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Abstract 
We compare the reliability of two finite networks with the same vertex degree and 

the same number of nodes; a regular 16x16 grid and a Poisson network. Both networks 

are subject to random removal of their nodes, and the network failure is defined as the 

reduction of the maximal component beyond some critical level α. The main tool for 

comparing the network resilience are the marginal cumulative D-spectra (signatures) 

of the net- works. It was demonstrated that the regular grid for small α is less reliable 

than the Poisson network. We study also the situation when multiple hits of the same 

node are allowed. We demonstrate that finite networks behave similar to infinite 

random network with regard to the fraction of nodes to be removed to create 

“similar” giant components containing the same fraction of network nodes. Finally, we 

consider a combined attack on net- work nodes by two-type of “shells” where the 

node fails only if it is hit by “shells” of both types. For this case, we derive a formula 

for determin- ing the minimal number of “shells” which destroy the network with 

given probability. 

 

 

  Key words:finite network, attack on network node, cumulative D-spectra 

(signature); combined attack on nodes. 

 

1.Introduction and Preliminaries. D-spectrum 
 

There are many works that study interaction between networks [1,3,4,5,10,11]. The 

following features are typical for probabilistic models of the network interaction: a) networks are 

assumed to be very large, formally infinite; b) network 𝑁1 affects another network 𝑁2 by creation of 

a random connections between their nodes in such a way that a node 𝑎 ∈ 𝑁1 hits a randomly 

chosen node 𝑏 ∈ 𝑁2 . There are models of interaction in which the choice of node 𝑏 ∈ 𝑁2 is not 

random and "hubs" in 𝑁2 have higher probability of being hit than "regular" nodes. Typically, in all 

these models, the particular structure of network 𝑁2 is not specified, except for the node degree 

distribution. 

In this paper we deal only with finite networks having well-defined structure. In other 

words, network 𝑁 subject to an attack is given as a pair 𝑁 = (𝑉, 𝐸), where 𝑉 is the vertex or node 

set, |𝑉| = 𝑛, and 𝐸 is the edge or link set, |𝐸| = 𝑚. We assume that if a node is attacked, then all 

links adjacent to it are erased, while the node remains untouched. 

As a measure of network state in the process of node failures we consider the size of its 

largest component, i.e. the largest set of connected nodes in the network. It is more convenient to 

mailto:r.vaisman@uq.edu.au
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characterize the size of the largest component by the fraction 𝛼 of nodes 𝑛 in the network that 

belong to this component. For example, we will consider a 16x16 grid with 𝑛 = 256. If its largest 

component has 200 nodes, we will say that 𝛼 = 200/256 = 0.78 We will also define several states 

of network degradation measured by these fractions 𝛼9 > 𝛼8 >. . . > 𝛼1. We say that the network is 

in perfect state (State10) if its largest component has size 𝐿 ≥ 𝛼9, Generally, we say that the 

network is in state 𝑠 if its largest component has size 𝐿, 𝛼𝑠 > 𝐿 ≥ 𝛼𝑠−1, 𝑠 = 9,8, . . .2. Finally, network 

state is 1 if 𝛼1 > 𝐿. 

 

Our main goal is to analyze network probabilistic behavior when network nodes are 

subject to random node failures. The main tool for this analysis will be so called D-spectra 

technique. 

  Denote by 𝑒1, 𝑒2, . . . , 𝑒𝑛 network components subject to failure (the nodes), and let 𝜋 be a 

random permutation of components numbers,  
 𝜋 = (𝑒𝑖1

, 𝑒𝑖2
, . . . , 𝑒𝑖𝑛

). 

Suppose that all these components are 𝑢𝑝 and we move along the permutation, from left to right, 

and turn each component from up to down. Suppose that network state is controlled after each step. 

Typically, we will observe exactly 9 occasions when network state has changed: first - from the 

perfect State10 to state 𝑠 = 9, from 𝑠 = 9 to 𝑠 = 8, and so on, until the transition from 𝑠 = 2 to 𝑠 =

1.  

  Definition 1. (The anchors) 

  The ordinal number in the permutation 𝜋 of the component whose turning down causes 

network state to change from 10 − 𝑘 to 10 − (𝑘 + 1), 𝑘 = 0,1, . . . ,8 is called the (𝑘 + 1)-st anchor and 

is denoted by 𝑟𝑠+1(𝜋). Each permutation has, therefore, 𝑘 anchors. So, the first anchor signifies the 

transition 10 ⇒ 9, the second - 9 ⇒ 8,...,the ninth - 2 ⇒ 1 

 

  Definition 2. (Multidimensional D-spectrum) 

  Assume that all 𝑛! permutations are equally probable. The 𝑘-dimensional discrete density  
 𝑓(𝛿1, 𝛿2, . . . , 𝛿9) = 𝑃(𝑟𝑖(𝜋) = 𝛿𝑖, 𝑖 = 1,2, . . . ,9) = 

 

 
 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠  𝑤𝑖𝑡ℎ     𝑟𝑖(𝜋)=𝛿𝑖,𝑖=1,2,...,9

𝑛!
 (1) 

 for 1 ≤ 𝛿1 < 𝛿2 <⋅⋅⋅≤ 𝛿9 ≤ 𝑛 is called network multidimensional D-spectrum.# 

 A few comments. Letter "D" for the spectrum signifies the process of destruction since we 

turned from up to down network components moving along the permutation. In literature, the 

multidimensional D-spectrum is termed also as a multidimensional signature, see [6,8]. 

Obviously,  
 ∑1≤𝛿1<𝛿2<⋅⋅<𝛿9≤𝑛 𝑓(𝛿1, 𝛿2, . . . , 𝛿9) = 1. 

It is important to stress that the D-spectrum is a combinatorial parameter of the network that 

depends only on network structure and its states definition. It does not depend on probabilistic 

characterization of the real random mechanism governing network component failures.  

  Our main interest will be in the probabilistic description of each particular anchor. 

Formally speaking, our main tool will be the distributions of the positions of each of the 9 anchors. 

  Definition 3. The 𝑗-th marginal D-spectrum 

  The distribution  

 𝑓(𝑗) = (𝑓1
(𝑗)

, 𝑓2
(𝑗)

, . . . , 𝑓𝑛
(𝑗)

) 

of the position of the 𝑗-th anchor is called the 𝑗-th marginal D-spectrum.# 

Here 𝑓𝑖
(𝑗)

= 𝑃( 𝑡ℎ𝑒  𝑗 − 𝑡ℎ  𝑎𝑛𝑐ℎ𝑜𝑟  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑖𝑠     𝑖). 

Obviously,  

 𝑓𝑖
(𝑗)

= 𝑃(𝑟𝑗(𝜋) = 𝑖) = 

 

 ∑1≤𝛿1<𝛿2<...𝛿𝑗=𝑖<...<𝛿9≤𝑛 𝑓(𝛿1, 𝛿2, . . . , 𝛿𝑗 = 𝑖, . . . , 𝛼9) (2) 

  In what follows, it is more convenient is to operate with a so-called cumulative (marginal) D-
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spectra. 

Definition 4. The 𝑗-th cumulative D-spectrum 

The cumulative distribution function (cdf) 𝐹(𝑗)(𝑥) of the position of the 𝑗-th anchor in 

random permutation 𝜋 is called the 𝑗-th cumulative D-spectrum:  

 𝐹(𝑗)(𝑥) = ∑𝑥
𝑖=1 𝑓𝑖

(𝑗)
, 𝑥 = 1,2, . . . , 𝑛. # (3) 

  

  Let us clarify the probabilistic meaning of 𝐹(𝑗)(𝑥). Divide all network states into two sets 

U and 𝐷. Let all states 𝐽 ≥ (10 − 𝑗) belong to 𝑈, and all the remaining states - to 𝐷, 𝑗 = 0,1,2, . . . ,9. 

Denote by 𝑌(𝑗) the random number of components needed to turn down in the course of the 

destruction process to cause the transition from 𝑈 to 𝐷. Note that 𝑓𝑖
(𝑗)

= 𝑃(𝑌(𝑗) = 𝑖). Then  

 𝐹(𝑗)(𝑥) = 𝑃(𝑌(𝑗) ≤ 𝑥). 

In words: 𝐹(𝑗)(𝑥) is the cdf of the number of components to be destroyed to cause the transition 

from 𝑈 to 𝐷 

 

  Remark 1 

  Suppose that the network has only two states: the 𝑈𝑃 state, if its largest component has 

size 𝐿 ≥ 𝛼 = 0.7, and the complementary state 𝐷. There will be only one anchor designating the 

position of the component whose destruction leads to the transition 𝑈 ⇒ 𝐷. The corresponding D-

spectrum is nothing but so-called signature introduced by Samaniego [15] and the cumulative D-

spectrum is the so-called cumulative signature, see [15,16].# 

 

  Remark 2 

  Consider a star network with central node 𝑎 and three peripheral nodes 𝑏, 𝑐, 𝑑 that are 

connected to 𝑎 by links (𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑑). If node 𝑎 fails, the network disintegrates into four 

isolated components. If network state is defined according to the size of its largest component, we 

observe a jump from state 4 to state 1. 

