in considered time 

interval.  

Estimation of economic capital volume consists of two parts: expected and unexpected losses. 

Economic capital for expected losses EL is calculated by statistics and can be obtained by 

summarizing of all losses per a year (true economic capital): 

 

                                                           

  


8

1

7

1 1

,,

i j

N

k

kji

j

LEL

,                                                    (6) 

 

where kjiL ,, - summarized losses due to realization (or several realization) event k of kind j at 

business line i during report period (for example, one year). 

Unexpected losses ULLP is suggested to estimate by formula of predictable damage for 

technical systems [10]:   
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                                                 ULLP = PY Lmax ,          (7) 

 

where: PY  - operational risk of bank is calculated by equation (4),  

       Lmax – maximal possible loss at business line, concrete operation (transaction) or in bank as 

a whole, depending from modeling level.  

Risk-manager should decide what losses will be chosen as Lmax, proceed from the situation. 

Gross receipt at business line, maximal losses at business line or operation (transaction) can be 

chosen, or Lmax can be given on basis of expert evaluation also.  

Economic capital volume is calculated by formula: 

 
                                                                  RSubLP = EL + ULLP.               (8) 

 

Value RsubLP is bottom limit of economic capital. 

The basic indicator approach determines economic capital for operational risk of bank have to 

be 15% of average gross receipt of bank during three years. For analysis we have to know top limit 

of possible losses from unfavorable economic situation and unforeseen rare events [11].  

Top limit estimation of the reserved capital is performed proceed from the integrated risk of 

the bank as a whole: 

 

                                                             RSup LP = PY Q ,             (9) 

 

where:  Q – gross receipt of the bank;  

            PY – the probability calculated by probabilistic model (4). 

Evaluations by (6), (8) and (9) will be different. Choice of the formula depends on data and 

expenses of data obtaining. Formula (6) estimates real losses of last years. Formula (8) gives bottom 

limit of reserved capital under known losses. However, in practice it is difficult to estimate 

precisely the value of losses due to operational risk event, therefore, we need to know top limit of 

possible losses. In case of unstable economic and political situation we recommend use formula (9) 

for calculation of maximal value of economic capital, using the volume of bank’s profit which can 

be lost in case of unfavorable events. Choice of formula depends on situation and this is duty of 

risk-manager. 

  

IV. Towards to integration 
 
The advantage of LP operational risk model is possibility to unite with other LP risk models. 

This allows develop a complex model to calculate integrated risk index of a bank.  

In activity of any bank there are events that influence on several risks in same time. These 

events are called “repeated”. Losses from repeated events have to be fixed in connection with those 

risks that were influenced by them. If they influence on several risks then the economic capital is 

made for every risk. In this case we have too large double economic capital. Of course, if there are 

several owners of the risk then every owner is responsible. But risk-managers have to pay large 

attention to these events. We offer to construct the LP risk model with repeated events influencing 

on several processes simultaneously. The complex LP risk model in bank with logical operations 

AND or OR, uniting LP operational risk model with LP models of other risks, allows perform 

quantitative estimation of integrated risk of bank and mark out repeated elements which influence 

on several risks at once [12].  

Operational risk value may be considered as the index of bank’s reliability. With small percent 

(about 5 %) [13] it influences significantly on all bank risks. So, operational risk estimation is 

important problem and good management of operational risk help to reduce losses from other 

risks. 
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Let construct the united LP-model of operational and credit risk with logical connection AND 

(fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. United model of operational and credit risks  

 

 
where: 

1- clients, products, business practice; 

2 – operations and process control; 

3 – damage of material assets;  

4 – organizational violations and system failures; 

5 – data transmission process violation;  

6 – wrong technique of credit risk estimation; 

7 – wrong credit portfolio estimation; 

8 – wrong calculation of economic capital volume; 

9 – mistake in guarantee estimation; 

10 - accident with borrower; 

11 - fraud; 

12 – economic situation changing;  

13 – mistakes in registration of borrower’s application;  

14 – inaccurate information given to borrower; 

15 – mistake in management of bank risks. 

 

Let mark out five events - 1, 2, 3, 4, 5 for operational risk, and events 6, 7, 8, 9, 10 for credit 

risk. Events 11, 12, 13, 14, 15 are repeated for operational and credit risks. To simplify the 

calculation, let event 11 is external and internal fraud together. 

Under the united structural model (fig.3) we write the logical risk model: 

 

                                               Y  =  YОpR    YCredR,     or 

 

                   Y = ( Y1  Y2  Y3  Y4  Y5  Y11  Y12  Y13   Y14  Y15 )  ( Y6   

                 Y7  Y8  Y9  Y10  Y11  Y12  Y13   Y14  Y15 )                                              (10) 
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Probabilistic functions, written for operational and credit risks separately, will look like 

function (4). Integrated risk is obtained by multiplication values P(YOpR =1) and P(YCredR =1). 

Let calculate, for analysis, probabilities of operational and credit risks and integrated risk 

(table 1) without repeated events 11-15. Further, we enter other events gradually, one by one, make 

calculations on changing models and fix the changing of integrated risk. Integrated risk will 

change on some value. This value is contribution of event in risk. In table 1 probabilities of initiating 

events are presented. Probabilities of events were obtained by experts with use of the method of 

summarized indexes [7, 14], taking into account the percent of operational risk in Russian banks is 

5% [13]. Expert estimation were obtained by same method for credit risk also but taking into 

account the average risk of credit portfolio is 25% and was recognized as satisfactory1.   

 
Table. 1. Results of calculations on model with repeated events. 

Event  1 variant 

(without 

repeated 

event) 

2 variant  

(1 repeated 

event) 

3 variant  

(2 repeated 

events) 

4 variant  

(3 repeated 

events) 

5 variant  

(4 repeated 

events) 

6 variant  

(5 repeated 

event) 

Clients, products 

and business 

practice 

0,00146 0,00146 0,00146 0,00146 0,00146 0,00146 

Operation and 

process control 
0,0138 0,0138 0,0138 0,0138 0,0138 0,0138 

Damage of material 

assets 
0,0015 0,0015 0,0015 0,0015 0,0015 0,0015 

Organizational 

violations and 

system failures  

0,00041 0,00041 0,00041 0,00041 0,00041 0,00041 

Data transmission 

process violation 
0,022 0,022 0,022 0,022 0,022 0,022 

Wrong technique of 

credit risk 

estimation 

0,05677 0,05677 0,05677 0,05677 0,05677 0,05677 

Wrong credit 

portfolio estimation 
0,051323 0,051323 0,051323 0,051323 0,051323 0,051323 

Wrong calculation 

of economic capital 

volume 

0,036733 0,036733 0,036733 0,036733 0,036733 0,036733 

Mistake in 

guarantee 

estimation 

0,050401 0,050401 0,050401 0,050401 0,050401 0,050401 

Accident with 

borrower 
0,016759 0,016759 0,016759 0,016759 0,016759 0,016759 

Fraud   0,0191 0,0191 0,0191 0,0191 0,0191 

Economic situation 

changing 

  
  0,0054 0,0054 0,0054 0,0054 

Mistakes in 

registration of 

borrower’s 

application 

  

    0,0041 0,0041 0,0041 

Inaccurate 

information given 

to borrower 

  

      0,00024 0,00024 

Mistake in           0,00518 

                                                           
1 This was obtained by expert way to demonstrate calculations. 
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Event  1 variant 

(without 

repeated 

event) 

2 variant  

(1 repeated 

event) 

3 variant  

(2 repeated 

events) 

4 variant  

(3 repeated 

events) 

5 variant  

(4 repeated 

events) 

6 variant  

(5 repeated 

event) 

management of 

bank risks 

OR 0,0387473 0,057103 0,062195 0,06604 0,066264 0,071101 

CR 0,195209 0,210581 0,214844 0,218063 0,218251 0,2223 

Integrated risk  0,007563 0,026519 0,031775 0,035745 0,035977 0,04097 

Contributions of repeated events are presented in table 2. 

 

Table 2. Contribution of repeated events in changing of risks 

Risk Risk without 

repeated 

events, % 

Contributio

n of event 1 

in changing 

of risk 

Contributio

n of event 2 

in changing 

of risk 

Contributio

n of event 3 

in changing 

of risk 

Contributio

n of event 4 

in changing 

of risk 

Contributio

n of event 5 

in changing 

of risk 

Difference 

between 

final result 

and 

primary 

result 

OR 3,87473 1,8087 0,5043 0,3824 0,0223 0,4837 3,23537 

CR 1,95209 1,5114 0,4222 0,3202 0,0187 0,4049 2,7091 

Integrated 

risk 
0,7563 1,8674 0,5207 0,3948 0,023 0,4993 3,34 

 

Repeated event make different contributions in operational and credit risks. At the same time 

the operational risk has increased on 3,23 percentage points due to repeated elements, credit risk - 

on 2,7 percentage points and integrated risk - on 3,34 percentage points. 

 Significances of initiating events for final event are presented in table 3. 

 

Table 3. Significances of events for final event 

Number of 

the initiating 

event 

Significance of the event  

1 +1.81595E-01 

2 +1.83867E-01 

3 +1.81602E-01 

4 +1.81404E-01 

5 +1.85409E-01 

6 +3.1944E-02 

7 +3.17609E-02 

8 +3.12798E-02 

9 +3.17300E-02 

10 +3.06444E-02 

11 +9.77704E-01 

12 +9.64237E-01 

13 +9.62978E-01 

14 +9.5926E-01 

15 +9.64023E-01 

 

As result we have obtained, repeated events that are initiating events for several risks have 

larger significance for final event.  

Integrated risk can be used as bank risk index. It allows classify bank in corresponding 

category of quality, reliability and safety. This is useful for investors, creditors, partners and other 
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interesting persons. Also, risk index allows to compare banks with each other.  

V. Conclusion 
 
Above-mentioned models are simple but they reflect the sense of the approach, based on tree 

of events, logics and probability theory. LP method is flexible and allows adopt models for 

concrete bank without limitation of event classification, suggested by Basel II Capital Accord. For 

example, in (Karaseva, 2012) there is a model of internal fraud in bank, describing this problem 

more detailed. Internal fraud model can be included in model (3) to increase the accuracy of 

operational risk estimation and economic capital calculation. 

Advantage of LP-model is possibility to analyze of operational risk (determination of events 

with largest contribution in losses) and analyze repeated events, which provide contributions in 

different risks. Taking into account repeated elements gives the more accurate estimation of 

integrated risk of bank. Integrated risk can be used for management purposes and classification. 

Offered approach is simple, transparent, understandable for bank personnel and does not 

require large expenses of money and resources. However, it can be realized only with a system of 

effective monitoring of operational risk (events have to be fixed). It is necessary to provide strict 

event classification in a bank (or use ready event classification from Basel II) in order to every 

initiating events will be classified to certain kind of certain business line without any doubts. 

Main serious problem in realization of logical and probabilistic technique of estimation and 

analysis of operational risk is providing of good motivation of bank’s employers to fix events 

without fear for their personal mistakes. Every employer has to fix occurred events promptly and 

pass reports to operational risk manager. The manager classifies events and inputs in database. 

Database information is used for regular re-training of model (calculation of probabilities of 

initiating events) in order to take into account change of economic situation and internal processes 

conditions and keep necessary accuracy of estimation.  
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Abstract 

 

Although the concept of statistical tolerance limits has been well recognized for long time, 

surprisingly, it seems that their applications remain still limited. Analytic formulas for the 

tolerance limits are available in only simple cases. Thus it becomes necessary to use new or 

innovative approaches which will allow one to construct tolerance limits on future order statistics 

for many populations. In this paper, a new approach to constructing lower and upper tolerance 

limits on order statistics in future samples is proposed. Attention is restricted to location-scale 

distributions under parametric uncertainty. The approach used here emphasizes pivotal quantities 

relevant for obtaining tolerance factors and is applicable whenever the statistical problem is 

invariant under a group of transformations that acts transitively on the parameter space. It does 

not require the construction of any tables and is applicable whether the past data are complete or 

Type II censored. The proposed approach requires a quantile of the F distribution and is 

conceptually simple and easy to use. For illustration, the normal and log-normal distributions are 

considered. The discussion is restricted to one-sided tolerance limits.  A practical example is 

given. 

 

Keywords: order statistics, F distribution, tolerance limits, location-scale distribution 

 

 

1. Introduction 
 

Statistical tolerance limits are an important tool often utilized in areas such as engineering, 

manufacturing, and quality control for making statistical inference on an unknown population. As 

opposed to a confidence limit that provides information concerning an unknown population 
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parameter, a tolerance limit provides information on the entire population; to be specific, one-

sided tolerance limit is expected to capture a certain proportion or more of the population, with a 

given confidence level. For example, an upper tolerance limit for a univariate population is such 

that with a given confidence level, a specified proportion or more of the population will fall below 

the limit. A lower tolerance limit satisfies similar conditions. It is often desirable to have statistical 

tolerance limits available for the distributions used to describe time-to-failure data in reliability 

problems. For example, one might wish to know if at least a certain proportion, say , of a 

manufactured product will operate at least T hours. This question can not usually be answered 

exactly, but it may be possible to determine a lower tolerance limit L(X1, …, Xn), based on a 

preliminary random sample (X1, …, Xn), such that one can say with a certain confidence  that at 

least 100 % of the product will operate longer than L(X1, …, Xn). Then reliability statements can be 

made based on L(X1, …, Xn), or, decisions can be reached by comparing L(X1, …, Xn) to T. Tolerance 

limits of the type mentioned above are considered in this paper. That is, if f (x) denotes the density 

function of the parent population under consideration and if S is any statistic obtained from the 

preliminary random sample (X1, …, Xn) of that population, then L(S) is a lower  probability 

tolerance limit for proportion  if 

  
( )

Pr ( ) ,
L S

f x dx  (1) 

and U(S) is an upper  probability tolerance limit for proportion   if  

   

( )

Pr ( ) ,
U S

f x dx  (2) 

where  is the parameter (in general, vector). 

The common distributions used in life testing problems are the normal, log-normal, 

exponential, Weibull, and gamma distributions [1]. Tolerance limits for the normal distribution 

have been considered in [2], [3], [4], and others.  

Tolerance limits enjoy a fairly rich history in the literature and have a very important role in 

engineering and manufacturing applications. Patel [5] provides a review (which was fairly 

comprehensive at the time of publication) of tolerance limits for many distributions as well as a 

discussion of their relation with confidence intervals for percentiles and prediction intervals. 

Dunsmore [6] and Guenther, Patil, and Uppuluri [7] both discuss 2-parameter exponential 

tolerance intervals and the estimation procedure in greater detail. Engelhardt and Bain [8] discuss 

how to modify the formulas when dealing with type II censored data. Guenther [9] and Hahn and 

Meeker [10] discuss how one-sided tolerance limits can be used to obtain approximate two-sided 

tolerance intervals by applying Bonferroni's inequality. Tolerance limits on order statistics in 

future samples coming from a two-parameter exponential distribution have been considered in 

[11]. 

In contrast to other statistical limits commonly used for statistical inference, the tolerance 

limits (especially on order statistics) are used relatively rarely. One reason is that the theoretical 

concept and computational complexity of the tolerance limits is significantly more difficult than 

that of the standard confidence and prediction limits. Thus it becomes necessary to use new or 

innovative approaches which will allow one to construct tolerance limits on future order statistics 

for many populations. 

In this paper, a new approach to constructing lower and upper tolerance limits on order 

statistics in future samples is proposed. For illustration, the normal and log-normal distributions 
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that are commonly used in reliability and risk theory are considered.  Although the concept of 

statistical tolerance limits has been well recognized for long time, surprisingly, it seems that their 

applications remain still limited. 

 

2. Mathematical Preliminaries 

 

2.1. Probability Distribution Function of Order Statistic 

 

Theorem 1. If there is a random sample of m ordered observations Y1…Ym from a known 

distribution (continuous or discrete) with density function f (y), distribution function F (y), then 

the probability distribution function of the kth order statistic Yk, k{1, 2, …, m}, is given by 

 

2( 1),2

1 ( ) 2

( ) 2( 1)

( ) ( ) ,

k

k

k k m k k

F y k

F y m k

P Y y f x dx









 



 

  

 

(3) 

where 

2( 1)/2 1

2( 1),2

2( 1) 2( 1)1
( )

2 22( 1) 2
,

2 2

m k

m k k

m k m k
f x x

k km k k  

 

 [2( 1) 2 ]/2
2( 1)

 1 ,    0,
2

m k k
m k

x x
k

  (4) 

is the probability density function of an F distribution with 2(mk+1) and 2k degrees of freedom. 

Proof. Suppose an event occurs with probability p per trial. It is well-known that the 

probability P of its occurring k or more times in m trials is termed a cumulative binomial 

probability, and is related to the incomplete beta function Ix(a, b) as follows: 

  (1 ) ( , 1).
m

j m j
p

j k

m
P p p I k m k

j
 (5) 

It follows from (5) that  

( )
{ } [ ( )] [1 ( )] ( , 1)

k

m
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m
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2( 1)/2 1

2

1 2 2
 

2( 1) 2( 1)
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u k k du

u m k m k u
 

 

2( 1)/2

 [2( 1) 2 ]/2

2( 1)/2 1

1 ( ) 2

( ) 2( 1)

2( 1)

2 2( 1)
1 ,

22( 1) 2
,

2 2
k

k
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m k k
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F y m k

m k

k m k
x x dx

km k k
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where 

  
1 2

.
2( 1)

u k
x

u m k
 (7) 

This ends the proof. 

Corollary 1.1. 
1 ( ) 2

( ) 2( 1)

2( 1),2

0

( ) 1 { } ( ) .

k

k

F y k

F y m k

k k k k m k k
P Y y P Y y f x dx

 

(8) 

Corollary 1.2. If yk,m; is the quantile of order  for the distribution of Yk, we have from (8) that 

yk,m; is the solution of 

, ; 2( 1),2 ;1
( ) [ ( 1) ],
k m m k k

F y k k m k q  (9) 

where 
2( 1),2 ;1m k kq   

is the quantile of order 1 for the F distribution with 2(mk+1) and 2k degrees of 

freedom.   