  Formally speaking, it may happen that in the process of component destruction we may 

observe a transition from state 𝐽 − 𝐴 to state 𝐽 − 𝐴 − 𝐵, 𝐵 > 1. Suppose it happens after destructing 

component standing on the 𝑖-th position. Then we put 𝑟𝐴+1(𝜋) =. . . = 𝑟𝐴+𝐵(𝜋) = 𝑖 and therefore 

formally provide that all permutations have the same number of anchors.# 

 

 
Figure  1:  Random graph with 𝑛 = 252 nodes and average node degree 𝑑 = 3.75 
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 2. Resilience of a Regular Grid vs Random Graph 
  

In this section we compare the resilience of two finite networks having approximately the 

same number of nodes and the same average node degree. The first network (call it ’Grid’) is a 

16x16 regular grid with 𝑛 = 256 nodes and 480 edges, see Figure 3. The average node degree is 

960/256=3.75. 

 
 

Figure  2: 16x16 Grid. Failed nodes are shown by red 

  

The second network is a random Poisson graph (call it "Map") with 252 nodes and 473 

edges thus having the same average node degree 3.75. Each of these networks was subject to 

random node removal. For Grid and Map we introduced several states according to the fraction 𝐿 

of all nodes in the maximal (connected) component. This component is an analogue of the giant 

component in an infinite network:  
 𝑆𝑡𝑎𝑡𝑒10: 𝐿 ≥ 0.9; 𝑆𝑡𝑎𝑡𝑒9: 0.8 ≤ 𝐿 < 0.9; . . . ; 𝑆𝑡𝑎𝑡𝑒2: 0.1 ≤ 𝐿 < 0.2; 𝑆𝑡𝑎𝑡𝑒1: 𝐿 < 0.1. 

 

   
Figure  3:  Cumulative D-spectra for Grid vs Map networks. Upper pair is for transition 2 ⇒ 1; left 

lower - for transition 3 ⇒ 2, right - for transition 4 ⇒ 3. In each pair, the right curve (blue) is for 

Map, the left - for Grid 
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Figure  4:  Cumulative D-spectra for Grid vs Map networks. Upper pair is for transition 5 ⇒ 4 (left) 

and 6 ⇒ 5 (right). The red curve is for Grid, blue - for Map. Here again Map is more resilient. 

Situation changes for the transitions 7 ⇒ 6,8 ⇒ 7,9 ⇒ 8 and 10 ⇒ 9, see the graphs in the middle 

and the bottom 

.  

  Random permutation 𝜋 has therefore nine anchors 𝑟1(𝜋), 𝑟2(𝜋),..., 𝑟9(𝜋) signifying the 

transition from State10 to State9, from State9 to State8, etc.   The cumulative marginal D-spectra are 

shown on Figures 3 and 4. Figure 3 shows Grid vs Map marginal spectra for the transitions 2 ⇒

1,3 ⇒ 2,4 ⇒ 3. 

  The spectrum for Grid is in red, for Map -in blue. The most surprising and not expected 

phenomenon is that the Grid marginal spectra are shifted to the left from the Map spectra. It means 

that Map is more resilient than the Grid! Let us examine the graph FMapGrid30. If about 110 nodes 

are destroyed, the largest component of Grid with probability about 0.5 has 0.3 ⋅ 256 nodes while 

Map has not suffered at all. To cause the transition 3 ⇒ 2 with probability 0.5 for Map, one has to 
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destroy about 140 nodes ! 

  Two upper graphs on Figure 3 present the Map vs Grid spectra for the transitions 5 ⇒ 4 

and 6 ⇒ 5. Here again we see that blue curves (Map spectra) are on the right of the Grid 

spectra.The advantage in resilience of Map vs Grid vanishes when the fraction of nodes in the 

maximal component becomes ≥ 0.6, see the graphs in the middle row and in the bottom of Figure 

4. When the maximal component has 0.9-0.7 faction of all nodes, Grid is slightly more resilient. For 

𝛼 = 0.6 both spectra practically coincide, see middle graphs, on the left. 

  In [7], comparison was made of the resilience for small random networks (𝑛 ≤ 40) vs 

regular networks, for node degrees 𝑑 = 3,4 and 5. Network failure was defined as the decrease of 

component becomes below 0.3𝑛. It was observed that for 𝑑 = 5, the regular network is more 

resilient, but its advantage over random network became very small when 𝑑 was 4 or 3. 

 

3. Multiple Hits 
 

When an external source produces a hit on a randomly chosen node of a network that has 

𝑁 nodes, 𝑁 → ∞, the probability of multiple hits of the same node can be neglected. The situation 

changes drastically when the network subject to an external attack has a finite number of nodes 𝑛. 

Formally, we are in a situation well-studied in classical probability theory. Suppose that 𝑏 balls are 

randomly placed into 𝑛 boxes. We need to find the probability 𝑝(𝑘|𝑏) that there will be exactly 𝑘 

boxes that will contain at least one ball. This problem is known is combinatorics as occupancy 

problem and its solution is given by the famous DeMoivre’s formula [2], p 242:  

 𝑝(𝑘|𝑏) =
𝑛!

𝑘!(𝑛−𝑘)!
∑𝑘

𝑡=0 (−1)𝑡 𝑘!

𝑡!(𝑘−𝑡)!

(𝑘−𝑡)𝑏

𝑛𝑏 , 𝑘 = 1, . . . , 𝑚𝑖𝑛(𝑛, 𝑏). (4) 

 

We are interested now in finding network 𝐷𝑂𝑊𝑁 probability 𝑃(𝐷𝑂𝑊𝑁; 𝑏) when it is hit by 

𝑏 "balls". (A node that receives more than one hit remains down). Suppose that the network 

entrance into the DOWN state is described by 𝑗-th marginal cumulative D-spectrum 𝐹(𝑗)(𝑥). Using 

the Total Probability formula, we obtain that  

 𝑃(𝐷𝑂𝑊𝑁; 𝑏) = ∑min(𝑛,𝑏)
𝑘=0 𝑝(𝑘|𝑏) ⋅ 𝐹(𝑗)(𝑘), (5) 

 where 𝑝(𝑘|𝑏) is given by (4). 

 

 
Figure  5: Comparison of 𝑃(𝐷𝑂𝑊𝑁; 𝑏) (right curve in each pair) with 𝐹(𝑗)(𝑏) (left curve in each 

pair), for GRID. Left pair is for 𝑗 = 2; right pair - for 𝑗 = 5 
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Figure  6: Comparison of 𝑃(𝐷𝑂𝑊𝑁; 𝑏) (right curve in each pair) with 𝐹(𝑗)(𝑏) (left curve in each 

pair) for Map. Left pair is for 𝑗 = 2; right pair - for𝑗 = 5  

  

Examine, for example, the right pair of curves on Figure 5. The left one (in blue) is the 

cumulative marginal spectrum of GRID, for which the DOWN state is defined as the drop of 

largest component below 0.5𝑛. The red curve is 𝑃(𝐷𝑂𝑊𝑁; 𝑏) as a function of the number of "balls" 

thrown on the nodes of GRID. We see that, e.g., for probability 0.8, the horizontal distance between 

the curves is about 25, which means that about 25 nodes (out of approximately 125) are hit more 

than once. The comparison of the green and yellow curve on this figure shows that here the 

number of nodes with multiple hits is much smaller because the transition 9 ⇒ 8 takes place after 

considerably smaller number of damaged nodes (50-60). Figure 6 presents a similar picture for 

Map network. 

 

4. Comparing Giant Component in Infinite Poisson Network With 

Maximal Component in a Finite Network 
 

  Let us consider first a Poisson random infinite network in which a fraction 𝛽 of its nodes 

is randomly chosen and removed. Then the size of the giant component 𝐺 can be found from the 

following equation, see [12] page 597:  

 𝐺 = (1 − 𝛽)(1 − 𝑒−𝑑⋅𝐺), (6) 

 where 𝑑 is the average node degree. Take 𝑑 = 3.75. Let us take 𝐺 = 0.9(0.1)0.1 fraction of all 

nodes and find out from (6) the corresponding values of 𝛽. These values are presented in the 

second row of Table 1. 

  

Table  1: Giant component vs maximal component in the Map 

.  

𝐺  0.9  0.8  0.7  0.6  0.5 0.4 0.3 0.2 0.1  

𝛽 0.068 0.203  0.245  0.329  0.409  0.485 0.556  0.621  .680 

𝑞0.5 0.079  0.0171  0.258 0.341  0.420  0.496  0.559  0.614  0.680  
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Now let us compare the 𝛽-values with the number of nodes hit in the Map in order to 

provide with probability 0.5 that the maximal component is reduced to 0.9(0.1)0.1 fraction of 252 

nodes. For this purpose we have to look at the values of 𝑞0.5, the 0.5-quantiles, of the marginal 

cumulative D-spectra,  

 𝐹(𝑗)(𝑞0.5) ≈ 0.5. 

The values of 𝑞0.5 are given in the third row of Table 1. We can say that the average fraction of 

nodes to be removed to create a giant component in an infinite Poisson network is very close to the 

median fraction of nodes to be removed in finite Map network.  

 

  5. Network Attacked by Interacting "Shells" 
 

This title means that the network nodes are hit ("bombarded" or "contaminated") by two 

different kind of substances ("shells"). The "substances" (it might be infection, computer viruses, 

explosives, etc.) have the property that they interact between themselves and make damage to a 

node only if this node is hit by both substances . 

Using the neutral combinatorial language, 𝑀 white balls and 𝑁 black balls are randomly 

located in 𝑛 boxes (representing the nodes) The node is hit (fails) if in the corresponding box are 

balls of different colors. For example, there are 5 boxes numbered 1, 2, 3, 4, 5, boxes 1 and 2 contain 

one white ball, box 5 has 2 white balls. Also, each box contains one black ball. So, boxes 1,2 and 5 

contain balls of different colors and represent the nodes that are hit. Our task is to find out the 

number 𝐵 of boxes containing balls of both colors. 

 

  Lemma 1. 

 The mean value of 𝐵 equals  

 𝐸(𝐵) = 𝑛2(1 − (1 −
1

𝑛
)𝑀)(1 − (1 −

1

𝑛
)𝑁). # (7) 

  

  Lemma 2.  
 𝐸(𝐵2) = 𝑛(1 − (1 − 1/𝑛)𝑀(1 − (1 − 1/𝑛)𝑁) + 𝑛(𝑛 − 1)(1 − 2(1 − 1/𝑛)𝑀 + (1 − 2/𝑛)𝑀) + 

 

 𝑛(𝑛 − 1)(1 − 2(1 − 1/𝑛)𝑁 + (1 − 2/𝑛)𝑁). # (8) 

  The proof of Lemma 1 and 2 are given in the Appendix [18]. 

 

The following theorem follows from Lemmas 1 and 2: 

  Theorem 1 

If 𝑀 = 𝛼𝑛, 𝑁 = 𝛽𝑛, 𝑛 → ∞ then  

 𝐸(𝐵) = 𝑛(1 − 𝑒−𝛼)(1 − 𝑒−𝛽), (9) 

 and  

 𝑉𝑎𝑟(𝐵) = 𝑛(1 − 𝑒−𝛼)(1 − 𝑒−𝛽)(1 − (1 − 𝑒−𝛼)(1 − 𝑒−𝛽)). # (10) 

 

The following theorem was established by [14], see also [13], Section 3:  

  Theorem 2 

  If 𝑛 → ∞, and 0 < 𝑐1 < 𝛽 < 𝑐2 < ∞, and 0 < 𝑐1 < 𝛼 < 𝑐2 < ∞, the random variable 𝑌 =
𝐵−𝐸(𝐵)

(𝑉𝑎𝑟(𝐵))0.5 is asymptotically normal 𝑁(0,1).# 

 

Denote by 𝑞𝜀 the 𝜀-quantile of 𝑁(0,1). Then we arrive at the following 

  Corollary 

Suppose 𝑀 = 𝑁.To guarantee that with probability 1 − 𝜀 that the number of nodes hit by 

balls of both colors is at least 𝐵𝑚𝑖𝑛, we have to take 𝑁 = 𝛾 ⋅ 𝑛0 where 𝑛0 is the number of nodes in 

the network and 𝛾 is the root of the following equation:  

 𝑞𝜀𝑛0
0.5((1 − 𝑒−𝛾)(1 − (1 − 𝑒−𝛾)2)0.5 + 𝑛0(1 − 𝑒−𝛾)2 = 𝐵𝑚𝑖𝑛 . # (11) 
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  Example 

  Suppose that we want to guarantee with probability 0.9987 that the maximal component 

of Grid network will be less or equal 128 nodes, i.e. 𝛼 = 0.5. We see from Figure 4 that this will be 

provided if the number of failed nodes is at least 120 = 𝐵𝑚𝑖𝑛.We find that 𝑞0.0013 = −3 and solve 

the equation (11):  
 −3(2560.5)(1 − 𝑒−𝛾)(1 − (1 − 𝑒−𝛾)2)0.5 + 𝑛(1 − 𝑒−𝛾)2 = 120, 

Using Mathematica "FindRoot" operator [17], we find that the root equals 𝛾 = 1.384, which means 

that 𝑀 = 𝑁 = 1.385 ⋅ 256 = 354.  

   

6. Concluding remarks 
 

  We demonstrated that the resilience and survivability of finite networks under random 

attack on their nodes can be efficiently studied using marginal D-spectra techniques. Let us note 

without going into technical detail that the spectra can be efficiently estimated by well-developed 

Monte Carlo algorithms, with sufficient accuracy and in short CPU times, see [9]. 

Comparison between a regular grid and random graph having the same number of nodes 

and the same node degree reveals that the regular graphs are considerably less resilient for 𝛼 ≤ 0.5 

and that their inferiority in reliability vanishes when the networks’s largest components contain 

large fraction of the nodes (𝛼 ≥ 0.6) 

We demonstrated how to compute network reliability by taking into consideration 

multiple hits of their nodes. 

Our simulation revealed that there are certain similarities between creation of a giant 

component in infinite random network and the largest component in a finite random network. 

Finally, we investigated the case of combined attack on a network nodes with two 

interacting "substances". In this attack, a node fails only if it is hit by two types of "shells". We 

showed how one can obtain an estimate of the number of "shells" of both types that guarantee 

network destruction with given probability. 

 

Appendix [18] 
  1. Let 𝑛 be the number of boxes (bins) and 𝑀 be the number of red balls. Each ball is 

randomly allocated to one of the boxes. Let  
 𝑅𝑖 = { 𝑏𝑜𝑥   𝑖   𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠  𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑜𝑛𝑒  𝑟𝑒𝑑  𝑏𝑎𝑙𝑙 } 

Denote by 1𝑅𝑖
 the 1/0 indicator variable of the event 𝑅𝑖. Obviously,  

 𝑃(𝑅𝑖) = 𝐸[1𝑅𝑖
] = 1 − (((𝑛 − 1)/𝑛))𝑀. (12) 

 Let 𝑋 = ∑𝑛
1 1𝑅𝑖

. Obviously,  

 𝐸[𝑋] = ∑𝑛
1 𝐸[1𝑅𝑖

] = 𝑛𝐸[1𝑅𝑖
] = 𝑛(((𝑛 − 1)/𝑛))𝑀. (13) 

 

If 𝑛, 𝑀 → ∞ and 𝑀 = 𝛾𝑛, then  
 𝐸[𝑋] = 𝑛(1 − 𝑒−𝛾) 

 

  2. Suppose we have 𝑁 white balls which, independently of the red balls,are located 

randomly into the same 𝑛 boxes (bins). Denote by 𝐵 the random number of boxes containing balls 

of both colors. Obviously,  

 𝐵 = ∑𝑛
𝑖=1 1𝑅𝑖

1𝑊𝑖
. (14) 

 From linearity of expectation and independence of events 𝑅𝑖 and 𝑊𝑖,  

 𝐸[𝐵] = ∑𝑛
𝑖−1 𝐸[1𝑅𝑖

]𝐸[1𝑊𝑖
] = 𝑛(((𝑛 − 1)/𝑛))𝑀 ⋅ (((𝑛 − 1)/𝑛))𝑁 . (15) 

 

 

  3. For deriving the expression for 𝑉𝑎𝑟[𝐵] we need the following formula:  

 𝐸[1𝑅1
⋅ 1𝑅2

] = 1 − 2(
𝑛−1

𝑛
)𝑀 + (

𝑛−2

𝑛
)𝑀. (16) 
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 Note that  

 𝐸[1𝑅1
⋅ 1𝑅2

] = 𝑃(𝑅1 ∧ 𝑅2) = 1 − 𝑃(𝑅1 ∨ 𝑅2) = 

 

 𝑃( 𝑏𝑜𝑥  1  𝑜𝑟  𝑏𝑜𝑥  2  𝑖𝑠  𝑒𝑚𝑝𝑡𝑦 ) = 𝑃(𝑅1) + 𝑃(𝑅2) − 𝑃(𝑅1 ∧ 𝑅2) = 

 

 2(
𝑛−1

𝑛
)𝑀 + (

𝑛−2

𝑛
)𝑀, 

and (16) follows. 

 

  4.Now we are ready to obtain the expression for 𝐸[𝐵2].  
 𝐸[𝐵2] = 𝐸(∑𝑛

1 1𝑅𝑖
⋅ 1𝑊𝑖

)2 = 𝐸(∑𝑛
1 1𝑅𝑖

2 ⋅ 1𝑊𝑖

2 + ∑𝑖≠𝑗 1𝑅𝑖
1𝑅𝑗

1𝑊𝑖
1𝑊𝑗

) = 

 

 𝑛𝐸[1𝑅1
1𝑊1

] + 𝑛(𝑛 − 1)𝐸[1𝑅1
1𝑊1

1𝑅2
1𝑊2

= 𝑛(
𝑛−1

𝑛
)𝑀(

𝑛−2

𝑛
)𝑁 +, 

 

 𝑛(𝑛 − 1)(1 − 2(
𝑛−1

𝑛
)𝑀 + 2(

𝑛−2

𝑛
))𝑀 ⋅ 𝑛(𝑛 − 1)(1 − 2(

𝑛−1

𝑛
)𝑁 + 2(

𝑛−2

𝑛
))𝑁 . 