 

2.2. Normal and Log-Normal Distributions 

 

The normal and log-normal distributions are commonly used to model certain types of data that 

arise in several fields of engineering as, for example, different types of lifetime data (see, e.g., [12]). 

The goal of  modeling certain types of data is to provide quantitative forecasts of various system 

performance measures such as service level, expected waiting time, agent's occupancy, schedule 

efficiency, cost etc. Evaluation of these performance measures is important to making optimal 

decisions about overall cost, system performance, which has to be within the allowable budget and 

other performance based constraints. 

Particular properties of the log-normal random variable (as the non-negativeness and the 

skewness) and of the log-normal hazard function (which increases initially and then decreases) 

make log-normal distribution a suitable fit for some engineering data sets. The log-normal 

distribution is used to model the lives of units whose failure modes are of a fatigue-stress nature. 

Since this includes most, if not all, mechanical systems, the log-normal distribution can have 

widespread application. Consequently, the log-normal distribution is a good companion to the 

Weibull distribution when attempting to model these types of units. As may be surmised by the 

name, the log-normal distribution has certain similarities to the normal distribution. A random 

variable is log-normally distributed if the logarithm of the random variable is normally 

distributed. Because of this, there are many mathematical similarities between the two 

distributions. For example, the mathematical reasoning for the construction of the probability 

plotting scales and the bias of parameter estimators is very similar for these two distributions. 
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Nevertheless, the log-normal distribution differs from the normal distribution in several ways. A 

major difference is in its shape: where the normal distribution is symmetrical, a lognormal one is 

not. Because the values in a lognormal distribution are positive, they create a right skewed curve 

(Figure 1).  

                                 ( )f x   

x  

Figure 1. Log-normal probability density functions with =0 for selected values of  2. 

 

The log-normal distribution has played major roles in diverse areas of science. Royston [13] 

modeled survival time in cancer with an emphasis on prognostic factors using the log-normal 

distribution. Log-normal distributions gave appropriate description of the overall service times 

and the service times of administrative, e-mail, miscellaneous and network jobs.  

Finally, log-normal distributions are self-replicating under multiplication and division, i.e., 

products and quotients of log-normal random variables are themselves log-normal distributions 

(Crow and Shimizu [14]; Aitchison and Brown [15]), a result often exploited in back-of-the-

envelope calculations. 

A positive random variable X is said to be log-normally distributed with two parameters  

and  2 if lnX X is normally distributed with mean  and variance  2. The two-parameter log-

normal distribution is denoted by (, 2); the corresponding normal distribution is denoted by 

N(, 2). The probability density function (pdf) of X having (, 2) is  

    

2

2

1 [ln ]
( ) exp ,    0,     < ,    0,

22

x
f x x

x



 

 

 
      

   

(10) 

where =(, 2). The cumulative distribution function (cdf)) of X   is given by  

  

ln
( ) Pr( ) .

x
F x Z x





 
   

   

(11) 

It follows from (10) that 

       

2

2

( )1
~ ( ) exp ,   ,

22

x
X f x x  (12) 

that is, X ln X ~ N(, 2), where  = (, 2),  <  <  is the location parameter and  > 0 is the 

scale parameter. The cdf of the normal distribution is given by  
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2

2

( )1
( ) exp .

22

y
x

F x dx  (13) 

It is known (Nechval and Vasermanis [16]) that the complete sufficient statistic for the parametric 

vector , based on observations in a random sample (X1, ..., Xn) of size n from the normal 

distribution (13) is given by 

  
2 2
1

1 1

/ ,  ( ) / ( 1) .
n n

i i
i i

S X X n S X X n  (14) 

Here the following theorem takes place. 

Theorem 2. Let (X1, ..., Xn) be a preliminary random sample from the normal distribution (13) , 

where it is assumed that the parametric vector  = (, 2) is unknown. Then the joint probability 

density function of the pivotal quantities, 

   
1

( )
,

n X
V






    

2

1
2 2

( 1)
,

n S
V






 
(15) 

is given by 

      1 1 2 2( ) ( ) ( ),f v f v f v  (16) 

where  

     1 2( , ),V V V  (17) 
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1
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Proof. The joint density of X1, ..., Xn is given by 
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Using the invariant embedding technique (Nechval et al. [17], [18], [19]), we transform (20) to 
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(21)

 

Normalizing (21), we obtain (16). This ends the proof. 

Thus,  

      
2

1 2 1~ (0,1),    ~ ,nV N V     (22) 

where V2 is statistically independent of V1. 

Theorem 3. If V1 is a normally distributed random variable with unit variance and zero mean, 

and V2 is a chi-squared distributed random variable with n-1 degrees of freedom that is statistically 

independent of V1, then 
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is a non-central t-distributed random variable with n-1 degrees of freedom and non-centrality 

parameter , where  
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is the probability density function of T, 

     
2( 1),W W t n   

 (26) 

  
 

( 1)/2
( 1)/2 1

1, ( 1)/2

0

( 1)
( ) Pr( ) exp( ( 1) / 2) ( )

2 ( 1) / 2

n
n

n n

n
F t T t w n w t w dw

n


 

  


      

  
 

(27) 

is the cumulative distribution function of T. (x) is the standard normal distribution function. Note 

that the non-centrality parameter  may be negative.  

Proof. It follows from (23) that 

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Noncentrality_parameter
https://en.wikipedia.org/wiki/Noncentrality_parameter
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w

  
         

   

(28) 

Since it follows from (24) and (28) that 

    

  1

0

Pr( ) Pr( | ) ( ) ( ) ,nT t E T t W t w f w dw



     
 

(29) 

we get the cumulative distribution function 
1, ( )nF t 

 of the non-central t-distribution given in (27). 

It is easy to show that the probability density function of T defined in (25) is given by 

   1, 1,( ) ( ).n nf t F t   


 
(30) 

This completes the proof. 

 

3. Tolerance Limits on Order Statistic 

 

3.1. Lower Tolerance Limit 

 

Theorem 4. Let X1, …, Xn be observations from a preliminary sample of size n from a normal 

distribution defined by the probability density function (12). Then a lower one-sided -content 

tolerance limit at a confidence level , Lk Lk (S) (on the kth order statistic Yk, k{1, …, m},  from a set 

of m future ordered observations Y1  …  Ym  also from the distribution (12) ), which satisfies  

    Pr ( ) ,
k k

P Y L  (31) 

is given by 

   1,k LL X S   (32) 

where  

 , ; ,L rt n    (33) 

is the lower tolerance factor, 𝑡𝑟,; is the quantile of order  for the non-central t-distribution with 

r=n1 degrees of freedom and non-centrality parameter 1 ,z n
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quantile of the standard normal distribution,     

  2( 1),2 ; 2( 1),2 ;
( 1) [( 1) ],

m k k m k k
m k q m k q k  (34) 

2( 1),2 ;m k kq    is the quantile of order  for the F distribution with 2(mk+1) and 2k degrees of 

freedom. 

Proof. It follows from (8), (13) and (31) that 
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https://en.wikipedia.org/wiki/Noncentrality_parameter
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where   

    1
( ) ,

L k
L X S  (36) 

is the lower tolerance factor,  

    1 ,    1,    .Lz n r n t n


        (37) 

It follows from (31), (35) and (37) that the lower tolerance factor 
L should be chosen such that 

 , , , , ;( ) ( ) ( ) ,r r L r rF t F n F t          (38) 

where , ;rt  is the quantile of order  for the non-central t-distribution with r degrees of freedom 

and non-centrality parameter . It follows from (38) that 

     , ; .L rt n    (39) 

It follows from (36) that 1.k LL X S   This completes the proof. 

Corollary 4.1. It follows from (35) that  1 1Pr L n W V z n


    can be transformed as 

follows: 
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where 

https://en.wikipedia.org/wiki/Noncentrality_parameter
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  1,    .Lt n z n


       (41) 

Then it follows from (31) and (40) that t has to be found such that 
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where 
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 is the quantile of order  for the non-central t-distribution with r=n1 degrees of 

freedom and non-centrality parameter , 
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is the cumulative distribution function of T,  
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is the probability density function of T, where 
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Corollary 4.2. If  
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This form of the density function is derived in Rao [20] and appears in Searle [21]. In both Rao and 

Searle,   is incorrectly omitted from the denominator. It should also be noted that the central t-

distribution is just a special case of the non-central t with  = 0.  

Corollary 4.3. If k=m=1, then 

   1,    .z n      
 

(48) 

Corollary 4.4. Let 1X   …  nX  be ordered observations from a preliminary sample of size n 

from a log-normal distribution defined by the probability density function (10). Then a lower one-

sided -content tolerance limit at confidence level , ( )k kL L S  (on the kth order statistic ,kY  

https://en.wikipedia.org/wiki/Noncentrality_parameter
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k{1, …, m}, from a set of m future ordered observations 1Y   …  kY  also from the distribution 

(10) ), which satisfies 

     Pr ( ) ,
k k

P Y L  (49) 

is given by 

      1exp exp ,k k LL L X S    (50) 

where  
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3.2. Upper Tolerance Limit 

 

Theorem 5. Let X1, …, Xn be observations from a preliminary sample of size n from a normal 

distribution defined by the probability density function (12). Then an upper one-sided -content 

tolerance limit at a confidence level , Uk Uk (S) (on the kth order statistic Yk from a set of m future 

ordered observations Y1…Ym also from the distribution (12)), which satisfies 
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P Y U  (52) 

is given by 
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where  
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2( 1),2 ;1m k kq     is the quantile of order 1 for the F distribution with 2(mk+1) and 2k degrees of 

freedom. 

Proof. It follows from (3), (13) and (52) that 
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  (56) 

where   

   1
( ) ,

U k
U X S  (57) 

is the upper tolerance factor,  

11 ,    1,    .Uz n r n t n
 

        (58) 

It follows from (49), (56) and (58) that the upper tolerance factor 
U should be chosen such that 

  , , , , ;1( ) ( ) ( ) 1 ,r r U r rF t F n F t            (59) 

where , ;1rt   is the quantile of order 1 for the non-central t-distribution with r degrees of freedom 

and non-centrality parameter . It follows from (59) that 

  , ;1 .U rt n     (60) 

It follows from (57) that 1.k UU X S  This completes the proof. 

Corollary 5.1. Let 1,X  …  nX  be observations from a preliminary sample of size n from a log-

normal distribution defined by the probability density function (10). Then an upper one-sided -

content tolerance limit at confidence level , ( )k kU U S  (on the kth order statistic ,kY  k{1, …, m}, 

from a set of m future ordered observations 1Y   …  kY  also from the distribution (10) ), which 

satisfies 

https://en.wikipedia.org/wiki/Noncentrality_parameter
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     Pr ( ) ,
k k

P Y U  (61) 

is given by 

     1exp exp ,k k UU U X S    (62) 

where 

ln ,  {1,  ...,  },i iX X i n    2 2

1
1 1

/ ,  ( ) / ( 1),
n n

i i
i i

X X n S X X n  

11 ,z n
      1 2( 1),2 ;1 2( 1),2 ;1

( 1) [( 1) ],
m k k m k k

m k q m k q k  

    , ;1 ,arg ( ) 1 .r rt F t   
       1,r n    , ;1 .U rt n     (63) 

Remark 1. It will be noted that an upper tolerance limit may be obtained from a lower 

tolerance limit by replacing    by 1,   by 1.  

 

4. Practical Example 
 

A manufacturer of semiconductor lasers has the data on lifetimes (in terms of hours) obtained 

from testing n=10 semiconductor lasers. These data are given in Table 1. 
  

Table 1.  The data on lifetimes obtained from testing n=10 semiconductor lasers 
 

Observations (in terms of hours) 

1X  
1X  

1X  
1X  

1X  
1X  

1X  
1X  

1X  
1X  

18657 18960 19771 21015 21183 21960 22881 24642 25373 27373 

 

A buyer tells the laser manufacturer that he wants to place two orders for the same type of 

semiconductor lasers to be shipped to two different destinations. The buyer wants to select a 

random sample of m=5 semiconductor lasers from each shipment to be tested. An order is accepted 

only if all of 5 semiconductor lasers in each selected sample meet the warranty lifetime (in terms of 

hours). What warranty lifetime (in terms of hours) should the manufacturer offer so that all of 5 

semiconductor lasers in each selected sample meet the warranty with probability of 0.95?  

In order to find this warranty lifetime, the manufacturer wishes to use a random sample of 

size n=10 given in Table 1 and to calculate the lower one-sided simultaneous tolerance limit Lk=1(S) 

(warranty lifetime) which is expected to capture a certain proportion, say, =0.95 or more of the 

population of selected items (m=5), with the given confidence level =0.95. This tolerance limit is 

such that one can say with a certain confidence   that at least 100 % of the semiconductor lasers in 

each sample selected by the buyer for testing will operate longer than L1(S). 

Goodness-of-fittesting. It is assumed that the data of Table 1 follow the log-normal probability 

distribution (10), where the parameters  and  are unknown. Thus, for the above example, we 

have that n =10, m =5, k = 1,  = 0.95,  = 0.95, 

 
2 2
1

1 1

/ 10,  ( ) / ( 1) 0.016302 .
n n

i i
i i

S X X n S X X n  (64) 

We assess the statistical significance of departures from the model (10) by performing the 

Anderson–Darling goodness-of-fit test. The Anderson–Darling test statistic value is determined by 
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  2

1

1

(2 1) ln ( ) ln 1 ( ) ,
n

i n i

i

A i F x F x n n   



 
      

 


  

(65) 

where F ( ) is the cumulative distribution function of ln ,X X  

    1( , ),x s      (66) 

n is the number of observations. 

The result from (65) needs to be modified for small sampling values. For the normal 

distribution the modification of A2 is 

   
2 2 2

mod (1 0.75 / 2.25 / ).A A n n  
 (67) 

The 
2

modA  value must then be compared with critical values, 
2 ,A  which depend on the significance 

level  and the distribution type. As an example, for the normal distribution the determined 
2

modA  

value has to be less than the following critical values for acceptance of goodness-of-fit (see Table 2): 

 

Table 2.  Critical values for 
2

modA  
 

 0.1 0.05 0.025 0.01 
2A  0.631 0.752 0.873 1.035 

 

For this example, =0.05, 
2

0.05 0.752,A 
 
 

 

  
10

2

1

1

(2 1) ln ( ) ln 1 ( ) 10 10 0.193174,i n i

i

A i F x F x   



 
       

 


 

(68) 

  
2 2 2 2

mod 0.05(1 0.75 /10 2.25 /10 ) 0.212 0.752.A A A     
 (69) 

Thus, there is not evidence to rule out the log-normal model (10). 

Finding lower tolerance limit (warranty lifetime for semiconductor laser). Now the lower one-sided 

simultaneous -content tolerance limit at the confidence level , L1  L1 (S) (on the order statistic Y1 

from a set of m = 5 future ordered observations Y1  … Ym ) can be obtained from (50).   

Since m=5, k=1, =0.95, it follows from (51) that: 

  2( 1),2 ; 2( 1),2 ;
0.989796( 1) [( 1) ,]

m k k m k k
m k q m k q k  (70) 

  
11 9,    =7.3325,   =0.95,r n z n


     

 
(71) 

the quantile of order  for the non-central t-distribution with r degrees of freedom and non-

centrality parameter  is given by  

    
 , ; ,arg ( ) 12.5512,r rt F t    

 
(72) 

the lower tolerance factor is given by 

    , ; 3.969.L rt n    
 

(73) 

https://en.wikipedia.org/wiki/Noncentrality_parameter
https://en.wikipedia.org/wiki/Noncentrality_parameter
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Now it follows from (50), (64) and (73) that 

 1 1exp 13270.k LL X S   
 

(74)  

Statistical inference. Thus, the manufacturer has 95% assurance that at least 100 % of the 

semiconductor lasers in each sample (m=5) selected by the buyer for testing will operate (in terms 

of hours) no less than L1=13270 hours. 

 

5. Conclusion 
 

This paper introduces a methodology to construct the one-sided tolerance limits on order statistics 

in future samples coming from location-scale distributions under parametric uncertainty. For 

illustration, the normal and log-normal distributions are considered. These distributions play a 

vital role in many applied problems of biology, economics, engineering, financial risk 

management, genetics, hydrology, mechanics, medicine, number theory, statistics, physics, 

psychology, reliability, etc., and have been extensively studied, both from theoretical and 

applications point of view, by many researchers, since its inception. 

It will be noted that the theoretical concept and computational complexity of the tolerance 

limits is significantly more difficult than that of the standard confidence and prediction limits. 

Thus it becomes necessary to use new or innovative approaches which will allow one to construct 

tolerance limits on future order statistics for many populations. The concept proposed in this paper 

can be extended to two-sided tolerance limits too.  
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Abstract 

 
 Recurrence and ergodic properties are established for a single–server queueing system with variable 

intensities of arrivals and service. Convergence to stationarity is also interpreted in terms of 

reliability theory.  
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1  Introduction 
 
In the last decades, queueing systems generalising 𝑀/𝐺/1/∞, or 𝑀/𝐺/1 (cf. [7]) – one of the most 

important queueing systems – attracted much attention, see [1] – [5], [9]. In this paper a single–

server system similar to [10, 11] is considered, in which  intensities of new arrivals as well as of 

their service may depend on the “whole state” of the system and the whole state includes the 

number of customers in the system – waiting and on service –  and on the elapsed time of the last 

service, as well as on the elapsed time since the end of the last service. Batch arrivals are not 

allowed. The news in comparison to [10, 11] is that at any state, even if the system idle (no service), 

the intensity of new arrivals may depend on the time from the last end of service. The details of the 

system description will be formalised in the beginning of the next section. By the  m-availability 

factor of the system we understand the probability of the idle state if 𝑚 = 0, or probability of 𝑚 

customers in total on the server and in the queue. We do not use notation 𝐺/𝐺/1 (or 𝐺𝐼/𝐺𝐼/1) only 

because some conditions on intensities are assumed, which makes the model slightly less general. 