Now 𝑉𝑎𝑟[𝐵] = 𝐸[𝐵2] − (𝐸[𝐵])2. Substituting the expressions for 𝐸[𝐵2] and 𝐸[𝐵] we obtain that  
 𝑉𝑎𝑟[𝐵] = 𝑛(1 − 𝑥𝑀)(1 − 𝑥𝑁) + 𝑛(𝑛 − 1)(1 − 2𝑥𝑀 + 𝑦𝑀)(1 − 2𝑥𝑁 + 𝑦𝑁) − (𝑛(1 − 𝑥𝑀)(1 −

𝑥𝑁)))2, (17) 

 where 𝑥 = (𝑛 − 1)/𝑛 and 𝑦 = (𝑛 − 2)/𝑛. 

Now assume that 𝑀 = 𝑁 → ∞. Then 𝑥 → 𝑒−𝛾 and 𝑦 → 𝑒−2𝛾. After simple algebra we obtain 

that  

 𝐸[𝐵] = 𝑛(1 − 𝑒−𝛾)2. (18) 

 and  

 𝑉𝑎𝑟[𝐵] = 𝑛(1 − 𝑒−𝛾)2 ⋅ (1 − (1 − 𝑒−𝛾)2). (19) 

 It is remarkable that the variance of 𝐵 is asymptotically of order 𝑛, i.e. the st.deviation of 𝐵 is of 

order √𝑛.# 
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Abstract 
 

We establish the convergence of equilibria of finite symmetric closed networks with the FIFO service 

discipline and a general service time with bounded second moment to the unique equilibrium of the 

non-linear Markov process. 

 

1  Introduction 
 

Let us consider a single-class closed network 𝒮𝑁,𝑀 with 𝑀 particles (customers) that live on 

a complete graph with 𝑁 identical nodes (servers). Each node is a server with the FIFO service 

discipline and with a general distribution 𝐹 of service time 𝑠. The evolution of the network goes on 

as follows. 

It is assumed that each particle 𝑗 waits in the queue at the server 𝑖 until all the particles that 

stay ahead of 𝑗 in the same queue complete their service. Then, immediately, the server 𝑖 begins to 

serve the particle 𝑗, and the service time 𝑠 is a random variable distributed as 𝐹 and independent of 

anything else. At the end of the service time the particle 𝑗 jumps to one of the 𝑁 servers (may be, to 

the same one) with equal probability 1/𝑁 and waits for its turn to be served there. This cycle is 

repeated infinitely many times for each particle. 

Under minimal assumptions each network 𝒮𝑁,𝑀 has a unique equilibrium process ℰ𝑁,𝑀 that 

is a universal attractor. Our goal is to prove the convergence of equilibria ℰ𝑁,𝑀 of the Markov 

processes on 𝒮𝑁,𝑀 to a unique equilibrium ℰ of a so-called nonlinear Markov process (NLMP) 𝒮 as 

𝑁 → ∞ and 𝑀/𝑁 → 𝐻. Note that ℰ is a single point in the joint state space 𝑋 of all our processes 

whence ℰ𝑁,𝑀 is a probability measure on 𝑋 for each finite 𝑁, 𝑀. 

The NLMP is, in words, the process on the limit network with 𝑁 = ∞ and 𝑀 = 𝐻𝑁. Its 

behavior is in some aspects simpler than that of finite networks. On bounded time intervals, the 

behavior of 𝒮𝑁,𝑀 converges to that of 𝒮 as 𝑁 → ∞ and 𝑀/𝑁 → 𝐻. The convergence of equilibria, 

nevertheless, is a much harder issue which is the subject of this paper. 

We assume 𝔼𝑠 = 1 and 𝔼𝑠2 < ∞, where the second assumption is necessary for the 

existence of a nontrivial limit process as 𝑁 → ∞ and 𝑀/𝑁 → 𝐻 > 0. Otherwise it is not hard to see 

that we get a small number of very long queues for 𝑁 large and no process at all in the limit. 

The main feature of the networks in consideration is symmetry both in 𝑁 and in 𝑀, that is, 

the system is invariant to all permutations of nodes and of particles. This makes the system a very 

particular case of a  Jackson-type network, see [?]. Namely, this is a single-class queueing network 

with the FIFO service discipline and a general distribution of service time. The specifics of our 

model, namely, its mean-field nature lies in an especially simple structure of the routing matrix: all 

the entries of the 𝑁 ×  𝑁-matrix 𝑃𝑁 are equal to 1/𝑁. 

The stochastic dominance technique had been introduced originally by A. Stolyar [?] for 

the deterministic service time. In [?] it was extended to a restricted class of general service times. 

Here we further extended the results to the case of a general service time distribution with the only 

restriction of finite second moment. 

This goal is achieved by means of a new state space that comprises the lengths of queues at 
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𝑁 nodes and the remaining sojourn times of 𝑀 particles. Similar methods can hopefully be used for 

the analysis of other mean-field models. 

 

2  Models and parameters 
 

There are different ways to formalize the evolution of 𝒮𝑁,𝑀 as a Markov process, that is, to 

define a state space and a process generator on this space. We begin with a more natural 

formalization where the current state of the network coincides with the collection of states of its 𝑁 

queues. Then we will give another formalization in terms of 𝑁 queue heights and 𝑀 remaining 

sojourn times. The latter one is more convenient for the proof of our main result though both 

formalizations describe the same dynamics of 𝒮𝑁,𝑀. 

Let us begin with a definition of a state space 𝑄 of a single FIFO queue. Suppose we know 

the exogenous inflow of customers to the queue in the future (𝑡 ≥ 0) as a point process of arrival 

times. Then, in order to know the stochastic queueing process at this server in the future, it suffices 

to know additionally the current elapsed time of service of the oldest customer in the queue plus 

the current number of the remaining customers that are currently waiting their turn to be served. 

Then we may calculate the distribution of future evolution scenarios of the queue. 

However, it would be more convenient for several reasons to represent a queue in a more 

regular way as a finite sequence of  remaining service times ℎ𝑖,𝑗 of all the customers in the queue, in 

order of their arrivals or in order of their prospective services, which is the same due to the FIFO 

service discipline. The values of ℎ𝑖,𝑗 are not observable, of course, but the dynamics of the process 

in terms of ℎ𝑖,𝑗 has more transparent description than in terms of elapsed service time of the first 

customer in the queue and the total number of customers in the queue. 

Now, the current state of the queue 𝑖 can be written as  
 𝑞𝑖(𝑡) = (ℎ𝑖,1, … , ℎ𝑖,𝑘), 

where second indices from 1 up to 𝑘 mark the order of service of 𝑘 customers in the queue. 

Namely, the customer 1 is currently served and the customer 𝑘 is the last one to be served among 

the current customers. If new customers arrive, they are, of course, served after the customer 𝑘, in 

the order of their arrival. 

If 𝑘 = 0 then the queue is empty. Otherwise the value of ℎ𝑖,1 decreases at rate 1 (the first 

customer is currently served) and all the other values ℎ𝑖,𝑗 do not change for a while. 

Two kinds of event at the queue 𝑖 are possible that make the behavior of the state of queue 

discontinuous. First (exit), as the value of ℎ𝑖,1 hits zero at time 𝑡′, the first customer is released and 

the length of the queue drops from 𝑘 to 𝑘 − 1. We write then  
 ℎ𝑖,1(𝑡′) = ℎ𝑖,2(𝑡′ − 1), … , ℎ𝑖,𝑘−1(𝑡′) = ℎ𝑖,𝑘(𝑡′ − 1). 

The released customer arrives immediately to one of the 𝑁 nodes with equal probability 1/𝑁 and 

occupies the last position in the queue at this node. Note that with probability 1/𝑁 this customer 

returns to the queue 𝑖. 

Second (arrival), if a new customer arrives to the queue 𝑖 at time 𝑡′′, the length of the queue 

rises from 𝑘 to 𝑘 + 1 and we write  
 ℎ𝑖,𝑘+1(𝑡′′) = 𝑠, 

where 𝑠 is a random service time distributed as 𝐹 and independent of anything else. As was 

mentioned, the events of these two kinds happen simultaneously if the released customer returns 

to the same queue. 

The state space of a single queue is, therefore, the union of a countable number of finite-

dimensional orthants:  
 𝑄 = ℝ+

∗ = ∅ ∪ ℝ+ ∪ ℝ+
2 ∪ …. 

The state space of the whole network is the product of 𝑁 copies of 𝑄, that is, the vector space 𝑄𝑁. 

However, due to the symmetry of the network, the order of vector components in 𝑄𝑁  is 

immaterial, that is, the dynamics of the system is invariant to permutations of servers. Therefore, 

we may consider a current configuration of the network as an atomic measure on the space 𝑄, 
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where each atom has weight 1/𝑁 and corresponds to one of 𝑁 single queues. Clearly, 𝑄 is a Polish 

space in the induced topology. 

Denote  

 ℎ𝑖 = ∑𝑘
𝑗=1 ℎ𝑖,𝑘, 

that is, ℎ𝑖(𝑡) is the total remaining service time of all the customers in the queue. We say that ℎ𝑖(𝑡) 

is the current  queue height. 

The dynamics of a single queue height within the network consists of the deterministic 

(decreasing) part given by the differential equation with discontinuous right-hand side  

 ℎ̇(𝑡) = {
−1 if ℎ(𝑡) > 0,
0 if ℎ(𝑡) = 0.