The problem addressed in the paper is how to estimate convergence rate of characteristics of the 

system including the 𝑚-availability factors to their stationary values. 

The  elapsed service time is assumed to be known at any moment, but the remaining service 

times for each customer are not. For definiteness, the discipline of serving is FIFO, although other 

disciplines may be also considered. 

The paper consists of the Section 1 – Introduction, of the setting and main result in the 

Section 2, of the auxiliary lemmata in the Section 3 and of the short sketch of the proof of the main 

result in the Section 4. 

                                                           
2 The work was prepared within the framework of a subsidy granted to the HSE by the Government of the Russian 

Federation for the implementation of the Global Competitiveness Program, and supported by the RFBR grant 14-01-00319-

a. 
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2  The setting and main results 
 

2.1  Defining the process 
 

Let us present the class of models under investigation in this paper. Here the state space is 

a union of subspaces,  
 𝒳 = {(0, 𝑦):  𝑦 ≥ 0} ∪ ⋃∞

𝑛=1 {(𝑛, 𝑥, 𝑦):  𝑥, 𝑦 ≥ 0}. 

Functions of class 𝐶1(𝒳) are understood as functions with classical continuous derivatives with 

respect to the variable 𝑥. Functions with compact support on 𝒳 are understood as functions 

vanishing outside some domain bounded in this metric: for example, 𝐶0
1(𝒳) stands for the class of 

functions with compact support and one continuous derivative. There is a generalised Poisson 

arrival flow with intensity 𝜆(𝑋), where 𝑋 = (𝑛, 𝑥, 𝑦)   𝑓𝑜𝑟  𝑎𝑛𝑦  𝑛  ≥   1 , and 𝑋 = (0, 𝑦)   𝑓𝑜𝑟  𝑛  =

  0   . Slightly abusing notations, it is convenient to write 𝑋 = (𝑛, 𝑥, 𝑦) for 𝑛 = 0 as well, assuming 

that in this case 𝑥 = 0. If 𝑛 > 0, then the server is serving one customer while all others are waiting 

in a queue. When the last service ends, immediately a new service of the next customer from the 

queue starts. If 𝑛 = 0 then the server remains idle until the next customer arrival; the intensity of 

such arrival at state (0, 𝑦) ≡ (0,0, 𝑦) may be variable depending on the value 𝑦, which stands for 

the elapsed time from the last end of service. Here 𝑛 denotes the total number of customers in the 

system, and 𝑥 stands for the elapsed time of the current service (except for 𝑛 = 0, which was 

explained earlier), and 𝑦 is the elapsed from from the last arrival.  Normally, intensity of arrivals 

depend on 𝑛 and 𝑦, while intensity of service depends on 𝑛 and 𝑥; however, we allow more 

general dependence. Denote 𝑛𝑡 = 𝑛(𝑋𝑡) – the number of customers corresponding to the state 𝑋𝑡, 

and 𝑥𝑡 = 𝑥(𝑋𝑡), the second component of the process (𝑋𝑡), and 𝑦𝑡 = 𝑦(𝑋𝑡), the third component of 

the process (𝑋𝑡) (the third if 𝑛 > 0)). For any 𝑋 = (𝑛, 𝑥, 𝑦), intensity of service ℎ(𝑋) ≡ ℎ(𝑛, 𝑥, 𝑦) is 

defined; it is also convenient to assume that ℎ(𝑋) = 0 for 𝑛(𝑋) = 0. Both intensities 𝜆 and ℎ are 

understood in the following way, which is a definition: on any nonrandom interval of time [𝑡, 𝑡 +

Δ), conditional probability given 𝑋𝑡 that the current service will  not be finished and there will be 

no new arrivals reads,  

 exp (−∫
Δ

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠) 𝑑𝑠). (1) 

 In the sequel, 𝜆 and ℎ are assumed to be  bounded. In this case, for Δ > 0 small enough, the 

expression in (1) may be rewritten as  

 1 − ∫
Δ

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠) 𝑑𝑠 + 𝑂(Δ2),        Δ → 0, (2) 

 and this what is “usually” replaced by  
 1 − (𝜆(𝑋𝑡) + ℎ(𝑋𝑡))Δ + 𝑂(Δ2). 

However, in our situation, the latter replacement may be incorrect because of discontinuities of the 

functions 𝜆 and ℎ. Emphasize that from time 𝑡 and until the next jump, the evolution of the process 

𝑋 is  deterministic, which makes the process  piecewise-linear Markov, see, e.g., [7]. The (conditional 

given 𝑋𝑡) density of the moment of a new arrival  or of the end of the current service after 𝑡 at 𝑥𝑡 +

𝑧, 𝑧 ≥ 0 equals,  

 (𝜆(𝑛𝑡 , 𝑥𝑡 + 𝑧, 𝑦𝑡 + 𝑧) + ℎ(𝑛𝑡 , 𝑥𝑡 + 𝑧, 𝑦𝑡 + 𝑧))exp (−∫
Δ

0
(𝜆 + ℎ)(𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠)) 𝑑𝑠). (3) 

 Further, given 𝑋𝑡, the moments of the next “candidates” for jumps up and down are conditionally 

independent and have the (conditional – given 𝑋𝑡) density, respectively,  

 

𝜆(𝑋𝑡 + 𝑧)exp(−∫
𝑧

0
𝜆(𝑋𝑡 + 𝑠) 𝑑𝑠)  

 𝑎𝑛𝑑   

ℎ(𝑋𝑡 + 𝑧)exp(−∫
𝑧

0
ℎ(𝑋𝑡 + 𝑠) 𝑑𝑠), 𝑧 ≥ 0.

 (4) 

 (Here 𝑋𝑡 + 𝑠:= (𝑛𝑡 , 𝑥𝑡 + 𝑠, 𝑦𝑡 + 𝑠).) Notice that (3) does correspond to conditionally independent 

densities given in (4). 
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2.2  Main result 
 Let  
 Λ:= sup

𝑛,𝑥,𝑦: 𝑛>0
𝜆(𝑛, 𝑥, 𝑦) < ∞. 

For establishing convergence rate to the stationary regime, we assume similarly to [10, 11],  

 inf
𝑛>0,𝑦

ℎ(𝑛, 𝑥, 𝑦) ≥
𝐶0

1+𝑥
,    𝑥 ≥ 0. (5) 

 We also assume a new condition related to 𝜆0(𝑡) = 𝜆(0,0, 𝑡), which was constant in the earlier 

papers: now it is allowed to be variable and satisfying  

 0 < inf
𝑡≥0

𝜆0(𝑡) ≤ sup
𝑡≥0

𝜆0(𝑡) < ∞. (6) 

 Recall that the process has no explosion with probability one due to the boundedness of both 

intensities, i.e., the trajectory may have only finitely many jumps on any finite interval of time. 

 

Theorem 1  Let the functions 𝜆 and ℎ be Borel measurable and bounded and let the assumptions 

(5) and (6) be satisfied. Then, under the assumptions above, if 𝐶0 is large enough, then there exists a unique 

stationary measure 𝜇. Moreover, for any 𝑚 > 𝑘, 𝐶 > 0 there exists 𝐶̅ > 0 such that if 𝐶0 ≥ 𝐶̅, then for any 

𝑡 ≥ 0,  

 ∥ 𝜇𝑡
𝑛,𝑥,𝑦

− 𝜇 ∥𝑇𝑉≤ 𝐶 
(1+𝑛+𝑥+𝑦)𝑚

(1+𝑡)𝑘+1 , (7) 

 where 𝜇𝑡
𝑛,𝑥,𝑦 is a marginal distribution of the process (𝑋𝑡 , 𝑡 ≥ 0) with the initial data 𝑋 = (𝑛, 𝑥, 𝑦) ∈

𝒳.  

 

 

Remark 1 It is plausible that the bound in (7) may be improved so that the right hand side does not 

depend on 𝑦. Moreover, given all other constants, the value 𝐶 in (7) may be made “computable”, with a 

rather involved but explicit dependence on other constants. Moreover, it is likely that the condition (6) may 

be replaced by a weaker one,  

 
𝐶0′

1+𝑡
≤ 𝜆0(𝑡) ≤ sup

𝑡≥0
𝜆0(𝑡) < ∞, (8) 

 along with the assumption that 𝐶′0 is large enough. However, all these issues require a bit more 

accuracy in the calculus and we do not pursue these goals here leaving them until further 

publications with complete technical details.  

 

 

3  Lemmata 
 
Recall [6] that the generator of a Markov process (𝑋𝑡 , 𝑡 ≥ 0) is an operator 𝒢, such that for a 

sufficiently large class of functions 𝑓  

 sup
𝑋

lim
𝑡→0

‖
𝐸𝑋𝑓(𝑋𝑡)−𝑓(𝑋)

𝑡
− 𝒢𝑓(𝑋)‖ = 0 (9) 

 in the norm of the state space of the process; the notion of generator does depend on this norm. 

An operator 𝒢 is called a  mild generalised generator (another name is extended generator) if (9) is 

replaced by its corollary (10) below called  Dynkin’s formula, or  Dynkin’s identity [6, Ch. 1, 3],  

 𝐸𝑋𝑓(𝑋𝑡) − 𝑓(𝑋) = 𝐸𝑋 ∫
𝑡

0
𝒢𝑓(𝑋𝑠) 𝑑𝑠, (10) 

 also for a wide enough class of functions 𝑓. We will also use the non-homogeneous counterpart of 

Dynkin’s formula,  

 𝐸𝑋𝜑(𝑡, 𝑋𝑡) − 𝜑(0, 𝑋) = 𝐸𝑋 ∫
𝑡

0
(

∂

∂𝑠
𝜑(𝑠, 𝑋𝑠) + 𝒢𝜑(𝑠, 𝑋𝑠))  𝑑𝑠, (11) 

 for appropriate functions of two variables (𝜑(𝑡, 𝑋)). Both (10) and (11) play a very important role 

in analysis of Markov models and under our assumptions may be justified similarly to [11]. Here 𝑋 

is a (non-random) initial value of the process. Both formulae (10)–(11) hold true for a large class of 

functions 𝑓, 𝜑 with 𝒢 given by the standard expression,  
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 𝒢𝑓(𝑋): =
∂

∂𝑥
𝑓(𝑋)1(𝑛(𝑋) > 0) +

∂

∂𝑦
𝑓(𝑋) 

  
 +𝜆(𝑋)(𝑓(𝑋+) − 𝑓(𝑋)) + ℎ(𝑋)(𝑓(𝑋−) − 𝑓(𝑋)), 

 where for any 𝑋 = (𝑛, 𝑥, 𝑦),  
 𝑋+: = (𝑛 + 1, 𝑥, 0),    𝑋−: = ((𝑛 − 1) ∨ 0,0, 𝑦) 

(here 𝑎 ∨ 𝑏 = max(𝑎, 𝑏)). Under our minimal assumptions on regularity of intensities this may be 

justified similarly to [11]. 

 

Lemma 1  If the functions 𝜆 and ℎ are Borel measurable and bounded, then the formulae (10) and 

(11) hold true for any 𝑡 > 0 for every 𝑓 ∈ 𝐶𝑏
1(𝒳) and 𝜑 ∈ 𝐶𝑏

1([0,∞)×𝒳), respectively. Moreover, the 

process (𝑋𝑡 , 𝑡 ≥ 0) is strong Markov with respect to the filtration (ℱ𝑡
𝑋 , 𝑡 ≥ 0).  

 

  

 Further, let  

 𝐿𝑚(𝑋) = (𝑛 + 1 + 𝑥 + 𝑦)𝑚,    𝐿𝑘,𝑚(𝑡, 𝑋) = (1 + 𝑡)𝑘𝐿𝑚(𝑋). (12) 

 The extensions of Dynkin’s formulae for some unbounded functions hold true: we will need them 

for the Lyapunov functions in (12).  

Corollary 1  Under the assumptions of the Lemma 1,  

 𝐿𝑚(𝑋𝑡) − 𝐿𝑚(𝑋) = ∫
𝑡

0
𝜆(𝑋𝑠)[    (𝐿𝑚(𝑋𝑠

(+)
) − 𝐿𝑚(𝑋𝑠))     

  (13) 

 +ℎ(𝑋𝑠)(𝐿𝑚(𝑋𝑠
−) − 𝐿𝑚(𝑋𝑠)) +

∂

∂𝑥
𝐿𝑚(𝑋𝑠)1(𝑛(𝑋𝑠) > 0) +

∂

∂𝑦
𝐿𝑚(𝑋𝑠)]  𝑑𝑠 + 𝑀𝑡 , 

 with some martingale 𝑀𝑡, and also  

 𝐿𝑘,𝑚(𝑡, 𝑋𝑡) − 𝐿𝑘,𝑚(0, 𝑋) = ∫
𝑡

0
[𝜆(𝑋𝑠)(𝐿𝑘,𝑚(𝑠, 𝑋𝑠

(+)
) − 𝐿𝑘,𝑚(𝑠, 𝑋𝑠))     

  (14) 

 +ℎ(𝑋𝑠)(𝐿𝑘,𝑚(𝑠, 𝑋𝑠
−) − 𝐿𝑘,𝑚(𝑠, 𝑋𝑠)) + (

∂

∂𝑥
1(𝑛(𝑋𝑠) > 0) +

∂

∂𝑦
+

∂

∂𝑠
) 𝐿𝑘,𝑚(𝑠, 𝑋𝑠)]  𝑑𝑠 +

�̃�𝑡 , 

 with some martingale �̃�𝑡.  

 About a martingale approach in queueing models see, for example, [8]. The proof of the 

Lemma 1 is based on the next three Lemmata. The first of them is a rigorous statement concerning 

a well-known folklore property that probability of “one event” on a small nonrandom interval of 

length Δ is of the order 𝑂(Δ) and probability of “two or more events” on the same interval is of the 

order 𝑂(Δ2). Of course, this is a common knowledge in queueing theory, yet for discontinuous 

intensities it has to be, at least, explicitly stated. 

 

Lemma 2  Under the assumptions of the Theorem 1, for any 𝑡 ≥ 0,  

 𝑃𝑋𝑡
( 𝑛𝑜  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = exp(−∫

Δ

0
(𝜆 + ℎ)(𝑋𝑡 + 𝑠) 𝑑𝑠)    (= 1 + 𝑂(Δ)), (15) 

  

 𝑃𝑋𝑡
( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = 𝑂(Δ), (16) 

  

 𝑃𝑋𝑡
( 𝑒𝑥𝑎𝑐𝑡𝑙𝑦  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑢𝑝  &  𝑛𝑜  𝑑𝑜𝑤𝑛  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = ∫

Δ

0
𝜆(𝑋𝑡 + 𝑠) 𝑑𝑠 + 𝑂(Δ2), (17) 

  

 𝑃𝑋𝑡
( 𝑒𝑥𝑎𝑐𝑡𝑙𝑦  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑑𝑜𝑤𝑛  &  𝑛𝑜  𝑢𝑝  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = ∫

Δ

0
ℎ(𝑋𝑡 + 𝑠) 𝑑𝑠 + 𝑂(Δ2), (18) 

 and  

 𝑃𝑋𝑡
( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑡𝑤𝑜  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (𝑡, 𝑡 + Δ] ) = 𝑂(Δ2). (19) 

 In all cases above, 𝑂(Δ) and 𝑂(Δ2) are uniform with respect to 𝑋𝑡 and only depend on the norm 

sup𝑋(𝜆(𝑋) + ℎ(𝑋)), that is, there exist 𝐶 > 0, Δ0 > 0 such that for any 𝑋 and any Δ < Δ0,  
 limsup

Δ→0
{Δ−1𝑃𝑋( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (0, Δ] ) +

Δ−2𝑃𝑋( 𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑡𝑤𝑜  𝑗𝑢𝑚𝑝𝑠  𝑜𝑛  (0, Δ] ) 
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 +Δ−2 [𝑃𝑋𝑡
( 𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑢𝑝  &  𝑛𝑜  𝑑𝑜𝑤𝑛  𝑜𝑛  (𝑡, 𝑡 + Δ] ) − ∫

Δ

0
𝜆(𝑋𝑡 + 𝑠) 𝑑𝑠] 

  (20) 

 +Δ−2 [𝑃𝑋𝑡
( 𝑜𝑛𝑒  𝑗𝑢𝑚𝑝  𝑑𝑜𝑤𝑛  &  𝑛𝑜  𝑢𝑝  𝑜𝑛  (𝑡, 𝑡 + Δ] ) − ∫

Δ

0
ℎ(𝑋𝑡 + 𝑠) 𝑑𝑠]} < 𝐶 < ∞. 

  

 The next two Lemmata are needed for the justification that the process with discontinuous 

intensities is, indeed, strong Markov. 

 

Lemma 3  Under the assumptions of the Theorem 1, the semigroup 𝑇𝑡𝑓(𝑋) = 𝐸𝑋𝑓(𝑋𝑡) is 

continuous in 𝑡.  

 

Lemma 4  Under the assumptions of the Theorem 1 the process (𝑋𝑡 , 𝑡 ≥ 0) is Feller, that is, 𝑇𝑡𝑓(⋅

) ∈ 𝐶𝑏(𝒳) for any 𝑓 ∈ 𝐶𝑏(𝒳).  

 

 The proofs of all Lemmata may be performed similarly to [11]. 

 

 

4  Sketch of Proof of Theorem 1 
 

The proof of convergence in total variation with rate of convergence repeats the calculus in [10] 

based on the Lyapunov functions 𝐿𝑚(𝑋) and 𝐿𝑘,𝑚(𝑡, 𝑋) from (12), and on Dynkin’s formulae (10) 

and (11) due to the Corollary 1. Without big changes, this calculus provides a polynomial moment 

bound  

 𝐸𝑋𝜏0
𝑘 ≤ 𝐶𝐿𝑚(𝑋) ≤ 𝐶(𝑛 + 1 + 𝑥 + 𝑦)𝑚, (21) 

 for certain values of 𝑘 and for the hitting time  
 𝜏0: = inf(𝑡 ≥ 0:  𝑛𝑡 = 0). 

Namely, once the process attains the set {𝑛 = 0}, it may be successfully coupled with another 

(stationary) version of the same process at their joint jump {𝑛 = 0}  ↦ {𝑛 = 1}. This is because, in 

particular, immediately after such a jump the state of each process reads as (1,0,0); in other words, 

this is a regeneration state. The news is only a wider class of intensities, which may be all variable 

(as well as discontinuous) including 𝜆0; however, this affects the calculus only a little, once it is 

established that (10) and (11) hold true, because this calculus involves only time values 𝑡 < 𝜏0. 

(Some change will be in the procedure of coupling, though.) In turn, the inequality (21) provides a 

bound for the rate of convergence, for the justification of which rate there are various approaches 

such as versions of coupling as well as renewal theory. Convergence of probabilities in the 

definition of 𝑚-availability factors is a special case of a more general convergence in total variation. 

We drop further details, which will be specified in a further publication. 
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Abstract 

 

This paper studies the mean time to system failure (MTSF) of single unit system operating with the help of 

two types of external supporting device. Each type of supporting device has two copies I and II. The system is 

analyzed using differential difference equation to develop the explicit expression for mean time to system 

failure. Based on assumed numerical values given to system parameters, graphical illustrations are given to 

highlight important results. 

 

Keywords:  availability, supporting device, probabilistic, single 

 

 

 

I. Introduction 
 

Proper maintenance planning plays a role in achieving high system reliability, availability and 

production output. It is therefore important to keep the equipments/systems always available and 

to lay emphasis on system availability at the highest order. In real-life situations we often 

encounter cases where the systems that cannot work without the help of external supporting 

devices connect to such systems. These external supporting devices are systems themselves that 

are bound to fail. Such systems are found in power plants, manufacturing systems, and industrial 

systems. Large volumes of literature exist on the issue relating to prediction of various systems 

performance connected to an external supporting device for their operations. Yusuf et al (2014) 

present mathematical modeling approach to analysis of mean time to system failure of two unit 
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cold standby system with a supporting device. Yusuf et al (2015) performed comparative analysis 

of MTSF between systems connected to supporting device for operation. Yusuf et al (2014) 

performed reliability computation of a linear consecutive 2-out-of-3 system in the presence of 

supporting device.  

Existing literatures either ignores the impact of multi-supporting device on system performance. 

Such works laid emphasis on systems connected to one type of an external supporting device 

whose failure brings about total breakdown. More sophisticated models of systems connected to 

multi-external supporting device should be developed to assist in reducing operating costs and the 

risk of a catastrophic breakdown, to maximize output, system availability, and generated revenue, 

minimize cost, and assure ongoing quality of the parts being produced. The problem considered in 

this paper is different from discussed authors above. The purpose of this paper is twofold. The first 

purpose is to develop the explicit expressions for mean time to system failure. The second is to 

capture the effect of both failure and repair rates on mean time to system failure based on assumed 

numerical values given to the system parameters. 

The organization of the paper is as follows. Section 2 presents model’s description and 

assumptions. Section 3 presents formulations of the models. Numerical examples are presented 

and discussed in Section 4.  Finally, we make a concluding remark in Section 5. 

 

II. Description of the System 

 
In this paper, a single unit system connected to two types of supporting device is considered. It is 

assumed that each type of supporting has a copy on standby and the switching is perfect. It is also 

assumed that the system  work with either two copies of type I supporting device or two copies of 

type II supporting device or one copy of both type I and II. Both unit and supporting devices are 

assumed to be repairable. Each of the primary supporting devices fails independently of the state 

of the other and has an exponential failure distribution with parameter 
1 and 

2 for type I and II 

respectively. Whenever a primary supporting device fails, it is immediately sent to repair with 

parameter 
1 and 

2 and the standby supporting device is switch to operation. System failure 

occur when the unit has failed with parameter   and service rate with parameter with parameter 

  or the failure of all copies of type I and type II.  

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 
Figure 1: The State transition diagram of System  
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III. Formulation of the Model 

In order to analyze the system availability of the system, we define ( )iP t to be the probability that 

the system at  0t   is in state
iS . Also let ( )P t  be the row vector of these probabilities at time t . 

The initial condition for this problem is:  

       0 1 2 10(0) [ 0 , 0 , 0 ,..., (0)] 1,0,0,0,0,0,0,0,0,0,0P p p p p 
 

We obtain the following differential difference equations from Figure 1: 

         0 1 0 1 1 42p t p t p t p t          

             1 1 2 1 1 1 0 2 2 1 3 62p t p t p t p t p t p t                
 

             2 1 2 2 2 2 1 2 5 7 7 1 10p t p t p t p t p t p t                
 

           3 2 1 3 1 1 8 2 92p t p t p t p t p t            
 

     4 4 0p t p t p t    
 

     5 2 5 2 2p t p t p t    
 

     6 6 1p t p t p t    
 

     7 7 2p t p t p t    
 

     8 8 3p t p t p t    
 

     9 2 9 2 32p t p t p t    
 

     10 1 10 1 2p t p t p t                                                                                               (1) 

This can be written in the matrix form as 

P TP ,                                                                                                                              (2)   

where 

 

1 1

1 2 2 1

2 3 2 1

1 4 2

2 2

2 2

1 1

0 0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

T

  

    

    

   

 

 

 

 

 

 

 

 
 

 
 
 

 
 
 

  
 
 

 
 


 
 
 

 

 

 

 1 12    ,  2 1 2 1        ,  3 1 2 2        ,  4 1 2 12     
 

 

It is difficult to evaluate the transient solutions, hence following Trivedi (2002), Wang and Kuo 

(2000), Wang et al. (2006) to develop the explicit for MTSF. The procedures require deleting rows 

and columns of absorbing states of matrix T and take the transpose to produce a new matrix, say



 
Fagge N.J., Ali U.A., Yusuf I. 
MEAN TIME TO SYSTEM FAILURE ASSESSMENT 

RT&A, No3 (42) 
Volume 11, September 2016  

58 

M . The expected time to reach an absorbing state is obtained from  

      1

0

1

1
0

1

1

P P absorbing
E T P M 



 
 
    

   
 
 

                                                                                              (3) 

where the initial conditions are given by 

         0 1 2 3(0) [ 0 , 0 , 0 , 0 ] 1,0,0,0P p p p p   and  

 

 

 

 

1 1

1 1 2 1 2 1

2 1 2 2

1 1 2 1

2 2 0 0

0 0

0 0 2

M

  

      

    

   

  
 

    
    
       

The procedure above is successful because of the following relations 

     0

0

0 ,Mt

P P absorbing
E T P e dt




  
                                                                                                    (4) 

where
1

0

Mte dt M



                                                                                                                         (5) 

The explicit expression for is given by MTSF 

 

   0P P absorbing

N
E T MTSF

D


   
 

                                                                                                     (6) 

  

3 2 2 2

2 2 1 2 1 1 2 2 2 1 2 1 1 1 2 1 1 1 1 1 2 1 2 2 1

2 2 2 3 2 2 2 2 2 2

1 2 1 2 1 2 1 2 2 1 2 2 1 2 1 1 1 1 1 2

2 2

1 1 2 1 1 2 2 2 1 1 1 2 2 1

2 2 2 4 2 4 4

5 3 2 2 6 2 4

2 2 2 2

N                         

                       

               

           

            

           2

1 1 2 1 22         

 
2 3 2 2 3 4 3 2 2 2 3 3 3

1 2 1 2 1 2 1 1 1 2 1 1 2 2 2 1

3 2 2 2 2 3 2 2 2

1 2 1 2 1 2 1 2 2 1 2 1 2 3 1 2 1 2 1 1 2

2 2 2 2

1 1 2 1 2 2 1 1 2 2 2 2 2 1

16 8 10 5 2 4 4 2 2

4 2 6 4 3 3

8 2 3 2 4

D                    

                        

                

           

         

      2 2 2

1 2 1 1 1 1

2 2 2 2

1 2 1 2 1 1 2 1 1 2

10 4

3 2 2

       

         

  

  

 

 

IV. Numerical Examples  

Numerical examples are presented to demonstrate the impact of failure and repair rates on mean 

time to system failure based on given values of the parameters. For the purpose of numerical 

example, the following sets of parameter values are used:
 
 

 

1 0.3  , 2 0.5  , 0.5  , 1 0.2  , 2 0.3  ,  0.4,0.6,0.8 for Figures 2 – 5. 
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Figure 2: Availability against type I supporting device repair rate 

1 for different values of (0.4,0.6,0.8)  

 

 
Figure 3: Availability against type I supporting device failure rate

1 for different values of (0.4,0.6,0.8)  

 

 
Figure 4: Availability against type II supporting device repair rate

2 for different values of (0.4,0.6,0.8)  
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Figure 5: Availability against type II supporting device failure rate 

2 for different values of

(0.4,0.6,0.8)  

 

IV. Discussion 

 

Numerical results of availability with respect to type k , ,k I II supporting devices repair 
i  

and failure rates , 1,2i i   for different values of (0.4,0.6,0.8) are depicted in Figures 2 - 5 

respectively. In Figures 2 and 4, the mean time to system failure increases as  
1  and 

2 for 

different values of unit failure rate  . This sensitivity analysis implies that major maintenance to 

the unit and supporting devices should be invoked to improve and maximize the mean time to 

system failure, production output as well as the profit. On the other hand, Figures 3 and 5 show 

that the availability decreases as 
1  and 

2 increases for different values of unit failure rate  . 

This sensitivity analysis implies that major maintenance should be invoked to the unit and 

supporting devices to minimize the failure of the system in order to improve and maximize the 

mean time to system failure, production output as well as the profit. 

 

V.  Conclusion 

 

This paper studied a single system connected to two types of supporting device type I and II for its 

operation. Explicit expression for the mean time to system failure was derived. The numerical 

simulations presented in Figures 2 – 5 provide a description of the effect of failure rate and repair 

rate on mean time to system failure for different values of unit failure rate   .  On the basis of the 

numerical results obtained for particular cases, it is suggested that the system mean time to system 

failure can be improved significantly by: 

(i) Adding more cold standby units. 

(ii) Increasing the repair rate. 

(iii) Reducing the failure rate of the system by hot or cold duplication method. 

(iv) Exchange the system when old with new one before failure. 
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Abstract 
 

 We study repairable 𝑘-out-of-𝑛 system with single server who provides service to external 

customers also. N-policy is employed for the service of main customers. Once started, the repair of 

failed components is continued until all components become operational. When not repairing 

main customers, the server attends external customers (if there is any) who arrive according to a 

Poisson process. Once selected, the external customers receive a service of non-preemptive nature. 

When at least 𝑁 main customers accumulate in the system and/or when the server is busy with 

such customers, external customers are not allowed to join the system. Otherwise, they join an 

infinite capacity queue of external customers. Life time distribution of components, service time 

distribution of main and external customers are all assumed to follow independent exponential 

distributions. Steady state analysis has been carried out and several important system 

performance measures based on the steady state distribution derived. A numerical study 

comparing the current model with those in which no external customers are provided service, is 

carried out. This study suggests that rendering service to external customers helps to utilize the 

server idle time profitably, without affecting the system reliability.  

 

 Keywords: 𝑘-out-of-𝑛 system; non-preemptive service. 

 

 

 

1  Introduction 
 

A 𝑘-out-of-𝑛 system can be defined as an 𝑛-component system which works if and only if at least 𝑘 

of its components operational. Application of such systems can be seen in many real-world 

phenomena. For instance almost all machines, of different complexity, are subjected to failure. One 

would expect a machine to work, even if some of its components have failed. A hospital providing 
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emergency service is a typical example.We would expect the hospital to run even if some of its 

doctors/nurses/other staffs are on leave since it is supposed to have these personal in excess of the 

actual requirement. However, keeping these extra resources could be costly and not even feasible 

in some cases. A probabilistic study of a real world system such as a 𝑘-out-of-𝑛 system, often helps 

to develop an optimal strategy for maintaining high system reliability. Literature on such studies is 

vast (for example,see Chakravarthy et al.[1]). 

Dudin et al.[2], Krishnamoorthy et al.[3, 4, 5] are among the studies on the reliability of a 

𝑘-out-of-𝑛 system, where the server provides service to external customers in addition to repairing 

failed components of the main system. Such models are suitable for many real world situations. 

For example, a big telecom company may decide to share its resources like optical cables, mobile 

towers etc., for additional revenue. In doing so there is the risk that it may lead to dissatisfaction of 

the companies own customers. Therefore, the company would like to develop an optimal strategy 

for sharing its resources. Krishnamoorthy et al.[5] studied an N-policy for rendering service to 

external customers. They gave priority to the main customers through N-policy: the moment 𝑁 

failed components of the main system get accumulated, the ongoing service of an external 

customer (if there is any) is preempted and service to failed components is started. 

In the present study, we consider a variant of the model in [5]. We assume N-policy for 

starting repair of failed components. However, the priority of the main customers is a bit reduced 

by assuming that an ongoing service of an external customer is not preempted when the number of 

failed components reaches 𝑁. This can be a serious compromise on the reliability of the 𝑘-out-of-𝑛 

system. As in [5] it is assumed here also that an external customer, not allowed to join the system 

when the server is busy with service of main customers and/or when there are at least 𝑁 failed 

components in the system. The external customer joins a queue of infinite capacity. 

This paper is arranged as follows. In section 2 , we define the queuing model; section 3 

conducts the steady state analysis, where we have obtained the stability condition explicitly and 

we also present an efficient method for computing the steady state probability vector. In section 4, 

we derive some important system performance measures and in section 5 the effect of N-policy 

and rendering service to external customers on the system reliability is examined. A cost function 

has also been studied in section 5 . 

 

2  The queueing model 
 

Here we consider a 𝑘-out-of-𝑛 system with a single server, offering service to external 

customers also. Commencement of service to failed components of the main system is governed by 

N-policy. That is at the epoch the system starts with all components operational, the server starts 

attending one by one the external customers (if there is any).When the number of failed 

components in the system is ≥ 𝑁, the server in service of external customer (if there is any) is 

switched on to the service of the main customers after completing the ongoing service of the 

external customer. We assume that the failure rate of a component is 
𝜆

𝑖
, when 𝑖 components are 

operational so that the inter-failure time of components of the 𝑘-out-of-𝑛 system remains 

exponentially distributed with parameter 𝜆. Arrival of external customers follows a Poisson 

process with parameter 𝜆̅. External customers are not allowed to join the system when the server is 

busy with main customers or when there is ≥ 𝑁 failed components. An external customer, who on 

arrival finds an idle server is directly taken for service. Service times of main and external 

customers follow exponential distribution with parameters 𝜇 and �̅� respectively. 

 

2.1  The Markov Chain 

 

Let 𝑋1(𝑡) = number of external customers in the system including the one getting service 

(if any) at time 𝑡, 

𝑋2(𝑡) = number of main customers in the system including the one getting service (if any) 
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at time 𝑡, 

𝑆(𝑡) = (
0, if the server is idle or is busy with external customers
1, if the server is idle or is busy with main customers.

 

Let 𝑋(𝑡) = (𝑋1(𝑡), 𝑆(𝑡), 𝑋2(𝑡)) then 𝑋 = {𝑋(𝑡), 𝑡 ≥ 0} is a continuous time Markov chain on 

the state space  
 𝑆 = {(0,0, 𝑗2)/0 ≤ 𝑗2 ≤ 𝑁 − 1} ∪ {(𝑗1, 0, 𝑗2)/𝑗1 ≥ 1,0 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1} 
 ∪ {(𝑗1, 1, 𝑗2)/𝑗1 ≥ 0,1 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1}. 

 Arranging the states lexicographically and partitioning the state space into levels 𝑖, where each 

level 𝑖 corresponds to the collection of the states with number of external customers in the system 

at any time 𝑡 equal to 𝑖, we get an infinitesimal generator of the above chain as  

 𝑄 =

[
 
 
 
 
 
𝐴10 𝐴00

𝐴20 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0

𝐴2 𝐴1 𝐴0

⋯
⋯]

 
 
 
 
 

. 

In order to describe the entries in the above matrix we introduce some notations below. 

[(i)]  

    1.  𝐼𝑚 denotes an identity matrix of order 𝑚 and 𝐼 denotes an identity matrix of 

appropriate order.  

    2.  𝑒𝑚 denotes a 𝑚×1 column matrix of 1s and 𝑒 denotes a column matrix of 1s of 

appropriate order.  

    3.  𝐸𝑚 denotes a square matrix of order m defined as  

 𝐸𝑚(𝑖, 𝑗) = (
−1 if j = i, 1 ≤ i ≤ m
1 if j = i + 1,1 ≤ i ≤ m − 1
0 otherwise

 

 

    4.  𝐸′𝑚 = Transpose (𝐸𝑚).  

    5.  𝑟𝑚(𝑖) denotes a 1×𝑛 row matrix whose 𝑖th entry is 1 and all other entries are zeros.  

    6.  𝑐𝑚(𝑖) = Transpose (𝑟𝑚(𝑖)).  

    7.  ⊗ denotes Kronecker product of matrices.  

 

The transition within level 0 is represented by the matrix  

 𝐴10 = [
𝐵1 𝐵2

𝐵3 𝐵4
] , where 

𝐵1 = 𝜆𝐸𝑁 − 𝜆𝐼𝑁. 