 

and the stochastic (increasing) part that consist of instant bursts ℎ(𝑡) = ℎ(𝑡 − 0) + 𝑠 with random 

i.i.d. increments 𝑠 that happen at random times of arrival of new particles. 

 

3  Alternative description 
 

In what follows we will also use another description of the state space in terms of, again, 

the queue heights ℎ𝑖 at the 𝑁 nodes and, additionally, the  remaining sojourn times 𝑔𝑗 of the 𝑀 

particles. The remaining sojourn time of the particle 𝑗 is defined as the remaining time till the exit 

of customer 𝑗 from its current queue 𝑖, that is,  
 𝑔𝑗 = ∑𝑚≤𝑘 ℎ𝑖,𝑚, 

where 𝑘 is the current position of particle 𝑗 in the queue 𝑖. Note that, because of the FIFO 

discipline, the value of 𝑔𝑗 decreases at rate 1 until the service of particle 𝑗 at node 𝑖 is completed 

and does not change as new particles arrive to this node. 

Thus the current state of the process 𝒮𝑁,𝑀 is an (𝑁 + 𝑀)-vector 𝑓 = (ℎ, 𝑔) with non-

negative components ℎ𝑖 and 𝑔𝑗. Because of the symmetry, we can reduce the state of the process to 

a couple of atomic measures 𝜇 and 𝜈, both on ℝ+. Namely, 𝜇 has 𝑁 atoms of equal weight 1/𝑁 and 

𝜈 has 𝑀 atoms of equal weight 1/𝑀. Note that the value of 𝑔𝑗 does not associate uniquely the 

particle 𝑗 with some server 𝑖 apart from special cases where, for instance, 𝑔𝑗 = ℎ𝑖 and there is no 

other ℎ𝑖′ = ℎ𝑖  and no other 𝑔𝑗′ = 𝑔𝑗. 

Of course, the pair of measures 𝜇 and 𝜈 cannot be arbitrary pair of atomic measures, that 

is, 𝜇 and 𝜈 should be consistent. For instance, the upper customer in each queue has the remaining 

sojourn time equal to the height of the queue. Note, moreover, that the information contained in 

measures 𝜇 and 𝜈 is not sufficient to reconstruct the distribution of remaining service times among 

the customers nor the distribution of population among the queues. Let us regard the following 

example. 

Let 𝑁 = 2, 𝑀 = 4. Let us arrange the components of measures 𝜇 and 𝜈 in ascending order. 

Let ℎ1 = ℎ2 = 3 and let 𝑔1 = 1, 𝑔2 = 2, and 𝑔3 = 𝑔4 = 3. Then either both queues hold two 

customers and their remaining service times are 1 and 2 but in different order, or one queue holds 

a single customer with remaining service time 3 and the other queue holds three customers with 

remaining service time 1 for each customer. 

However, the continuous-time Markov process on measures 𝜇 and 𝜈 is well defined as we 

will see immediately. Moreover, if we watch the process for some finite time, we get all the 

information on the distribution of lengths of queues (number of customers in the queue) and on 

the distribution of remaining service times. 

Let us see how the (continuous-time) Markov process on pairs (𝜇, 𝜈) evolves. Recall that 

we consider the system 𝒮𝑁,𝑀. All the values ℎ𝑖(𝑡) and 𝑔𝑗(𝑡) are decreasing at rate 1 as long as they 

are positive. The service events in the network happen exactly as some 𝑔𝑗(𝑡) vanishes. Suppose 

this is 𝑘th service of particle 𝑗. Then we denote this time by 𝑡𝑘
𝑗 . 

Instantly, the particle 𝑗 is routed to a random queue. Denote the height of its new queue by 

ℎ ≥ 0. The particle is allotted an 𝐹-distributed service time 𝑠 there. The values of ℎ and 𝑠 are 
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random and independent. The distribution of ℎ is given by the current value of 𝑁-atomic measure 

𝜇. The values of ℎ𝑖 = ℎ and of 𝑔𝑗 both are updated to ℎ + 𝑠 

Then the next jump time for particle 𝑗 is  

 𝑡𝑘+1
𝑗

= 𝑡𝑘
𝑗

+ ℎ + 𝑠 

and the evolution of 𝑔𝑗(𝑡) and of ℎ𝑖(𝑡) goes on deterministically on the time interval (𝑡𝑘
𝑗
, 𝑡𝑘+1

𝑗
] as 

usual:  

 𝑔̇𝑗(𝑡) = −1,    ℎ̇𝑖(𝑡) = −1 

The linear decrease of 𝑔𝑗(𝑡) is completely deterministic while the evolution of ℎ𝑖(𝑡) may have 

positive bursts if new particles arrive. 

We denote the space of pairs of atomic measures 𝜇 = 𝜇𝑁 and 𝜈 = 𝜈𝑀 by 𝑋𝑁,𝑀. We embed all 

𝑋𝑁,𝑀 into the space 𝑋 of all pairs of probability measures on ℝ+. As we will see soon, 𝑋 is the 

configuration space of the NLMP. For the NLMP (that is, for 𝑁 = ∞), we have a limit dynamics of 

general probability measures 𝜇(𝑡) and 𝜈(𝑡) on ℝ+. Again, these measures should be consistent, see 

below. 

Formally, a series of continuous-time Markov processes 𝒮𝑁,𝑀 is defined on 𝑋 and it can be 

proved that their generators converge to that of the NLMP 𝒮 ensuring the convergence of 

processes on bounded time intervals. We will, however, use other tools for justification of this fact, 

that is, stochastic dominance methods. We will also see that the NLMP conserves single-point 

measures (it is a deterministic dynamical system on 𝑋) while finite processes 𝒮𝑁,𝑀, obviously, do 

not. 

 

4  The NLMP 
 

As we have mentioned above, the NLMP 𝒮 is the limit process for 𝒮𝑁,𝑀 as 𝑁 → ∞ and 

𝑀/𝑁 → 𝐻. Formally we will define two limit dynamical systems for each form of Markov process 

(with two different state spaces) that were used for the description of the evolution of finite 

systems 𝒮𝑁,𝑀 and demonstrate that they are equivalent, that is, they describe the evolution of the 

same limit process 𝒮 (the NLMP). 

To begin with, let us use the more intuitive state space based on 𝑄 for the primary 

description of the NLMP. The current state of the process is now a probability measure 𝜂 on 𝑄. 

Clearly, the weak limit points of atomic measures on 𝑄 cover the space ℳ(𝑄) of all probability 

measures on 𝑄, hence, 𝜂 is an arbitrary point of ℳ(𝑄). 

In order to get an intuitive notion of the NLMP, one may imagine the situation where there 

are infinitely many queues in the system, that is, 𝑁 = ∞ and the distribution of states of these 

queues is 𝜂. Note, however, that we cannot formally define a mean-field routing process on a 

countable number of servers since there is no uniformly distributed probability measure on such a 

set. One may think of the queues of the NLMP as of elements of a continuous measurable space, 

say, of the interval [0,1] with Borel measure but, in fact, we do not need such a specialization. 

The non-linear Markov process goes on as follows. Let 𝜂(0) be given. Let us distinguish a 

single queue 𝑞 = 𝑞𝜔 which is in the state 𝑞(0) at 𝑡 = 0. Its evolution within the NLMP is a 

stochastic process which can be described completely if we know the evolution of the measure 𝜂(𝑡) 

for 𝑡 ≥ 0. The evolution of different queues are independent. 

It would be easier to begin with a definition of the NLMP for a given time-dependent 

Poisson inflow 𝜆(𝑡), that is, without feedback. Let us assume that the inflows to all the nodes are 

independent Poisson flows of rate 𝜆(𝑡) (all the inflows in the closed NLMP are Poisson ones 

because they have infinitely many additive sources). Then we will have a deterministic dynamics 

of 𝜂(𝑡) since the evolution of each particular queue is a Markov process and these processes are 

independent for different queues. 

In turn, if we know 𝜂(𝑡) for 𝑡 ≥ 0, we can find the resulting mean outflow rate  

 𝑏(𝑡) = lim
Δ→0

𝑃(Δ)

Δ
, 
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where 𝑃(Δ) is the probability of service event at a random queue during the time interval [0, Δ). 

The value of 𝑏(𝑡) must be equal to 𝜆(𝑡) for all 𝑡 since the network is closed.  

Definition 4.1 The pair (𝜆(𝑡), 𝜂(𝑡)) is a solution of the NLMP if 𝜆(𝑡) is the outflow generated by 

𝜂(𝑡) and 𝜂(𝑡) is the evolution of the measure on queue states generated by the inflow of rate 𝜆(𝑡).  

  

Theorem 4.2 For each 𝜂0 there exists a unique solution (𝜆(𝑡), 𝜂(𝑡)) of the NLMP such that 

𝜂(0) = 𝜂0.  

  

Proof. We are going to construct a series of processes 𝒫𝑛, 𝑛 = 0,1, …, whose solutions 

converge to the required solution of 𝒮. In the process 𝒫0, there is no feedback, that is, the customers 

that are served do not return to the system. The evolution of the corresponding measure 𝜂0(𝑡) is 

simple: each queue drains out and it is empty forever since time 𝑡 = ℎ(0). 