𝐵2 is a 𝑁×(𝑛 − 𝑘 + 1) matrix whose (𝑁, 𝑁)th entry is 𝜆 and all other entries are zeroes. 

𝐵3 is a 𝑁×(𝑛 − 𝑘 + 1) matrix whose (1,1)th entry is 𝜇 and all other entries are zeroes. 

𝐵4 = 𝜆𝐸𝑛−𝑘+1 + 𝜆𝑐𝑛−𝑘+1(𝑛 − 𝑘 + 1) ⊗ 𝑟𝑛−𝑘+1(𝑛 − 𝑘 + 1) + 𝜇𝐸𝑛−𝑘+1′. 

The transition from level 0 to level 1 is represented by the matrix 

 

 𝐴00 = [
𝜆𝐼𝑁 𝑂𝑁×(2𝑛−2𝑘+3−𝑁)

𝑂(𝑛−𝑘+1)×𝑁 𝑂(𝑛−𝑘+1)×(2𝑛−2𝑘+3−𝑁)

]. 

Transition from level 1 to 0 is represented by the matrix  

 𝐴20 = [

𝜇𝐼𝑁 𝑂
𝑂 𝐻
𝑂(𝑛−𝑘+1)×𝑁 𝑂

]where𝐻 = [𝑂(𝑛−𝑘+2−𝑁)×(𝑁−1) 𝜇𝐼(𝑛−𝑘+2−𝑁)]. 

Transition within level 1 is represented by the matrix  

 𝐴1 = [

𝐻11 𝐻12 0
0 𝐻22 0
𝐻31 0 𝐵4

]where 

 
 𝐻11 = 𝐵1 − 𝜇𝐼𝑁 , 𝐻12 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑛−𝑘+2−𝑁(1), 
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 𝐻22 = 𝜆𝐸𝑛−𝑘+2−𝑁 + 𝜆𝑐𝑛−𝑘+2−𝑁(𝑛 − 𝑘 + 2 − 𝑁) ⊗ 𝑟𝑛−𝑘+2−𝑁(𝑛 − 𝑘 + 2 − 𝑁) − 𝜇𝐼𝑛−𝑘+2−𝑁 . 

𝐻31 is an (𝑛 − 𝑘 + 1)×𝑁 matrix whose (1,1)th entry is 𝜇.  

 𝐴0 = [
𝜆𝐼𝑁 𝑂𝑁×(2𝑛−2𝑘+3−𝑁)

𝑂(2𝑛−2𝑘+3−𝑁)×𝑁 𝑂(2𝑛−2𝑘+3−𝑁)×(2𝑛−2𝑘+3−𝑁)

], 

 

 𝐴2 = [

𝜇𝐼𝑁 𝑂 𝑂

𝑂 𝑂(𝑛−𝑘+2−𝑁)×(𝑛−𝑘+2−𝑁) 𝐻

𝑂(𝑛−𝑘+1)×𝑁 𝑂 𝑂

], 

where �̃� = [𝑂(𝑛−𝑘+2−𝑁)×(𝑁−1) 𝜇𝐼(𝑛−𝑘+2−𝑁)]. 

 

 

3   Steady state analysis 
 

 

3.1  Stability condition 

 

Consider the generator matrix 𝐴 = 𝐴0 + 𝐴1 + 𝐴2  

 𝐴 = [
𝜆𝐸𝑁 𝐻12 0
0 𝐻22 𝐹23

𝐹31 0 𝐵4

]with 

 
 𝐹23 = [𝑂(𝑛−𝑘+2−𝑁)×(𝑁−1) 𝜇𝐼𝑛−𝑘+2−𝑁], 

 
 𝐹31 = 𝜇𝑐𝑛−𝑘+1(1) ⊗ 𝑟𝑁(1). 

Let 𝜁 = (𝜁0, 𝜁1, 𝜁2) be the steady state vector of the generator matrix 𝐴, where  
 𝜁0 = (𝜁(0,0), 𝜁(0,1), … , 𝜁(0,𝑁−1)), 

 𝜁1 = (𝜁(0,𝑁), 𝜁(0,𝑁+1), … , 𝜁(0,𝑛−𝑘+1)), 

 𝜁2 = (𝜁(1,1), 𝜁(1,2), … , 𝜁(1,𝑛−𝑘+1)). 

 

The Markov chain {𝑋(𝑡), 𝑡 ≥ 0} is stable if and only if 𝜁𝐴0𝑒 < 𝜁𝐴2𝑒  

(please refer Neuts [6]). 

It follows that 𝜁𝐴0𝑒 = 𝜆𝜁0𝑒 and 𝜁𝐴2𝑒 = 𝜇(𝜁0𝑒 + 𝜁1𝑒). Therefore the stability condition 

becomes  

 
𝜆

𝜇

𝜁0𝑒

(𝜁0𝑒+𝜁1𝑒)
< 1. (1) 

 It follows from the relation 𝜁𝐴 = 0 that  

 𝜁0𝜆𝐸𝑁 + 𝜁2𝐹31 = 0, (2) 

  

 𝜁0𝐻12 + 𝜁1𝐻22 = 0, (3) 

  

 𝜁1𝐹23 + 𝜁2𝐵4 = 0. (4) 

 From (4), it follows that  

 𝜁2 = −𝜁1𝐹23𝐵4
−1. (5) 

 Substituting this in (2) we get  

 𝜁0𝜆𝐸𝑁 − 𝜁1𝐹23𝐵4
−1𝐹31 = 0. (6) 

  

 𝜆𝜁0𝑒 = (−𝜁1𝐹23𝐵4
−1𝐹31)(−𝐸𝑁

−1𝑒). (7) 

 

Notice that the first column of the matrix 𝐹31 is −𝐵4𝑒 and all other columns of it are zero 

columns. This implies that the first column of the matrix 𝐵4
−1𝐹31 is −𝑒 and its all other columns are 

zero columns. Hence the first column of the matrix −𝐹23𝐵4
−1𝐹31 is 𝜇𝑒 and all other columns are zero 

columns. The first entry of the row matrix −𝜁1𝐹23𝐵4
−1𝐹31 is thus 𝜇𝜁1𝑒 and its all other entries are 
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zeros. It can be seen that the first entry of the column matrix −𝐸𝑁
−1𝑒 is 𝑁. These two facts together 

tell us that (−𝜁1𝐹23𝐵4
−1𝐹31)(−𝐸𝑁

−1𝑒) is 𝑁𝜇𝜁1𝑒. Thus, equation (7) becomes  
 𝜆𝜁0𝑒 = 𝑁𝜇𝜁1𝑒. 

Adding 𝑁𝜇𝜁0𝑒 on both sides of the above equation, we get  
 (𝜆 + 𝑁𝜇)𝜁0𝑒 = 𝑁𝜇(𝜁0𝑒 + 𝜁1𝑒), 

which implies  

 
𝜁0𝑒

(𝜁0𝑒+𝜁1𝑒)
=

𝑁𝜇

(𝜆+𝑁𝜇)
. 

Hence the stability condition (1) becomes  

 
𝜆

𝜇

𝑁𝜇

(𝜆+𝑁𝜇)
< 1. 

 

3.2  Computation of steady state vector 

 

Let 𝜋 = (𝜋(0), 𝜋(1), 𝜋(2), … ) the steady state vector of the Markov chain 𝑋, where 𝜋(0) =

(𝜋(0,0), 𝜋(0,1)) with 𝜋(0,0) = (𝜋(0,0,0), 𝜋(0,0,1), … , 𝜋(0,0,𝑁−1))  

and 𝜋(0,1) = (𝜋(0,1,1), … , 𝜋(0,1,𝑛−𝑘+1)). For 𝑖 ≥ 1, 𝜋(𝑖) = (𝜋(𝑖,0), �̃�(𝑖,0), 𝜋(𝑖,1)) with 𝜋(𝑖,0) =

(𝜋(𝑖,0,0), 𝜋(𝑖,0,1), … , 𝜋(𝑖,0,𝑁−1)), �̃�(𝑖,0) = (𝜋(𝑖,0,𝑁), … , 𝜋(𝑖,0,𝑛−𝑘+1)), 

𝜋(𝑖,1) = (𝜋(𝑖,1,1), 𝜋(𝑖,1,2), … , 𝜋(𝑖,1,𝑛−𝑘+1)). Now from 𝜋𝑄 = 0, we can write  

 𝜋(0,0)𝐵1 + 𝜋(0,1)𝐵3 + 𝜋(1,0)𝜇𝐼𝑁 = 0, (8) 

  

 𝜋(0,0)𝐵2 + 𝜋(0,1)𝐵4 + �̃�(1,0)𝐻 = 0, (9) 

 and for 𝑖 ≥ 1,  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖,1)𝐻31 + 𝜋(𝑖+1,0)𝜇𝐼𝑁 = 0, (10) 

  

 𝜋(𝑖,0)𝐻12 + �̃�(𝑖,0)𝐻22 = 0, (11) 

  

 𝜋(𝑖,1)𝐵4 + �̃�(𝑖+1,0)𝐻 = 0. (12) 

 From (11), we get, for 𝑖 ≥ 1  

 �̃�(𝑖,0) = −𝜋(𝑖,0)𝐻12(𝐻22
−1). (13) 

 From (12), we get  

 𝜋(𝑖,1) = −�̃�(𝑖+1,0)𝐻(𝐵4
−1). (14) 

 Substituting (13) in (14), we get  

 𝜋(𝑖,1) = 𝜋(𝑖+1,0)𝐻12(𝐻22
−1)𝐻(𝐵4

−1). (15) 

 Substituting (15) in (10), we get  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖+1,0)𝐻12(𝐻22
−1)𝐻(𝐵4

−1)𝐻31 + 𝜋(𝑖+1,0)𝜇𝐼𝑁 = 0. (16) 

 We notice that the first column of the matrix 𝐻31 is −𝐵4𝑒 and all other columns of 𝐻31 are zero 

columns. Hence the first column of the matrix (𝐵4
−1)𝐻31 is −𝑒 and its all other columns are zero 

columns. This tells us that the first column of the matrix 𝐻(𝐵4
−1)𝐻31 is −𝜇𝑒 and all other columns 

are zeros. But −𝜇𝑒 is 𝐻22𝑒 and hence the first column of the matrix (𝐻22
−1)𝐻(𝐵4

−1)𝐻31 is 𝑒 and all 

other columns are zeros. This fact leads us to conclude that the first column of the matrix 

𝐻12(𝐻22
−1)𝐻(𝐵4

−1)𝐻31 is 𝐻12𝑒 = 𝜆𝑐𝑁(𝑁) and all other columns are zeros. In other words  

 𝐻12(𝐻22
−1)𝐻(𝐵4

−1)𝐻31 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). 

Now equation (16) becomes  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖+1,0)𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝜋(𝑖+1,0)𝜇𝐼𝑁 = 0. 

That is  

 𝜋(𝑖−1,0)𝜆𝐼𝑁 + 𝜋(𝑖,0)𝐻11 + 𝜋(𝑖+1,0)(𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝜇𝐼𝑁) = 0. (17) 

 Now from equation (9), we can write  

 𝜋(0,1) = −𝜋(0,0)𝐵2(𝐵4
−1) − �̃�(1,0)𝐻(𝐵4

−1). (18) 

 However, from equation (13), we have  

 �̃�(1,0) = −𝜋(1,0)𝐻12(𝐻22
−1). (19) 

 Hence equation (18) becomes  
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 𝜋(0,1) = −𝜋(0,0)𝐵2(𝐵4
−1) + 𝜋(1,0)𝐻12(𝐻22

−1)𝐻(𝐵4
−1). (20) 

 

Substituting (20) in (8), we get  

 𝜋(0,0)𝐵1 + (−𝜋(0,0)𝐵2(𝐵4
−1) + 𝜋(1,0)𝐻12(𝐻22

−1)𝐻(𝐵4
−1))𝐵3 + 𝜋(1,0)�̅�𝐼𝑁 = 0. (21) 

 Since the first column of the matrix 𝐵3 is −𝐵4𝑒, a similar reasoning as for equation (16) leads us to 

write:  
 −𝐵2(𝐵4

−1)𝐵3 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1), 
 𝐻12(𝐻22

−1)𝐻(𝐵4
−1)𝐵3 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). 

 Hence equation (21) becomes  

 𝜋(0,0)(𝐵1 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝜋(1,0)(𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝜇𝐼𝑁) = 0. (22) 

 Equations (17) and (22) shows that the vector �̂� = (𝜋(0,0), 𝜋(1,0), 𝜋(2,0), … ) satisfies the relation �̂��̃� =

0, where �̃� is a generator matrix defined as  

 �̃� =

[
 
 
 
 
 
 
�̃�10 �̃�0

�̃�2 �̃�1 �̃�0

�̃�2 �̃�1 �̃�0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

]
 
 
 
 
 
 

 

In the above, �̃�10 = 𝐵1 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1), �̃�0 = 𝜆̅𝐼𝑁 , �̃�1 = 𝐻11 and �̃�2 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + �̅�𝐼𝑁. 

Hence the vector �̂� is a constant multiple of the steady state vector 𝜏 = (𝜏(0), 𝜏(1), … ) of the 

generator matrix �̃�. The vector 𝜏 can be obtained by applying the matrix analytic methods (see 

Neuts [6]) as  

 𝜏(𝑖) = 𝜏(0)𝑅𝑖 ,    𝑖 ≥ 0, (23) 

 where the matrix 𝑅 is the minimal non-negative solution of the matrix quadratic equation:  

 �̃�0 + 𝑅�̃�1 + 𝑅2�̃�2 = 0. (24) 

 Equation (23) implies  
 𝜋(0,0) = 𝒦𝜏(0), 

 𝜋(𝑖,0) = 𝜋(0,0)𝑅
𝑖 ,    𝑖 ≥ 0. 

 Now the vector �̂� is obtained up to a constant 𝒦 as �̂� = 𝒦𝜏, the other component vectors �̃�(𝑖,0), 𝑖 ≥

1, 𝜋(𝑖,1), 𝑖 ≥ 0 of 𝜋 can be obtained from the equations (13), (14) and (20), up to the constant 𝒦, 

which is finally obtained from the normalizing condition 𝜋𝑒 = 1. 

 

 

4  Performance measures 
 

4.1  Busy period of the server with the failed components of the main system 
 

Let 𝑇𝑖  denote the server busy period with failed components which starts with 𝑖 failed 

components and with 𝑗 external customers in the system. Consider the absorbing Markov chain 

𝑌 = {𝑌(𝑡), 𝑡 ≥ 0}, where 𝑌(𝑡) is the number of failed components of the main system, with the state 

space {0,1,2, … , 𝑁, 𝑁 + 1,… , 𝑛 − 𝑘 + 1} and having infinitesimal matrix given by  

 𝐻𝐵𝐹 = [
0 0
−𝐻𝐵𝐹𝑒 𝐻𝐵𝐹

]  , 

where  
 𝐻𝐵𝐹 = 𝜆𝐸𝑛−𝑘+1 + 𝜆𝑐𝑛−𝑘+1(𝑛 − 𝑘 + 1) ⊗ 𝑟𝑛−𝑘+1 + 𝜇𝐸𝑛−𝑘+1

′ . 

Notice that 𝑌(𝑡) = 0 is an absorbing state. 𝑇𝑖  is the time until absorption in the Markov chain {𝑌(𝑡)} 

assuming that it starts in the state 𝑖. The expected value 𝐸𝑇𝑖  of 𝑇𝑖  is therefore the 𝑖𝑡ℎ entry of the 

column matrix −𝐻𝐵𝐹
−1𝑒 as given by (please see Krishnamoorthy et al. [5]):  

 𝐸𝑇𝑖 =
1

𝜇
(𝑖 ∑𝑛−𝑘+1−𝑖

𝑗=0 (
𝜆

𝜇
)

𝑗

+ ∑𝑛−𝑘
𝑗=𝑛−𝑘+2−𝑖 (𝑛 − 𝑘 + 1 − 𝑗) (

𝜆

𝜇
)

𝑗

). 

We notice that once the service of failed components starts, the external customers has no effect on 

it and hence 𝐸𝑇𝑖  is independent of 𝑗 the number of external customers. Define  
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 𝑃𝑓(𝑁) = 𝜋(0,0,𝑁−1) + ∑∞
𝑗=1 𝜋(𝑗,0,𝑁)    and 

 𝑃𝑓(𝑖) = ∑∞
𝑗=1 𝜋(𝑗,0,𝑖)    for𝑁 < 𝑖 ≤ 𝑛 − 𝑘 + 1 

 𝑃𝑓(𝑖) will then denote the system steady state probability just before starting service to failed 

components with 𝑖 number of failed components. The expected length of the busy period of the 

server with failed components is then given by  

 𝐸�̂� =
∑𝑛−𝑘+1

𝑖=𝑁 𝑃𝑓(𝑖)𝐸𝑇𝑖

∑𝑛−𝑘+1
𝑖=𝑁 𝑃𝑓(𝑖)

. 

 

 

4.2  Other performance measures 
 

  

    1.  Fraction of time the system is down,  
 𝑃𝑑𝑜𝑤𝑛 = ∑∞

𝑗1=0 𝜋(𝑗1,0,𝑛−𝑘+1) + ∑∞
𝑗1=0 𝜋(𝑗1,1,𝑛−𝑘+1). 

  

    2.  System reliability, 𝑃𝑟𝑒𝑙 = 1 − 𝑃𝑑𝑜𝑤𝑛 .  

    3.  Average number of external customers waiting in the queue,  

 𝑁𝑞 = ∑∞
𝑗𝑖=0 𝑗𝑖(∑

𝑛−𝑘+1
𝑗3=0 𝜋(𝑗1,1,𝑗3)) + ∑∞

𝑗1=1 (𝑗1 − 1)(∑𝑛−𝑘+1
𝑗3=0 𝜋(𝑗1,0,𝑗3)). 

  

    4.  Average number of failed components of the main system,  

 𝑁𝑓𝑎𝑖𝑙 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=0 𝜋(𝑗1,0,𝑗3)) + ∑𝑛−𝑘+1

𝑗3=1 𝑗3(∑
∞
𝑗1=0 𝜋(𝑗1,1,𝑗3)). 

  

    5.  Average number of failed components waiting when server is busy with external 

customers  

 𝑁𝐵𝑓𝑎𝑖𝑙 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=1 𝜋(𝑗1,0,𝑗3)). 

 

    6.  Expected number of external customers joining the system,  

 𝜃3 = 𝜆̅{∑∞
𝑗1=1 (∑𝑁−1

𝑗3=0 𝜋(𝑗1,0,𝑗3)) + ∑𝑁−1
𝑗1=0 𝜋(0,0,𝑗3)}. 

  

    7.  Expected number of external customers on its arrival gets service directly  

 𝑁𝐸𝑋𝑑𝑖𝑟𝑒𝑐𝑡 = ∑𝑁−1
𝑗3=0 𝜋(0,0,𝑗3). 

 

    8.  Fraction of time the server is busy with external customers,  

 𝑃𝑒𝑥𝑡,𝑏𝑢𝑠𝑦 = ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=0 𝜋(𝑗1,0,𝑗3)). 

  

    9.  Probability that server is found idle,  

 𝑃𝑖𝑑𝑙𝑒 = ∑𝑁−1
𝑗3=0 𝜋(0,0,𝑗3) = 𝑁𝜋(0,0,0). 

  

    10.  Probability that the server is found busy,  

 𝑃𝑏𝑢𝑠𝑦 = 1 − ∑𝑁−1
𝑗3=0 𝜋(0,0,𝑗3) = 1 − 𝑁𝜋(0,0,0). 

  

    11.  Expected loss rate of external customers,  

 𝜃4 = 𝜆̅{∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=1 𝜋(𝑗1,1,𝑗3)) + ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=𝑁 𝜋(𝑗1,0,𝑗3))}. 

  

    12.  Expected service completion rate of external customers,  

 𝜃5 = �̅� ∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=0 𝜋(𝑗1,0,𝑗3)). 

  

    13.  Expected number of external customers when server is busy with external 

customers,  

 𝜃6 = ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=0 𝜋(𝑗1,0,𝑗3)). 
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5  Numerical Study of the Performance of the System 
  

5.1  The Effect of N Policy on the Server Busy Probability 
  

The main purpose of introducing N-policy while studying a 𝑘-out-of-𝑛 system with a 

single server offering service to external customers, in a non pre-emptive nature, was optimization 

of the system revenue, by utilizing the server idle time, without compromising the reliability of the 

system much. Tables 1 and 2 reports the variation in the server busy probability when external 

customers are allowed and not allowed respectively. A comparison of the two tables suggest that 

there is an increase in the server busy probability, when external customers are allowed. Table 3, 

which report the effect of the N-policy level on the fraction of time the server remains busy with 

external customers, tells that there is an increase in the reported measure with an increase in 𝑁. 

Hence, it can be concluded that the N-policy has helped in improving the attention towards 

external customers slightly. Now, we want to check whether the introduction of the N-policy has 

badly affected the system reliability. 

 

5.2  The effect of N policy on system reliability 
 

We study two cases 𝜆 < 𝜇 and 𝜆 > 𝜇 . We expected a decrease in 𝑃𝑟𝑒𝑙  with an increase in 𝑁. 

This is because as 𝑁 increases, the server spends more time for external customers, which we 

thought might cause a decrease in the system reliability. This was verified from Table 4, where we 

assumed 𝜆 < 𝜇. However, Table 4 shows very high system reliability over 95 %. The magnitude of 

decrease in reliability was found lesser when the total number of components 𝑛 was high. In short 

Table 4 shows that reliability of the system is not much affected by increasing N-policy level. In 

Table 5 where it was assumed that the component failure rate 𝜆 is greater than their service rate 𝜇, 

it was again found that 𝑃𝑟𝑒𝑙  decreases with increase in 𝑁 and that the magnitude of decrease is not 

high. More importantly, the reliability of the system was found less than 91.5 %. To check whether 

this was actually due to the introduction of external customers, we compared the system reliability 

of the current model with that of a 𝑘-out-of-𝑛 system where no external customers are entertained. 

Table 6 shows that allowing external customers in the system has only a narrow effect on the 

system reliability and the decrease in reliability is actually due to the assumption 𝜆 > 𝜇 . 

 

5.3  Analysis of a Cost function 
 

Table 1 shows that as 𝑁 increases, even though the server busy probability increases first, 

it decreases as 𝑁 crosses some value. Note that the overall server busy probability is the sum of the 

server busy probability with external customers and the server busy probability with main 

customers. Table 3 shows that the fraction of time server remaining busy with external customers 

is ever increasing with N. Now as 𝑁 increases, there is a decrease in the server busy probability 

with main customers. Hence, the above said behavior of the overall server busy probability can be 

concluded to be due to the conflicting nature of the two entities constituting it. This behavior of the 

server busy probability lead us to construct a cost function in the hope of finding an optimal value 

for the N-policy level defined as follows:  
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 

 = 𝐶1 ⋅ 𝑃down + 𝐶2 ⋅ 𝑁𝑞 + 𝐶4 ⋅ 𝜃4 + 𝐶5 ⋅ 𝑁𝑓𝑎𝑖𝑙 +
𝐶3

𝐸�̂�

+ 𝐶6 ⋅ 𝑃𝑖𝑑𝑙𝑒  

 In the above, 𝐶1 denote the cost per unit time incurred if the system is down, 𝐶2 denote the 

holding cost per unit time per external customer in the queue, 𝐶3 denote the cost incurred for 

starting failed components service, 𝐶4 denote the cost due to loss of 1 external customer, 𝐶5 denote 

the holding cost per unit time of one failed component, 𝐶6 denote the cost per unit time if the 

server is idle. The values of the cost function presented in Table 7, for various failure rates of the 
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components, shows an optimal value for N in each case. 

  

Table  1: Variation in the server busy probability when external customers are allowed 𝑘 = 20, 𝜆 =

4, 𝜆̅ = 3.2, 𝜇 = 5.5, �̅� = 8 

  

 N  n=45   n=50   n=60   n=65  

1 0.823494 0.823522 0.823529 0.823529 

3 0.829935 0.829973 0.829983 0.831354 

5 0.832187 0.832243 0.832256 0.832891 

7 0.833255 0.833338 0.833358 0.833717 

9 0.833839 0.833968 0.834 0.83423 

11 0.834162 0.834367 0.834417 0.834577 

13 0.834295 0.834627 0.834708 0.834827 

15 0.834239 0.834789 0.834923 0.835093 

17 0.833936 0.834861 0.835085 0.835224 

19 0.833252 0.834829 0.835211 0.835329 

21 0.831922 0.834652 0.835306 0.835413 

23 0.829445 0.834239 0.835375 0.83548 

25 0.824871 0.833426 0.835412 0.83553 

  

  
Table  2: Variation in the server busy probability when external customers are not allowed 𝑘 =
20, 𝜆 = 4, 𝜇 = 5.5 

  

 N   n=45   n=50   n=60   n=65  

1 0.72722 0.72726 0.72727 0.72727 

3 0.7272 0.72726 0.72727 0.72727 

5 0.72717 0.72725 0.72727 0.72727 

7 0.72711 0.72724 0.72727 0.72727 

9 0.72703 0.72722 0.72727 0.72727 

11 0.72688 0.72719 0.72727 0.72727 

13 0.72663 0.72714 0.72727 0.72727 

15 0.72622 0.72706 0.72726 0.72727 

17 0.7255 0.72691 0.72726 0.72727 

19 0.72425 0.72666 0.72725 0.72727 

21 0.72206 0.72623 0.72723 0.72726 

23 0.71814 0.72546 0.7272 0.72726 
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Table  3: Effect of the N-policy level on the fraction of time server is busy with external customers 

with 𝑘 = 20, 𝜆 = 4, 𝜆̅ = 3.2, 𝜇 = 5.5, �̅� = 8 

  

 N  n=40  n=45  n=50  n=55  n=60 

1 0.096351 0.096276 0.096261 0.096257 0.096257 

2 0.100557 0.100464 0.100445 0.100441 0.10044 

3 0.102853 0.10274 0.102717 0.102712 0.102711 

4 0.104255 0.104117 0.104089 0.104083 0.104082 

5 0.105198 0.105028 0.104993 0.104986 0.104985 

6 0.105882 0.105672 0.105629 0.105621 0.105619 

7 0.106413 0.106153 0.1061 0.106089 0.106087 

8 0.106853 0.106528 0.106462 0.106449 0.106446 

9 0.107241 0.106832 0.106749 0.106733 0.106729 

10 0.107605 0.107088 0.106984 0.106963 0.106958 

11 0.107968 0.107313 0.10718 0.107153 0.107148 

12 0.108354 0.107517 0.107348 0.107314 0.107307 

13 0.108786 0.107711 0.107495 0.107451 0.107442 

14 0.109291 0.107904 0.107626 0.10757 0.107559 

15 0.109905 0.108106 0.107747 0.107675 0.10766 

17 0.111651 0.108581 0.107976 0.107854 0.107829 

19 0.114606 0.109249 0.108092 0.108008 0.107966 

21  0.110301 0.108216 0.108153 0.10808 

23  0.112079 0.10851 0.108308 0.108182 

25  0.115216 0.108928 0.1085 0.108281 

27   0.110699 0.108771 0.108387 

29   0.112652 0.109196 0.108516 

31   0.116153 0.10991 0.108697 

33    0.111158 0.108978 

35    0.113399 0.109446 
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Table  4: Variation in the system reliability with increase in 𝑁 (𝜆 < 𝜇 case) 𝑘 = 20, 𝜆 = 4, 𝜆̅ =
3.2, 𝜇 = 5.5, �̅� = 8 

  

 N  n=40  n=45  n=50  n=55  n=60  n=65  

1 0.99963 0.99993 0.99998 1 1 1 

3 0.99948 0.99989 0.99998 1 1 1 

5 0.99924 0.99985 0.99997 0.99999 1 1 

7 0.99885 0.99977 0.99995 0.99999 1 1 

9 0.9982 0.99964 0.99993 0.99998 1 1 

11 0.99712 0.99942 0.99988 0.99998 1 1 

13 0.9953 0.99905 0.99981 0.99996 0.99999 1 

15 0.99217 0.99843 0.99968 0.99994 0.99999 1 

17 0.98668 0.99736 0.99947 0.99989 0.99998 1 

19 0.97689 0.9955 0.99909 0.99982 0.99996 0.99999 

21 0.95915 0.99223 0.99844 0.99968 0.99994 0.99999 

23  0.98638 0.9973 0.99945 0.99989 0.99998 

25  0.97578 0.99528 0.99905 0.99981 0.99996 

27   0.99165 0.99833 0.99966 0.99993 

29   0.98509 0.99705 0.9994 0.99988 

31   0.97315 0.99475 0.99894 0.99979 
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Table  5: Variation in the system reliability with increase in 𝑁 (𝜆 > 𝜇 case) 𝜆 = 6, 𝜇 = 5.5, 𝜆̅ =
3.2, �̅� = 8 

  

 N  n=40  n=50  n=55  n=60  

1 0.90191 0.91106 0.91312 0.91441 

2 0.90118 0.91081 0.91297 0.91431 

3 0.90041 0.91055 0.91281 0.91421 

4 0.89961 0.91028 0.91264 0.91411 

5 0.89876 0.91 0.91247 0.914 

6 0.89758 0.90971 0.91229 0.91389 

7 0.89696 0.90941 0.91211 0.91377 

8 0.896 0.9091 0.91192 0.91366 

9 0.895 0.90878 0.91173 0.91354 

10 0.89396 0.90845 0.91153 0.91341 

11 0.89287 0.90812 0.91133 0.91329 

12 0.89174 0.90777 0.91112 0.91316 

13 0.89055 0.90741 0.9109 0.91303 

14 0.88932 0.90705 0.91068 0.91289 

15 0.88804 0.90667 0.91046 0.91275 

16 0.8867 0.90628 0.91 0.91261 

17 0.88531 0.90589 0.90951 0.91247 

18 0.88386 0.90548 0.90901 0.91232 

19 0.88235 0.90507 0.90848 0.91217 

21 0.88079 0.90464 0.90794 0.91186 

23 0.87916 0.90421 0.90738 0.91155 

25  0.90331 0.90679 0.91122 

27  0.90237 0.9062 0.91088 

29  0.90139 0.90558 0.91053 

31  0.90036 0.90494 0.91018 

33  0.8993 0.90462 0.90981 

35    0.90944 

37    0.90905 

39    0.90866 

41    0.90827 

 

  

  

Table  6: Variation in the system reliability with increase in 𝑁 (case when no external customers 

are allowed) 𝑘 = 20, 𝜆 = 6, 𝜇 = 5.5 

  

 N  n=40  n=45  n=50  n=55  n=60  n=65  

1 0.902225 0.907874 0.911180 0.913196 0.914453 0.915247 

3 0.900740 0.907001 0.910662 0.912877 0.914252 0.915120 

5 0.899093 0.906080 0.910108 0.912537 0.914040 0.914985 

7 0.897301 0.905082 0.909519 0.912176 0.913815 0.914843 

9 0.895355 0.904014 0.908894 0.911796 0.913578 0.914693 

11 0.893242 0.902873 0.908232 0.911395 0.913329 0.914537 

13 0.890948 0.901655 0.907531 0.910974 0.913069 0.914373 

15 0.888461 0.900358 0.906793 0.910533 0.912797 0.914202 

17 0.885763 0.898979 0.906016 0.910071 0.912514 0.914025 
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19 0.882837 0.897514 0.905200 0.909589 0.912219 0.913841 

21 0.879662 0.895960 0.904345 0.909087 0.911913 0.913651 

23  0.894313 0.903450 0.908566 0.911597 0.913454 

25  0.892570 0.902514 0.908025 0.911271 0.913252 

27   0.901539 0.907465 0.910934 0.913044 

29   0.900523 0.906886 0.910588 0.912831 

31   0.899465 0.906289 0.910233 0.912613 

33    0.905674 0.909868 0.912390 

35    0.905041 0.909495 0.912162 

37     0.909114 0.911930 

39     0.908724 0.911693 

41     0.908327 0.911453 

43      0.911209 

45      0.910961 

 

Table  7: Analysis of a cost function for finding optimal 𝑁 value , 𝑛 = 50, 𝑘 = 20, 𝜇 = 5.5, 𝜆̅ =
3.2, �̅� = 8, 𝐶1 = 2000, 𝐶2 = 20, 𝐶3 = 800, 𝐶4 = 1000, 𝐶5 = 10, 𝐶6 = 200 

  

 N  𝜆 = 4  𝜆 = 4.5  𝜆 = 5  𝜆 = 5.5  

1 4925.877 4937.695 5079.029 5226.181 

3 4710.059 4856.852 5057.425 5221.212 

5 4630.354 4825.835 5050.332 5218.775 

7 4591.702 4812.151 5048.243 5216.965 

9 4571.3 4806.745 5048.411 5215.313 

11 4561.086 4806.248 5049.849 5213.713 

13 4558.217 4809.556 5052.345 5212.268 

15 4563.915 4817.604 5056.578 5211.373 

17 4588.216 4835.444 5064.896 5211.922 

18 4605.19 4846.938 5070.21 5212.65 

19 4624.185 4859.68 5076.196 5213.701 

21 4670.646 4890.628 5091.4 5217.34 

23 4735.585 4934.206 5114.597 5224.719 

25 4837.829 5004.721 5155.522 5240.069 

27 5032.125 5144.138 5241.815 5274.736 

29 5546.901 5525.659 5482.957 5371.341 

31 8780.95 7911.995 6932.789 5918.758 
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Abstract 
 

In this paper we study a 𝑘-out-of-𝑛 system with a single repair facility, which provides service to 

external customers also. We assume an 𝑁-policy for service to failed components(main customers) 

of the 𝑘-out-of-𝑛 system starts only on accumulation of 𝑁 of them. Once started, the repair of 

external customers is continued until all the components become operational. When not repairing 

failed components, the server attends external customers(if there is any) who arrive according to a 

Poisson process. Once selected for service, the external customers receive a service of non-

preemptive nature. When there are at least 𝑁 failed components in the system and/or when the 

server is busy with failed components, the external customers are not allowed to join the 

system.Otherwise they join an orbit of infinite capacity. Life time distribution of failed components, 

service time distribution of main and external customers and the inter retrial time distribution of 

orbital customers are all assumed to follow independent exponential distributions. Steady state 

analysis has been carried out and several important system performance measures, based on the 

steady state distribution, derived. A numerical study comparing the current model with those in 

which no external customers are considered has been carried out.This study suggests that rendering 

service to external customers helps to utilize the server idle time profitably, without sacrificing the 

system reliability.  

 

 Keywords: 𝑘-out-of-𝑛 system; non-preemptive service. 

 

 

1  Introduction 
 

In this paper, we consider a variant of the model studied in Krishnamoorthy et al. [1]. In part I (see 

Krishnamoorthy et al. [3]) of this paper we studied the reliability of a k-out-of-n system with a 

single server rendering non-preemptive service to external customers.In this paper we extend it to 
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retrial queue of unsatisfied external customers(orbital customers) with linear retrial rate.In effect 

we replace the infinite queue of external customers in part I by orbital customers and their retrial. 

However, the stability condition remains the same in both models. 