The resulting outflow normalized by the number of queues has rate 𝜆0(𝑡), 𝑡 ≥ 0. Let us 

now construct the next process 𝒫1 as follows: we only allow particles to return to the system once. 

Formally, we consider a random queue that is distributed as 𝜂(0) initially and then receives the 

inflow of rate 𝜆0(𝑡) (these inflows to different queues are mutually independent). Clearly, it 

becomes empty eventually with probability 1. We denote the corresponding outflow rate by 𝜆1(𝑡). 

Now, we make an important remark: under an appropriate coupling, all the exit events in 

the process 𝒫0 happen at the same queues at the same time in the process 𝒫1 (because of the FIFO 

service discipline). Additionally, there are secondary exit events as the secondary particles that 

have returned to the system after the first service are served the second time in their lives and 

leave the system forever. Hence, 𝜆1(⋅) ≥ 𝜆0(⋅) in the following sense:  

 ∫
𝑡

0
𝜆1(s)𝑑𝑠 ≥ ∫

𝑡

0
𝜆0(𝑠)𝑑𝑠    forall    𝑡 ≥ 0. 

Next we recall a simple monotonicity property of a FIFO server.  

Lemma 4.3  Suppose we have two identical FIFO servers 1 and 2 with the same initial states at 

𝑡 = 0. Let 𝑢1 and 𝑢2 be point processes on ℝ+ and let 𝑢1 dominates 𝑢2 stochastically (denoted 𝑢1 ± 𝑢2). 

Denote by 𝑤1 and 𝑤2 the departure point processes of servers 1 and 2, respectively, where the server 𝑖 

receives the inflow 𝑢𝑖, 𝑖 = 1,2. Then 𝑤1 ± 𝑤2.  

 Recall that 𝑢1 dominates 𝑢2 stochastically if there is a coupling between the two processes 

such that 𝑡1
𝑘 ≥ 𝑡2

𝑘 for all coupled pairs of configurations (𝑡𝑖
1, 𝑡𝑖

2, … ) and all 𝑘 = 1,2, …. 

Then we iterate the construction of 𝜆𝑛 for 𝑛 = 2,3, …. From Lemma 4.3, we get inequalities  
 𝜆𝑛(⋅) ≥ 𝜆𝑛−1(⋅)    forall    𝑛 = 1,2, …. 

On the other hand, there is a finite upper bound 𝜆̅(𝑡) for all 𝜆𝑛(𝑡) in the integral sense. Indeed, the 

maximum of service rate at each queue is 1. Hence there is a convergence and the limit is a 

solution (𝜆(𝑡), 𝜂(𝑡)) of 𝒮. 

Suppose there exists another solution (𝜆′(𝑡), 𝜂′(𝑡)). Then, by construction, 𝜆′(𝑡) ≥ 𝜆(𝑡) for 

all 𝑡 and the inequality is strict for some 𝑡 < ∞. We come to a contradiction easily since the mean 

mass of queues at this time 𝑡 must be different for the inflows 𝜆(⋅) and 𝜆′(⋅).  

 

Moreover, we can construct Markov processes on finite networks 𝒮𝑁,𝑀 by the same 

monotone iteration procedure as in 𝒮. As a result, we also conclude that a finite-time convergence 

of 𝒮𝑁,𝑀 to 𝒮 takes place. 

Namely, it is not hard to prove that the dynamics of 𝜇𝑁(𝑡) and 𝜈𝑀(𝑡) in the process 𝒮𝑁,𝑀 is 

close to that of 𝜇(𝑡) and 𝜈(𝑡) in the NLMP on finite time intervals if 𝑁 and 𝑀 are large and if 

respective initial values of measures are close to each other. Analogous results can be found, for 

instance, in [?] under stronger assumptions on the service time distribution 𝐹. 

 

Theorem 4.4  Suppose that the sequence of probability measures 𝜑𝑁,𝑀(0) on 𝑋𝑁,𝑀 ⊆ 𝑋 converges 

weakly to a probability measure 𝜑(0) on 𝑋 as 𝑁 → ∞ and 𝑀/𝑁 → 𝐻. Then the solutions of 𝒮𝑁,𝑀 from the 

initial states 𝜑𝑁,𝑀(0) converge to the solution of the NLMP 𝒮 from the initial state 𝜑(0) on any bounded 

time interval [0, 𝑇].  



 
Vladimirov A. 
ASYMPTOTICS OF MEAN_FIELD CLOSED NETWORKS  

RT&A, No4 (43) 
Volume 11, December 2016  

24 

 Here we do not prove the theorem and do not specify the notion of convergence of 

processes since these are rather technical issues. 

In the same framework as for the finite systems, we may give a description of the NLMP as 

evolution of two probability measures on ℝ+. They are the measure 𝜇(𝑡) on queue heights and the 

measure 𝜈(𝑡) on remaining sojourn times. Clearly, the resulting flow rate 𝜆(𝑡) in the (ℎ, 𝑔)-

representation is the same as in (𝜆, 𝜂)-representation. 

Again, there exist some constraints on possible pairs (𝜇, 𝜈) caused by the fact that the 

remaining sojourn time of a particle at the top of the queue coincides with the height of this queue. 

Let us write down this constraint explicitly. 

Denote by 𝛼 = 𝛼(𝜇) the fraction of empty queues, that is, 𝛼 = 𝜇({0}). Denote by ù = ù(𝜇) 

the measure (1 − 𝛼)
𝑁

𝑀
𝜇 which is not a probability measure, of course. The constraint on the 

measure 𝜈 can be then written as  
 𝜈 ≥ ù,    thatis,    𝜈([𝑎, 𝑏]) ≥ ù([𝑎, 𝑏])    whenever    0 ≤ 𝑎 ≤ 𝑏 < ∞. 

The dynamics of the pair (𝜇(𝑡), 𝜈(𝑡)) for 𝑡 ≥ 0 is completely defined by the value (𝜇(0), 𝜈(0)) as 

follows. Recall that the mean number of particles per node in the NLMP is exactly 𝐻. By the 

current value of 𝜈(𝑡) we can find the current service rate 𝛾(𝑡) per particle:  

 𝛾(𝑡) = lim
𝐷𝑒𝑙𝑡𝑎→+0

𝜈[0,Δ)

Δ
. 

The current service rate per node is then equal to 𝜆(𝑡) = 𝛾(𝑡)/𝐻. Note that the parameter 𝐻 is 

already included in the constitutive relations for the process. As soon as we know 𝜆(𝑡) and the 

current distribution of queue heights, we can write evolution equations for 𝜇(𝑡) and 𝜈(𝑡). 

A rigorous way to prove the existence and uniqueness of a solution from any pair 

(𝜇(0), 𝜈(0)) is, again, to realize a recursive construction where we allow 1, 2,, 𝑘 lumps to each 

particle. The same method demonstrates the equivalence of two forms of the NLMP. 

Note that an essential difference exists with the dynamics of a pair (𝜇𝑁, 𝜈𝑀) in the finite 

network 𝒮𝑁,𝑀. Namely, the evolution of (𝜇𝑁, 𝜈𝑀) is stochastic for each pair 𝑁, 𝑀 and the evolution 

of (𝜇(𝑡), 𝜈(𝑡)) is deterministic. 

Now let us lift the consistency restrictions for the pair (𝜇, 𝜈). We will define a solution of 

the NLMP that starts from an arbitrary pair 𝜇, 𝜈 ∈ ℝ+ in the same manner as before. Actually, such 

a solution has the following physical sense. 

We do not suppose any longer that the system contains 𝐻 particles per node straightaway. 

Instead we assume that these particles are elsewhere at 𝑡 = 0 and that, initially, each particle has its 

delay 𝑔 distributed as 𝜈 and each queue has its height ℎ distributed as 𝜇. Then the process is 

started. The queue heights decrease at rate 1 while positive and the particles enter the system at 

times 𝑔. 

Then the process goes on exactly by the rules of closed system, that is, the particles, as they 

jump, are given the new value of g equal to ℎ + 𝑠 and the value of ℎ is replaced by ℎ + 𝑠 as well. 

Clear enough, the dynamics of such a system approaches that of the closed system as the number 

of particles per node in the system approaches 𝐻 and the remaining initial height of queues 

vanishes. 

 

5  Stationary solutions and ergodicity 
 

Note that continuous-time Markov processes 𝒮𝑁,𝑀 are ergodic (if 𝐹 is a non-lattice 

distribution) since there is a renewal event where all the particles get in the same queue and the 

oldest one begins its service, see [?, ?]. This event obviously happens with a positive frequency. 

In the case of a lattice distribution 𝐹, we may consider a discrete-time process and repeat 

the argument. The discrete-time version of the process is, again, ergodic. For definiteness, in what 

follows we assume that 𝐹 is a non-lattice distribution. 

Our goal is to study the asymptotic behavior of unique equilibrium solutions ℰ𝑁,𝑀 as the 

size 𝑁 tends to infinity and as 𝑀/𝑁 → 𝐻 for some 𝐻 > 0 (mean population of a node or, in other 
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words, mean length of a queue). Namely, we ask if the sequence ℰ𝑁,𝑀 converges to the unique 

equilibrium ℰ of the NLMP with the same parameter 𝐻. The two parameters of this problem is the 

service time distribution 𝐹 and the mean length 𝐻 of a queue which is time-independent since the 

networks are closed. 