This paper is arranged as follows. In section 2 , we describe the model and in section 3 , its 

long run behavior is analyzed. The stability condition is derived explicitly in section 3 and 

computation of the steady state vector using the Neuts-Rao truncation procedure [2] has been 

discussed. Some important performance measures are derived in section 4 . The effect of rendering 

service to external customers and N-policy has been studied numerically in section 5 . 

 

2  The retrial model 
 

Here we consider a variant of the model discussed in section 2 of part I by assuming that 

an arriving external customer either gets immediate service if it finds the server is idle at that time 

or joins an orbit of infinite capacity, if the server is busy with external customers with ≤ 𝑁 − 1 

failed components of the 𝑘-out-of-𝑛 system. As in the model discussed in section 2 of part I, the 

external customers are not allowed to join the orbit when the server is busy with failed 

components of the system. An orbital customer retries for service with inter-retrial time following 

an exponential distribution with parameter 𝜃. All other assumptions and parameters remain the 

same as in model discussed in section 2 of part I. In this situation the system can be modeled as 

follows. 

Let 𝑋1(𝑡) = the number of external customers in the orbit at time 𝑡,  

𝑋2(𝑡) = the number of failed components of the 𝑘-out-of-𝑛 system, including the one 

getting service (if any) at time 𝑡. 

Define  

 𝑆(𝑡) = (

0, If the server is idle
1, If the server is busy with an external customer
2, If the server is busy with a main customer

 

Now, 𝑋(𝑡) = (𝑋1(𝑡), 𝑆(𝑡), 𝑋2(𝑡)) forms a continuous time Markov chain on the state space  

 
𝑆 = {(𝑗1, 0, 𝑗2)/𝑗1 ≥ 0,0 ≤ 𝑗2 ≤ 𝑁 − 1}⋃ {(𝑗1, 1, 𝑗2)/𝑗1 ≥ 0,0 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1}

⋃ {(𝑗1, 2, 𝑗2)/𝑗1 ≥ 0,1 ≤ 𝑗2 ≤ 𝑛 − 𝑘 + 1}.
 

 

Arranging the states lexicographically and partitioning the state space into levels 𝑖, where 

each level 𝑖 corresponds to the collection of states with number of external customers in the orbit at 

any time 𝑡 equal to 𝑖, we get an infinitesimal generator of the above chain as  

 𝑄 =

[
 
 
 
 
 
 
 
 
 
𝐀10 𝐀0

𝐀21 𝐀11 𝐀0

𝐀22 𝐀12 𝐀0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝐀2𝑝 𝐀1𝑝 𝐀0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

]
 
 
 
 
 
 
 
 
 

. 

 

The entries of 𝑄 are described as below: For 𝑖 ≥ 0, the transition within level 𝑖 is 

represented by the matrix 

 

 𝐀1𝑖 =

[
 
 
 𝐷11

(𝑖)
𝐷12 0 𝐷14

𝐷21 𝐷22 𝐷23 0
0 0 𝐷33 𝐷34

𝐷41 0 0 𝐷44]
 
 
 

, 

 where  

 𝐷11
(𝑖)

= 𝜆𝐸𝑁 − 𝜆𝐼𝑁 − 𝑖𝜃𝐼𝑁 , 𝐷12 = 𝜆𝐼𝑁 , 
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 𝐷14 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑛−𝑘+1(𝑁), 𝐷21 = 𝜇𝐼𝑁 , 

 𝐷22 = 𝐷11
(0)

− 𝜇𝐼𝑁 , 
 𝐷23 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑛−𝑘+2−𝑁(1), 
 𝐷33 = 𝜆𝐸𝑛−𝑘+2−𝑁 + 𝜆𝑐(𝑛 − 𝑘 + 2 − 𝑁) ⊗ 𝑟(𝑛−𝑘+2−𝑁)(𝑛 − 𝑘 + 2 − 𝑁) − 𝜇𝐼𝑛−𝑘+2−𝑁 , 

 𝐷34 = [𝑂𝑛−𝑘+2−𝑁×(𝑁−1) 𝜇𝐼(𝑛−𝑘+2−𝑁)], 
 𝐷44 = 𝜆𝐸𝑛−𝑘+1 + 𝜆𝑐𝑛−𝑘+1(𝑛 − 𝑘 + 1) ⊗ 𝑟𝑛−𝑘+1(𝑛 − 𝑘 + 1) + 𝜇𝐸′𝑛−𝑘+1, 
 𝐷41 = 𝜇𝑐𝑛−𝑘+1(1) ⊗ 𝑟𝑁(1). 

 

For 𝑖 ≥ 0 the transition from level 𝑖 to 𝑖 + 1 is represented by the matrix  

 𝐀0 = [

0𝑁×𝑁 0 0 0

0 𝜆𝐼𝑁 0 0
0 0 0 0

]. 

 For 𝑖 ≥ 1, the transition from level 𝑖 to 𝑖 − 1 is represented by the matrix 

 

 𝐀2𝑖 = [
0 𝑖𝜃𝐼𝑁 0 0
0 0 0 0

]. 

 

 

3  Steady state analysis of the retrial model 
 

3.1  Stability condition 

 

For finding the stability condition for the system study, we apply Neuts-Rao truncation [2] 

by assuming 𝐴1𝑖 = 𝐴1𝑀 and 𝐴2𝑖 = 𝐴2𝑀 for all 𝑖 ≥ 𝑀. Then the generator matrix of the truncated 

system will look like: 

 

 𝑄 =

[
 
 
 
 
 
 
 
 
 
 
𝐀10 𝐀0

𝐀21 𝐀11 𝐀0

𝐀22 𝐀12 𝐀0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝐀2𝑀 𝐀1𝑀 𝐀0

𝐀2𝑀 𝐀1𝑀 𝐀0

⋅ ⋅
⋅ ⋅

]
 
 
 
 
 
 
 
 
 
 

. 

 

Define 𝐀𝑀 = 𝐀0 + 𝐀1𝑀 + 𝐀2𝑀  ; then 

 

 𝐴𝑀 =

[
 
 
 
 
 𝐷11

(𝑀)
𝐷12

(𝑀)
0𝐷14

𝐷21 �̃�22 𝐷23 0
0 0 𝐷33 𝐷34

𝐷41 0 0 𝐷44

]
 
 
 
 
 

, 

 where 𝐷12
(𝑀)

= (𝜆 + 𝑀𝜃)𝐼𝑁, �̃�22 = 𝜆𝐸𝑁 − 𝜇𝐼𝑁. 

Let  
 𝜋𝑀 = (𝜋𝑀(0), 𝜋𝑀(1), �̃�𝑀(1), 𝜋𝑀(2)), where 
 𝜋𝑀(0) = (𝜋𝑀(0,0), 𝜋𝑀(0,1), … , 𝜋𝑀(0, 𝑁 − 1)), 
 𝜋𝑀(1) = (𝜋𝑀(1,0), … , 𝜋𝑀(1, 𝑁 − 1)), 
 �̃�𝑀(1) = (𝜋𝑀(1, 𝑁), … , 𝜋𝑀(1, 𝑛 − 𝑘 + 1)), 
 𝜋𝑀(2) = (𝜋𝑀(2,1), … , 𝜋𝑀(2, 𝑛 − 𝑘 + 1)). 

 be the steady state vector of the generator matrix 𝐀𝑀. Then the relation 𝜋𝑀𝐀𝑀 = 0 gives rise to the 

following equations:  

 𝜋𝑀(0)𝐷11
(𝑀)

+ 𝜋𝑀(1)𝐷21 + 𝜋𝑀(2)𝐷41 = 0, (1) 



 
Krishnamoorthy A., Sathian M., Narayanan C Viswanath 
RELIABILITY of k-out-of-n SYSTEM. PART II 

RT&A, No3 (42) 
Volume 11, September 2016  

79 

  

 𝜋𝑀(0)𝐷12
(𝑀)

+ 𝜋𝑀(1)�̃�22 = 0, (2) 

  

 𝜋𝑀(1)𝐷23 + �̃�𝑀(1)𝐷33 = 0, (3) 

  

 𝜋𝑀(0)𝐷14 + �̃�𝑀(1)𝐷34 + 𝜋𝑀(2)𝐷44 = 0. (4) 

 

It follows from equation (4) that  

 𝜋𝑀(2) = −𝜋𝑀(0)𝐷14(𝐷44)
−1 − �̃�𝑀(1)𝐷34(𝐷44)

−1. (5) 

 Substituting for 𝜋𝑀(2) in equation (1), we get  

 𝜋𝑀(0)𝐷11
(𝑀)

+ 𝜋𝑀(1)𝐷21 − 𝜋𝑀(0)𝐷14(𝐷44)
−1𝐷41 − �̃�𝑀(1)𝐷34(𝐷44)

−1𝐷41 = 0. (6) 

 It follows from equation (3) that  

 �̃�𝑀(1) = −𝜋𝑀(1)𝐷23(𝐷33
−1). (7) 

 

Substituting for �̃�𝑀(1) in equation (6), we get  

 
𝜋𝑀(0)𝐷11

(𝑀)
+ 𝜋𝑀(1)𝐷21 − 𝜋𝑀(0)𝐷14(𝐷44)

−1𝐷41

+𝜋𝑀(1)𝐷23(𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 = 0.
 (8) 

 

We notice that the first column of the matrix 𝐷41 is −𝐷44𝑒 and its all other columns are zero 

columns. Hence the first column of the matrix (𝐷44)
−1𝐷41 is −𝑒 and its all other columns are zero 

columns. This implies that the first column of the matrix −𝐷14(𝐷44)
−1𝐷41 is 𝐷14𝑒 = 𝜆𝑐𝑁(𝑁) and its 

all other columns are zero columns. In other words −𝐷14(𝐷44)
−1𝐷41 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). Also, the 

first column of the matrix 𝐷34(𝐷44)
−1𝐷41 is −𝐷34𝑒 and its all other columns are zero columns. Since 

−𝐷34𝑒 = 𝐷33𝑒, the first column of the matrix (𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 is 𝑒 and its all other columns are 

zero columns. Hence it follows that 𝐷23(𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 is 𝐷23𝑒 = 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1). Thus 

equation (8) becomes  

 𝜋𝑀(0)(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝜋𝑀(1)(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) = 0. (9) 

 Adding equations (2) and (9), we get  

 𝜋𝑀(0)(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) + 𝐷12
(𝑀)

) + 𝜋𝑀(1)(�̃�22 + 𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) = 0. (10) 

 

Since 𝐷11
(𝑀)

+ 𝐷12
(𝑀)

= �̃�22 + 𝐷21 = 𝜆𝐸𝑁, equation (10) reduces to 

 

 (𝜋𝑀(0) + 𝜋𝑀(1))(𝜆𝐸𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) = 0. (11) 

 which implies that 𝜋𝑀(0) + 𝜋𝑀(1) is a constant multiple of the steady state vector 
1

𝑁
𝑒′𝑁 of the 

generator matrix 𝜆𝐸𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) and hence,  

 𝜋𝑀(0) + 𝜋𝑀(1) = 𝑣
1

𝑁
𝑒𝑁

′ . (12) 

 where 𝑣 is a constant. Equation (2) implies that 

 

 𝜋𝑀(0) = −𝜋𝑀(1)�̃�22(𝐷12
(𝑀)

)−1. (13) 

 Since (𝐷12
(𝑀)

)−1 =
1

(𝜆+𝑀𝜃)
𝐼𝑁, (13) gives  

 lim
𝑀→∞

𝜋𝑀(0) = 0. (14) 

 and hence  

 lim
𝑀→∞

𝜋𝑀(1) = 𝑣
1

𝑁
𝑒𝑁

′ , (15) 

 and  

 lim
𝑀→∞

𝜆𝜋𝑀(1)𝑒 = 𝑣𝜆. (16) 

 Again from (13),  

 𝑀𝜃𝜋𝑀(0)𝑒 = −𝑀𝜃𝜋𝑀(1)�̃�22(𝐷12
(𝑀)

)−1𝑒. (17) 

 Since, lim𝑀→∞𝑀𝜃(𝐷12
(𝑀)

)−1𝑒 = lim𝑀→∞
𝑀𝜃

(𝜆+𝑀𝜃)
𝑒𝑁 = 𝑒𝑁, (17) implies that  
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 lim
𝑀→∞

𝑀𝜃𝜋𝑀(0)𝑒 = − lim
𝑀→∞

𝜋𝑀(1)�̃�22𝑒 

 = −𝜈
1

𝑁
𝑒𝑁

′ (−𝜆𝑐𝑁(𝑁) − �̅�𝑒) 

 = 𝜈(
𝜆

𝑁
+ �̅�). (18) 

 The truncated system is stable if and only if  

 𝜋𝑀𝐴0𝑒 < 𝜋𝑀𝐴2𝑀𝑒, (19) 

 𝜋𝑀𝐴0𝑒 = 𝜆̅𝜋𝑀(1)𝑒, (20) 

 𝜋𝑀𝐴2𝑀𝑒 = 𝑀𝜃𝜋𝑀(0)𝑒. (21) 

 Making use of equations (16), (18), (20) and (21), the stability condition for the truncated system as 

𝑀 → ∞ is given by  

 𝜈𝜆̅ < 𝜈(
𝜆

𝑁
+ �̅�) , 

 which can be re-arranged as  

 
𝜆

�̅�

𝑁�̅�

(𝜆+𝑁�̅�)
< 1 . 

 Hence, we conclude that the retrial problem has the same stability condition as the queueing 

problem, which was obtained in section 3.1 of part I. 

 

3.2  Computation of Steady State Vector 

 

We find the steady state vector of {𝑋(𝑡), 𝑡 ≥ 0}, by approximating it with the steady state 

vector of the truncated system. Let 𝜋 = (𝜋0, 𝜋1, 𝜋2, … ) where each 𝜋𝑖 =

(𝜋𝑖(0,0), 𝜋𝑖(0,1), … , 𝜋𝑖(0, 𝑁 − 1), 𝜋𝑖(1,1), … , 𝜋𝑖(1, 𝑛 − 𝑘 + 1), 𝜋𝑖(2,0), 𝜋𝑖(2,1), … , 𝜋𝑖(2, 𝑛 − 𝑘 + 1)) be 

the steady state vector of the Markov chain {𝑋(𝑡), 𝑡 ≥ 0}. 

Suppose 𝐴1𝑖 = 𝐴1𝑀 and 𝐴2𝑖 = 𝐴2𝑀 for all 𝑖 ≥ 𝑀. Let 𝜋𝑀+𝑟 = 𝜋𝑀−1𝑅
𝑟+1, 𝑟 ≥ 0, then from 

𝜋𝑄 = 0 we get  
 𝜋𝑀−1𝐴0 + 𝜋𝑀𝐴1𝑀 + 𝜋𝑀+1𝐴2𝑀 = 0, 
 𝜋𝑀−1𝐴0 + 𝜋𝑀−1𝑅𝐴1𝑀 + 𝜋𝑀−1𝑅

2𝐴2𝑀 = 0, 
 𝜋𝑀−1(𝐴0 + 𝑅𝐴1𝑀 + 𝑅2𝐴2𝑀) = 0. 

 Choose 𝑅 such that 𝐴0 + 𝑅𝐴1𝑀 + 𝑅2𝐴2𝑀 = 0. We call this 𝑅 as 𝑅𝑀. Also we have  
 𝜋𝑀−2𝐴0 + 𝜋𝑀−1𝐴1𝑀−1 + 𝜋𝑀𝐴2𝑀 = 0, 
 𝜋𝑀−2𝐴0 + 𝜋𝑀−1(𝐴1𝑀−1 + 𝑅𝑀𝐴2𝑀) = 0, 
 𝜋𝑀−1 = −𝜋𝑀−2𝐴0(𝐴1𝑀−1 + 𝑅𝑀𝐴2𝑀)−1 
 = 𝜋𝑀−2𝑅𝑀−1  . 

 where  
 𝑅𝑀−1 = −𝐴0(𝐴1𝑀−1 + 𝑅𝑀𝐴2𝑀)  . 

Next,  
 𝜋𝑀−3𝐴0 + 𝜋𝑀−2𝐴1𝑀−2 + 𝜋𝑀−1𝐴2𝑀−1 = 0, 
 𝜋𝑀−3𝐴0 + 𝜋𝑀−2(𝐴1𝑀−2 + 𝜋𝑀−1𝐴2𝑀−1) = 0, 
 𝜋𝑀−2 = −𝜋𝑀−3𝐴0(𝐴1𝑀−2 + 𝑅𝑀−1(𝐴2𝑀−1)

−1 
 = 𝜋𝑀−3𝑅𝑀−2. 

 Where  
 𝑅𝑀−2 = −𝐴0(𝐴1𝑀−2 + 𝑅𝑀−1𝐴2𝑀−1)

−1. 

and so on. 

Finally  
 𝜋0𝐴10 + 𝜋1𝐴21 = 0 

becomes  
 𝜋0(𝐴10 + 𝑅1𝐴21) = 0. 

For finding 𝜋, first we take 𝜋0 as the steady state vector of 𝐴10 + 𝑅1𝐴21.Then 𝜋𝑖 for 𝑖 ≥ 1 can be 

found using the recursive formula, 𝜋𝑖 = 𝜋𝑖−1𝑅𝑖 for 1 ≤ 𝑖 ≤ 𝑀. 