The process ℰ𝑁,𝑀 can be written in (ℎ, 𝑔)-notation. Then the unique equilibrium 

distribution 𝜑𝑁,𝑀 is defined on the configuration space 𝑋𝑁. Since all 𝑋𝑁 are embedded into  
 𝑋 = ℳ(ℝ+)  ×  ℳ(ℝ+), 

we write 𝜑𝑁,𝑀 ∈ ℳ(𝑋). 

The convergence of equilibria ℰ𝑁,𝑀 to ℰ can be understood in different senses. In particular, 

one may expect that the stationary measures 𝜑𝑁,𝑀 converge weakly to the 𝛿-measure on a unique 

stationary point (𝜇∗, 𝜈∗) of 𝒮 as 𝑁 → ∞ (in (ℎ, 𝑔)-notation). The rest of the paper is concerned with 

the proof of this fact. 

Note that, in general, there is no explicit information on the invariant value of 𝐻 in a 

solution (𝜇(⋅), 𝜈(⋅)) of the NLMP. In equilibrium, however, it is not hard to calculate 𝐻 from the 

stationary measure (𝜇∗, 𝜈∗) as follows. Denote the jump rate per node by 𝜆. Then the jump rate per 

customer is 𝜆/𝐻. Next, we compare the rates of continuous decrease of ℎ and 𝑔. The first one is 

equal to 1 − 𝛼 and the second one is 1. 

Since we consider an equilibrium, these rates must be equal to the the rates of increase of ℎ 

and 𝑔 at jump events. They are, respectively, 𝜆 (since the mean service time is 1) and 𝜆(𝔼ℎ + 1)/𝐻 

(since the mean value of new 𝑔 after the jump equals the mean height of a queue plus the mean 

service time). Therefore,  
 𝐻 = (1 − 𝛼)(𝔼ℎ + 1). 

 

Lemma 5.1 The NLMP has a unique equilibrium and all other solutions approach this equilibrium.  

  

Proof. For the proof we will use a fundamental result on “smoothing effect" of the FIFO 

server. It was proved under some additional restrictions on 𝐹 in [?] and will be proved in the 

general case in a subsequent paper by the author. 

The main idea is the monotonicity argument. Suppose there is no convergence and come 

to a contradiction. Indeed, in this case the mean population of a queue cannot be constant. 

In more details, suppose there is a non-converging solution of the NLMP. Then 𝜆(𝑡) does 

not converge as 𝑡 → ∞. By limit transition we can construct a non-constant solution 𝜆′(𝑡) on the 

whole time axis ℝ such that  

 ∫
1

0
𝜆′(𝑠)𝑑𝑠 ≥ ∫

𝑡+1

𝑡
𝜆(𝑠)𝑑𝑠,    𝑡 ∈ ℝ. 

By monotonicity, there is a coupling between the inflows 𝜆′(𝑡) and 𝜆′′(𝑡) = 𝜆′(𝑡 − 1) on (−∞, 0] 

such that all the particles arrive not earlier in the first case and some of them arrive strictly later. 

Then the mean mass of a queue at 𝑡 = 0 is strictly larger than that at 𝑡 = −1, which is a 

contradiction.  

 

Now, since there is a unique equilibrium measure on solutions of the NLMP (actually, this 

is a 𝛿-measure on the unique equilibrium solution), it suffices to prove tightness of the family 

(𝜇𝑁
∗ , 𝜈𝑀

∗ ), 𝑁 = 1,2, … in order to derive convergence. 

There exists a well-known criterion of tightness for random measures on 𝑌 = ℳ(𝑋), that 

is, on the space of probability measures on a Polish space 𝑋, where the topology of weak 

convergence of measures generates the measurable structure on 𝑌. Recall that 𝑋 itself is the space 

of pairs of probability measures on ℝ+. 

 

Proposition 5.2 The family (𝜇𝑁
∗ , 𝜈𝑀

∗ ) is tight if and only if two following conditions hold. The 

probability of ℎ𝑖
𝑁 > 𝐾 tends to zero as 𝐾 → ∞ uniformly on 𝑁. The probability of 𝑔𝑗

𝑀 > 𝐾 tends to zero as 

𝐾 → ∞ uniformly on 𝑀.  

 We will see that it suffices to get a “stable" upper bound on the inflow that does not 
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depend on the parameters in order to prove the required tightness. 

 

6  Dominance 
 

We use Baccelli–Foss theorems [?] for Jackson-type networks with implications for closed 

networks. The following theorem is an extension of Lemma 4.3 from a single FIFO node to a finite 

open Jackson-type network.  

Theorem 6.1 In a finite open FIFO network, if all the arrivals happen earlier and all the services 

happen faster, then all the events happen earlier.  

 Here the notions “earlier" and “faster" should be understood in the sense of stochastic 

dominance. For closed networks, we may assume that the particles arrive once from the outside 

and then circulate within the network. 

 

Theorem 6.2  Suppose there is an infinite program at each node of the network 𝐺, that is, an 

infinite sequence of pairs (𝑥𝑘 , 𝑖𝑘), where 𝑥𝑘 is the service time of 𝑘th particle and 𝑖𝑘 is its address after the 

service. Suppose there is another instance 𝐺′ of the same network with a program (𝑥𝑘′, 𝑖𝑘′) that dominates 

the first one in the following sense: 𝑥𝑘′ ≥ 𝑥𝑘 and 𝑖𝑘′ = 𝑖𝑘 for each 𝑘 and each node of the network. Suppose 

the initial positions of particles coincide in both cases. Then all the events in 𝐺′ happen not earlier than their 

counterparts in 𝐺.  

 In particular, if the programs are identical but the exogenous particles arrive later to the 

same nodes in the second case, then, again, all the events in the primed case happen later. This 

assertion can be reduced to Theorem 6.2 by introduction of additional virtual nodes where the 

exogenous particles reside initially. 

Theorem 6.2 can be proved by the following argument. Suppose the contrary. We make a 

coupling that preserves the order of initial events. Then there exists the first pair of events with the 

reverse order. And this, clearly, cannot happen. 

Our next goal is to find a universal stochastic upper bound on the number of arrivals to a 

single node of a finite network 𝒮𝑁,𝑀 during the time interval [0, 𝑇], that is, a bound that does not 

depend on 𝑁 (if 𝑁 is lrge enough) and on the initial state of the network. Suppose this upper 

bound 𝐵 satisfies the  stability condition 𝔼𝐵 < 𝑇. Then the required tightness would follow. 

Let us study processes 𝒮𝑁,𝑀 and 𝒮 on a bounded time interval [0, 𝑇] and count the number 

of services per node that happen within this interval. By coupling and monotonicity, there is the 

“worst" initial configuration that entails more services than any other initial configuration (either 

in the sense of stochastic dominance or for any fixed sequence of service times at each node). This 

is the zero configuration where ℎ𝑖 = 0 and 𝑔𝑗 = 0 for all 𝑖 and 𝑗. In words, all the 𝑀 particles are 

jumping immediately (at 𝑡 = 0). Then the process goes on by standard rules. 

For given 𝑁 and 𝑀 and for the “worst" initial distribution, there is a distribution 𝐵𝑁,𝑀,𝑇 of 

the number of arrivals to a given node 𝑖 during [0, 𝑇]. This distribution does not depend on 𝑖 but if 

we assume the sequence of service times at node 𝑖 to be known, then the number of arrivals to 𝑖 

has a different distribution, that is, there is a correlation between the service times at node 𝑖 and 

the number of arrivals to 𝑖. 

In order to cope with this inconvenience we consider the “fastest" program at a given node 

𝑖, that is we assume that all the particles at this node are served immediately. Then the new 

distribution 𝐵′𝑁,𝑀,𝑇 of the number of arrivals certainly dominates the distribution 𝐵𝑁,𝑀,𝑇 since it 

dominates the distribution 𝐵′′𝑁,𝑀,𝑇  for any other service time sequence at the node 𝑖. 

Now, in order to find a uniform “stable" upper bound on the inflow to a given node, we 

need to find such 𝑇 that distributions 𝐵′𝑁,𝑀,𝑇 are dominated by some 𝐵𝑇  for all relevant pairs 𝑁, 𝑀 

(if 𝑁 is large enough) and that 𝐵𝑇  is “𝑇-stable" (its mean total service time is strictly less than 𝑇). 

Note that the queueing process with a special node 𝑖 whose service time is always zero 

coincides in certain sense with the process 𝒮𝑁−1,𝑀. Namely, on the nodes different from 𝑖, the 
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process does not differ from 𝒮𝑁−1,𝑀. As 𝑁 → ∞ and 𝑀/𝑁 → 𝐻, the difference between 𝒮𝑁−1,𝑀 and 

𝒮𝑁,𝑀 vanishes. Hence, we will use upper bounds on 𝐵𝑁,𝑀,𝑇 instead of 𝐵′𝑁,𝑀,𝑇 and prove that they are 

all uniformly 𝑇-stable for some 𝑇 > 0 and all 𝑁 large enough. 