Now the steady state probability distribution of the truncated system is obtained by 

dividing each 𝜋𝑖 with the normalizing constant  
 [𝜋0 + 𝜋1 + ⋯]𝑒 = [𝜋0 + 𝜋1 + ⋯ + 𝜋𝑁−2 + 𝜋𝑀−1(𝐼 − 𝑅𝑀)−1]𝑒. 
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3.3  Computation of the matrix 𝑹𝑴 

 

Consider the matrix quadratic equation  

 𝐴0 + 𝑅𝑀𝐴1𝑀 + 𝑅𝑀
2 𝐴2𝑀 = 0, (22) 

 which implies  

 𝑅𝑀 = −𝐴0(𝐴1𝑀 + 𝑅𝑀𝐴2𝑀)−1. (23) 

 

The structure of the 𝐴0 matrix implies that the matrix 𝑅𝑀 has the form:  

 𝑅𝑀 =

[
 
 
 
 
0 0 0 0
𝑅𝑀1 𝑅𝑀2 𝑅𝑀3 𝑅𝑀4

0 0 0 0
0 0 0 0

]
 
 
 
 

. (24) 

 In other words, the non-zero rows of the 𝑅𝑀 matrix are those, where the 𝐴0 matrix has at least one 

nonzero entry. Now,  

 𝑅𝑀
2 = [

0 0 0 0
𝑅𝑀2𝑅𝑀1 𝑅𝑀2

2 𝑅𝑀2𝑅𝑀3 𝑅𝑀2𝑅𝑀4

0 0 0 0
0 0 0 0

]. (25) 

 Equation (22) gives rise to the following equations:  

 𝑅𝑀1𝐷11
(𝑀)

+ 𝑅𝑀2𝐷21 + 𝑅𝑀4𝐷41 = 0, (26) 

  

 𝑅𝑀2𝑅𝑀1𝑀𝜃𝐼𝑁 + 𝑅𝑀1𝐷12 + 𝑅𝑀2𝐷22 + 𝜆𝐼𝑁 = 0, (27) 

  

 𝑅𝑀2𝐷23 + 𝑅𝑀3𝐷33 = 0, (28) 

  

 𝑅𝑀1𝐷14 + 𝑅𝑀3𝐷34 + 𝑅𝑀4𝐷44 = 0. (29) 

 From equation (28), we can write  

 𝑅𝑀3 = −𝑅𝑀2𝐷23(𝐷23)
−1. (30) 

 From equation(29), we can write  

 𝑅𝑀4 = −𝑅𝑀1𝐷14(𝐷44)
−1 − 𝑅𝑀3𝐷34(𝐷44)

−1. (31) 

 Substituting for 𝑅𝑀3 from (30) in equation (31), we get  

 𝑅𝑀4 = −𝑅𝑀1𝐷14(𝐷44)
−1 + 𝑅𝑀2𝐷23(𝐷33)

−1𝐷34(𝐷44)
−1. (32) 

 Substituting for 𝑅𝑀4 from (32) in equation (26), we get  

 
𝑅𝑀1𝐷11

(𝑀)
+𝑅𝑀2𝐷21 − 𝑅𝑀1𝐷14(𝐷44)

−1𝐷41

+𝑅𝑀2𝐷23(𝐷33)
−1𝐷34(𝐷44)

−1𝐷41 = 0.
 (33) 

 Using the same reasoning, that lead us to equation (9), equation (33) becomes  

 𝑅𝑀1(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝑅𝑀2(𝐷21 + 𝜆𝑐𝑛(𝑁) ⊗ 𝑟𝑁(1)) = 0. (34) 

 From (34), it follows that  

 𝑅𝑀1 = −𝑅𝑀2(𝐷21𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1. (35) 

 Substituting for 𝑅𝑀1 in (27), we get  

 −𝑅𝑀2
2 (𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11

(𝑀)
+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁 

 −𝑅𝑀2(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12 

 +𝑅𝑀2𝐷22 + 𝜆𝐼𝑁 = 0. 

 That is  

 𝑅𝑀2
2 (−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11

(𝑀)
+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁) 

 +𝑅𝑀2(−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12 + 𝐷22) 

 +𝜆𝐼𝑁 = 0. (36) 

 We notice that −(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))𝑒 = (𝐷12 + 𝑀𝜃𝐼𝑁)𝑒. and therefore  

 
−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11

(𝑀)
+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1(𝐷12 + 𝑀𝜃𝐼𝑁)𝑒

= (𝐷21𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))𝑒.
 (37) 

 Also,  
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 𝐷22𝑒 + (𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))𝑒 + 𝜆𝑒 = 0. 

and hence  

 

(−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁)𝑒 +    

(−(𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12 + 𝐷22)𝑒

+𝜆̅𝑒 = 0.

 (38) 

 Equation (38) shows that the matrix 𝑅𝑀2 is the minimal non-negative solution of the matrix 

quadratic equation (36). Once obtaining 𝑅𝑀2, the matrices 𝑅𝑀1, 𝑅𝑀3, and 𝑅𝑀4 can be found using 

equations (35), (30) and (31) respectively. Hence the matrix 𝑅𝑀 can be found. From the form of the 

matrix 𝐷11
(𝑀)

, we notice that,  

 −(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) 

                 = 𝑀𝜃𝐼𝑁 − (𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) 

                 = 𝑀𝜃 (𝐼𝑁 −
1

𝑀𝜃
(𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))). 

 and hence  

 −(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))
−1

 

                 =
1

𝑀𝜃
(𝐼𝑁 −

1

𝑀𝜃
(𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)))

−1

 

                 =
1

𝑀𝜃
(𝐼𝑁 +

1

𝑀𝜃
(𝜆𝐸𝑁 − 𝜆̅𝐼𝑁 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + ⋯ ). 

 Therefore  

 lim
𝑀→∞

(−(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝑀𝜃𝐼𝑁) = 𝐼𝑁 . 

and  

 lim
𝑀→∞

(−(𝐷11
(𝑀)

+ 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1))−1𝐷12) = 0. 

Hence as 𝑀 → ∞ equation (36) becomes  

 𝑅𝑀2
2 (𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1)) + 𝑅𝑀2𝐷22 + 𝜆̅𝐼𝑁 = 0. (39) 

 We identify 𝐷21 + 𝜆𝑐𝑁(𝑁) ⊗ 𝑟𝑁(1) as �̃�2, 𝐷22 as �̃�1 and 𝜆̅𝐼𝑁 as �̃�0, which were defined in section 3.2 

of part I. Hence equation (39) is the same as equation (24) of section 3.2 of part I. That is the matrix 

𝑅𝑀 tends to the matrix 𝑅, the minimal non-negative solution of (24) of section 3.2 of part I, as 𝑀 →

∞. This fact can be utilized in determining the truncation level 𝑀. 

 

4  System Performance Measures 
 

The following system performance measures were calculated numerically.   

    1.  Fraction of time the system is down,  

 𝑃𝑑𝑜𝑤𝑛 = ∑∞
𝑗1=0 (𝜋𝑗1(1, 𝑛 − 𝑘 + 1) + 𝜋𝑗1(2, 𝑛 − 𝑘 + 1)). 

 

    2.  System reliability, 𝑃𝑟𝑒𝑙 = 1 − 𝑃𝑑𝑜𝑤𝑛  

 = 1 − ∑∞
𝑗1=0 (𝜋𝑗1(1, 𝑛 − 𝑘 + 1) + 𝜋𝑗1(2, 𝑛 − 𝑘 + 1)). 

 

    3.  Average number of external customers in the orbit,  

 𝑁𝑜𝑟𝑏𝑖𝑡 = ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=1 𝜋𝑗1

(1, 𝑗3)) + ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=0 𝜋𝑗1

(2, 𝑗3)). 

 

    4.  Average number of failed components in the system,  

 𝑁𝑓𝑎𝑖𝑙 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=0 𝜋𝑗1(0, 𝑗3)) + ∑𝑛−𝑘+1

𝑗3=1 (∑∞
𝑗1=0 𝜋𝑗1(2, 𝑗3)). 

 

    5.  Average number of failed components waiting when server is busy with external 

customers  

 𝑁𝑓𝑎𝑖𝑙𝑒𝑥𝑡𝑏 = ∑𝑛−𝑘+1
𝑗3=0 𝑗3(∑

∞
𝑗1=1 𝜋𝑗1(0, 𝑗3)). 

 

    6.  Expected rate at which external customers joining the system  

 𝐸𝑒𝑥𝑡𝑟𝑎𝑡𝑒 = 𝜆̅{∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=0 𝜋𝑗1(0, 𝑗3)) + ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3)}. 
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    7.  Expected number of external customers on its arrival gets service directly,  

 𝐸𝑒𝑥𝑡𝑑𝑖𝑟𝑒𝑐𝑡 = ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3). 

 

    8.  Fraction of time server is busy with external customers,  

 𝑃𝑒𝑥𝑡𝑏𝑢𝑠𝑦 = ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=0 𝜋𝑗1(0, 𝑗3)). 

 

    9.  Probability that the server is found idle,  

 𝑃𝑖𝑑𝑙𝑒 = ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3) = 𝑁𝜋0(0,0). 

 

    10.  Probability that the server is found busy,  

 𝑃𝑏𝑢𝑠𝑦 = 1 − ∑𝑁−1
𝑗3=0 𝜋0(0, 𝑗3) = 1 − 𝑁𝜋0(0,0). 

 

    11.  Expected loss rate of external customers  

 𝜃4 = 𝜆̅{∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=1 𝜋𝑗1(1, 𝑗3)) + ∑∞
𝑗1=1 (∑𝑛−𝑘+1

𝑗3=𝑁 𝜋𝑗1(0, 𝑗3))}. 

 

    12.  Expected service completion rate of external customers,  

 𝜃5 = �̅� ∑∞
𝑗1=0 (∑𝑛−𝑘+1

𝑗3=0 𝜋𝑗1(0, 𝑗3)). 

 

    13.  Expected number of external customers when server is busy with external customers  

 𝜃6 = ∑∞
𝑗1=0 𝑗1(∑

𝑛−𝑘+1
𝑗3=0 𝜋𝑗1(0, 𝑗3)). 

 

    14.  Expected successful retrial rate  

 𝜃7 = 𝜃 ⋅ ∑𝑗1=1 (∑𝑁−1
𝑗3=0 𝜋𝐽1(0, 𝑗3)). 

 

 

 

5  Numerical study of the performance of the system 
  

5.1  The effect of N policy on the server busy probability 

 

A comparison of Table 1 of part I, which report the behaviour of server busy probability 

with variation in the N-policy level, with that of part II shows that the models described in section 

2 of part I and its variant where external customers are sent to the orbit, which was described in 

section 2 of part II have similar behaviour as far as the server busy probability is considered. 

Comparison of Table 3 of part I, which report the variation in the fraction of time the server 

remains busy with external customers with increase in 𝑁, with table 2 of part II also points to 

similar behaviour for both models. Table 4 of part I and table 3 of part II indicate that the two 

models have similar reliability. 

 

5.2  Cost Analysis 

 

As in the case of the queueing model discussed in section 2 of part I, we analyzed a cost 

function for the retrial model for finding an optimal value for the N-policy level. For defining the 

cost function, let 𝐶1 be the cost per unit time incurred if the system is down, 𝐶2 be the holding cost 

per unit time per external customer in the orbit, 𝐶3 is the cost incurred for starting failed 

components service after accumulation of 𝑁 of them, 𝐶4 be the cost due to loss of 1 external 

customer, 𝐶5 be the holding cost per unit time of one failed component, 𝐶6 be the cost per unit time 

if the server is idle. We define the cost function as:  
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒 

 = 𝐶1 ⋅ 𝑃𝑑𝑜𝑤𝑛 + 𝐶2 ⋅ 𝑁𝑜𝑟𝑏𝑖𝑡 + 𝐶4 ⋅ 𝜃4 + 𝐶5 ⋅ 𝑁𝑓𝑎𝑖𝑙 +
𝐶3

𝐸�̂�

+ 𝐶6 ⋅ 𝑃𝑖𝑑𝑙𝑒. 

 where 𝐸�̂� is found exactly in the same lines as in section 4.1 of part I. 

Our numerical study, as presented in Table 4, show that an optimal value for 𝑁 can be 

found for different parameter choices and also that this optimal value happens to be a much 

smaller value like 𝑁 = 6. This shows the care needed in selecting the N-policy level. 

 

6  Conclusion 
 

We analyzed a 𝑘-out-of-𝑛 system where the server renders service to external customers also. In 

the case of a system where a minimum number of working components is necessary for its 

operation, the service to external customer should be carefully managed so that it does not affect 

the system reliability much. Krishnamoorthy et al. [1] managed to do that by introducing an N-

policy , in which the ongoing service of an external customer is preempted at the moment when 𝑁 

failed components have accumulated for repair. Differing from Krishnamoorthy et al.[1], here we 

considered a non-preemptive service for external customers thereby making their service more 

attractive. We analyzed two models: one in which the external customers joins a queue and 

another in which they moving to an orbit of infinite capacity. Our numerical study showed that 

rendering non-preemptive service to external customers has not affected the system reliability 

much, thereby re-asserted that the same could be an effective idea for utilizing the server idle time 

and there by earning more profit to the system. Analysis of a cost function has helped us in finding 

an optimal value for the N-policy level. 

  

Table  1: Variation in the server busy probability when external customers are allowed 𝑘 = 20, 𝜆 =

4, 𝜆̅ = 3.2, 𝜇 = 5.5, �̅� = 8, 𝜃 = 5 

  

 N  n=45  n=50  n=55  n=60  

1 0.82349 0.82352 0.82353 0.82353 

3 0.82995 0.82999 0.83 0.83 

5 0.83222 0.83228 0.83229 0.83229 

7 0.83328 0.83336 0.83338 0.83338 

9 0.83385 0.83398 0.83401 0.83401 

11 0.83417 0.83437 0.83442 0.83442 

13 0.8343 0.83463 0.8347 0.83471 

15 0.83424 0.83479 0.8349 0.83493 

17 0.83394 0.83486 0.83505 0.83509 

19 0.83325 0.83483 0.83515 0.83521 

21 0.83192 0.83465 0.8352 0.83531 

23 0.82945 0.83424 0.83518 0.83538 
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Table  2: Effect of the N-policy level on the fraction of time server is busy with external customers 

𝑘 = 20, 𝜆 = 4, 𝜆̅ = 3.2, 𝜇 = 3.2, �̅� = 8, 𝜃 = 5 

  

 N  n=40  n=45  n=50  n=55   n=60  

1 0.09635 0.09628 0.09626 0.09626 0.09626 

3 0.10287 0.10276 0.10273 0.10273 0.10273 

5 0.10523 0.10506 0.10503 0.10502 0.10502 

7 0.10644 0.10618 0.10612 0.10611 0.10611 

9 0.10725 0.10685 0.10676 0.10675 0.10674 

11 0.10798 0.10732 0.10719 0.10716 0.10716 

13 0.10879 0.10772 0.1075 0.10746 0.10745 

15 0.10991 0.10811 0.10775 0.10768 0.10766 

17 0.11461 0.10858 0.10798 0.10786 0.10783 

19 0.11983 0.10925 0.10822 0.10801 0.10797 

21  0.1103 0.10851 0.10815 0.10808 

23  0.11208 0.10893 0.10831 0.10818 

25  0.11522 0.10959 0.1085 0.10828 

27   0.1107 0.10877 0.10839 

29   0.11265 0.1092 0.10852 

31   0.11615 0.10991 0.1087 

33    0.11116 0.10898 

35    0.1134 0.10945 

37     0.11026 

39     0.11172 

41     0.11435 
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Table  3: Variation in the system reliability with increase in 𝑁 𝑘 = 20, 𝜆 = 4, 𝜆̅ = 3.2, 𝜇 = 5.5, �̅� = 8, 
𝜃 = 5 

  

 N  n=40  n=45  n=50   n=55  n=60  

1 0.99963 0.99993 0.99998 1 1 

3 0.99948 0.99989 0.99998 1 1 

5 0.99924 0.99985 0.99997 0.99999 1 

7 0.99885 0.99977 0.99995 0.99999 1 

9 0.9982 0.99964 0.99993 0.99998 1 

11 0.99712 0.99942 0.99988 0.99998 1 

13 0.9953 0.99905 0.99981 0.99996 0.99999 

15 0.99217 0.99843 0.99968 0.99994 0.99999 

17 0.9769 0.99736 0.99947 0.99989 0.99998 

19  0.9955 0.99909 0.99982 0.99996 

21  0.99223 0.99844 0.99968 0.99994 

23  0.98638 0.9973 0.99945 0.99989 

25  0.97578 0.99528 0.99905 0.99981 

27   0.99165 0.99833 0.99966 

29   0.98509 0.99705 0.9994 

31   0.97315 0.99475 0.99894 

33    0.99058 0.99812 

35    0.98297 0.99663 

37     0.99393 

39     0.989 
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Table  4: Analysis of a cost function 𝑛 = 50, �̅� = 3.2, 𝜇 = 5.5, �̅� = 8, 𝐶1 = 2000, 𝐶2 = 1000, 𝐶3 =

800, 𝐶4 = 1000, 𝐶5 = 10, 𝐶6 = 200, 𝜃 = 5 

  

 N  𝜆 = 4  𝜆 = 4.5  𝜆 = 5 

1 6235.23047 6440.20947 6671.65918 

2 6137.3877 6343.84668 6576.75928 

3 6109.98389 6317.7207 6551.88965 

4 6102.75391 6311.82178 6547.30566 

5 6102.27734 6312.30322 6548.71436 

6 6104.71094 6315.28613 6552.17676 

7 6108.70947 6319.521 6556.51709 

8 6113.67188 6324.50439 6561.33057 

9 6119.2749 6329.98047 6566.44873 

10 6125.32666 6335.80176 6571.76465 

11 6131.69824 6341.87891 6577.22021 

12 6138.31006 6348.14307 6582.78711 

13 6145.10449 6354.55762 6588.43018 

14 6152.04492 6361.09961 6594.13086 

15 6159.104 6367.74854 6599.88428 

17 6173.53564 6381.33594 6611.51611 

19 6188.38672 6395.33936 6623.31689 

21 6203.78809 6409.88037 6635.37354 

23 6220.13477 6417.44531 6647.98535 

25 6238.73828 6443.09375 6662.8042 

27 6266.49854 6471.54688 6690.0752 

29 6356.05566 6571.71631 6799.88672 

31 7073.24658 7340.11523 7618.78223 
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