Then we break the time half-axis ℝ+ in intervals of length 𝑇 and study the discrete-time 

process that dominates all equilibria ℰ𝑁,𝑀 in certain sense. First of all, we look at the NLMP and the 

corresponding arrival process.  

Theorem 6.3  For the NLMP 𝒮, there is a 𝑇 > 0 and 𝜀 > 0 such that the mean number of arrivals 

to a node from any initial state is less than 𝑇 − 𝜀.  

  

Proof. We omit detailed proof and give just a bare idea. The mean number of arrivals to a 

node on the time interval [0, 𝑇] is  

 Λ(𝑡) = ∫
𝑇

0
𝜆(𝑡)𝑑𝑡. 

Let us fix a 𝜆∗ < 1 such that the stationary Poisson arrival of rate 𝜆∗ leads to the stationary mean 

length 𝐻′ > 𝐻 of a single queue with service time distribution 𝐹. Then, eventually, we have  
 Λ(𝑡) < 𝑡𝜆∗. 

Otherwise, by monotonicity argument, we can find 𝑡 > 0 such that the mean length of the queue 

under the Poisson inflow with rate 𝜆(𝑡) exceeds 𝐻. This proves the lemma.  

 

Denote by 𝐵𝑇
∗  the corresponding distribution of arrival events at a given node. By 

approximation argument, any finite part of this distribution is close to the corresponding part of 

𝐵𝑁,𝑀,𝑇. Then we handle the remaining part by dominance argument again and use some 

combinatorics to handle the tails. 

 

7  Uniform upper bound for the inflow 
 

The uniform dominance for all 𝑁 ≥ 𝑁 follows from the finite-time convergence Theorem 

4.4 and the NLMP stability Theorem 6.3. For the proof, let us prove the dominance separately for 

medium flows and for large flows. 

If the size of flows (number of particles in the flow) in consideration is bounded from 

above by the same constant 𝐷, then we deal with a compact part of the state space. The probability 

of a single server to receive an inflow of 𝑘 particles within the time interval [0, 𝑇] satisfies the 

relation  
 lim

𝑁→∞
𝑃𝑘

𝑁 = 𝑃𝑘 , 

which implies immediately the required dominance. 

Next we assume that all the initial queues are infinite and prove the second-moment 

bounds on the inflows in 𝒮𝑁,𝑀, 𝑁 ≥ 𝑁0. These bounds dominate the inflows from any initial 

distribution of 𝑀 particles among 𝑁 nodes. 

We have 𝑁 independent identically distributed integer-valued variables 𝑚𝑖
𝑁 (numbers of 

services at individual queues) whose mean values are 𝑇 + 1 (to be sure) and variances are 

bounded. Their sum  

 𝑀𝑁 = ∑𝑁
𝑖=1 𝑚𝑖

𝑁 

is then distributed uniformly among 𝑁 queues, producing the number of arrival 𝑛𝑖
𝑁. 

The mean value of 𝑛𝑖
𝑁 for any 𝑖 is equal to 𝑇 + 1, and we are going to find upper bounds 

for the probabilities of large values of 𝑛𝑖
𝑁. To this end let us first choose a special service time 

distribution 𝐹′ that is stochastically dominated by 𝐹 and then find upper bounds on the 

probabilities of 𝑘 arrivals to a single node during the time interval [0, 𝑇]. 

The distribution 𝐹′ has two atoms, at 0 and at 1. The probability 𝑝 of 1 is strictly positive. 

Now note that the probability of 𝑘 arrivals from 𝑁 infinite queues with service time distribution 𝐹′ 

equals the probability of drawing 𝑘 ones in a series of [𝑇 + 1]𝑁 independent draws, where the 

chance to draw 1 equals 𝑝/𝑁. 
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Next, we find the asymptotic bounds on the probability of massive arrival. We study a 

discrete-time random walk on the positive orthant ℕ+
2 . Namely, we start at the origin and make 

one of the three steps: (1,0) with probability 𝑢, (0,1) with probability 𝑣, and (1,1) with probability 

𝑤 = 1 − 𝑢 − 𝑣. 

The values of 𝑢, 𝑣, 𝑤 depend on the parameter 𝑁 = 1,2, …. We also have a an integer 

constant 𝑇 > 0 (the length of interval) and a real constant 𝛼 > 0 (probability of service time 1). The 

process is defined as follows. 

Let us make a vertical step with probability 𝛼, otherwise we make a horizontal step. Each 

step is then marked with probability 1/𝑁, independently. We count the number of marked steps 

(axis 𝑥) and the number of vertical steps (axis 𝑦). As a result we draw a path on the lattice ℤ2 from 

(0,0) to infinity. 

We are interested in the measure on paths that is induced by the 𝑢𝑣𝑤-rules of random 

walk. Our goal is to assess the slope of the path and the probability that this slope is below certain 

value as the path reaches some vertical bound. This is a model of the inflow at a given node of the 

mean field closed FIFO network. 

The next step is to draw required upper bounds. Since we need an upper bound, we can 

use another scheme of path construction: let us replace marked vertical edges by marked 

horizontal ones. This will be performed for 𝑁 > 1. Then we have the following probability of a 

horizontal step:  

 𝛼′𝑁 =
(𝑁−1)𝛼+1

𝑁
,    1 − 𝛼′𝑁 =

(𝑁−1)(1−𝛼)

𝑁
. (7.1) 

 We look for an upper bound on 𝑝(𝑘, 𝑛), that is, on the probability that the path from the origin 

passes through the point (𝑘, 𝑛). 

The event of passing through (𝑘, 𝑛) is equivalent to the following one. The first 𝑘 + 𝑛 steps 

contain exactly 𝑛 vertical and 𝑘 horizontal steps. The number of paths from (0,0) to (𝑘, 𝑛), hence, 

equals to  

 𝑆(𝑘, 𝑛) =
(𝑘+𝑛)!

𝑘!𝑛!
. 

All these paths have the same probability (𝛼𝑁′)𝑛(1 − 𝛼𝑁′)𝑘, therefore  

 𝑝(𝑘, 𝑛) =
(𝑘+𝑛)!

𝑘!𝑛!
(𝛼𝑁′)𝑛(1 − 𝛼𝑁′)𝑘 . 

Here  

 𝛼𝑁′ =
𝛼(𝑁−1)

𝛼(𝑁−1)+1
,    1 − 𝛼𝑁′ =

1

𝛼(𝑁−1)+1
 

For simplicity we may assume 𝛼𝑁′ = (𝑁 − 1)/𝑁 and 1 − 𝛼𝑁′ = 1/𝑁 (this will not change the 

asymptotics). Next, we substitute 𝑛 = T𝑁 and get  

 𝑝(𝑘, 𝑇𝑁) =
(𝑘+𝑇𝑁)!

𝑘!(𝑇𝑁)!
(

𝑁−1

𝑁
)

𝑇𝑁

(
1

𝑁
)

𝑘

. 

Actually, we are interested in an upper bound on the sum  
 𝑃(𝑘, 𝑛) = ∑∞

𝑚=𝑘 𝑝(𝑚, 𝑛) 

or another sum  

 𝑄(𝑘, 𝑛) = ∑𝑘
𝑚=0 𝑝(𝑚, 𝑘 + 𝑛 − 𝑚). 

The second sum is more efficient since no two points on the diagonal  
 𝐷𝑘+𝑛 = {(𝑎, 𝑏) ∈ ℤ+

2 : 𝑎 + 𝑏 = 𝑘 + 𝑛} 

can lie on the same path from the origin, that is, each path hits 𝐷𝑘+𝑛 exactly once. 

Our goal is to find an appropriate upper bound that is uniform for all 𝑁 ≥ 𝑁0 for some 

finite 𝑁0. Again, for simplicity, let 𝑇 = 1 (for a while). Then we have  

 𝑝(𝑘, 𝑁) =
(𝑘+𝑁)!

𝑘!𝑁!
(

𝑁−1

𝑁
)

𝑁

(
1

𝑁
)

𝑘

. 

By means of the Stirling formula, we reduce the bound to  

 𝑝(𝑘, 𝑁) ≃
√𝑘+𝑁(𝑘+𝑁)𝑘+𝑁

√𝑘𝑁𝑘𝑘𝑁𝑘+𝑁  (7.2) 

 (up to a multiplicative constant). We need the maximum of (7.2) over 𝑁 ≥ 𝑁0. For the main part of 

(7.2), let us write  

 
(𝑘+𝑁)𝑘+𝑁

𝑘𝑘𝑁𝑘+𝑁 =
(1+

𝑘

𝑁
)

𝑘+𝑁

𝑘𝑘 = 
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 = (1 +
𝑘

𝑁
)

𝑁

(
1

𝑘
+

1

𝑁
)

𝑘

≤ 𝑒𝑘 (
1

𝑘
+

1

𝑁0
)

𝑘

≤
𝑒𝑘𝑒𝑁0

𝑁0
𝑘 . 

For 𝑁0 > 𝑒 this bound vanishes exponentially as 𝑘 → ∞. The required dominance follows. 
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Abstract 

 

In this paper we present availability and mean time to failure estimation of a system where the deterioration 

rates follow the Weibull distribution. The paper presents modeling and evaluation of availability and mean 

time to system failure (MTSF) of a consecutive three stage deteriorating system. The system has three possible 

modes: working with full capacity, deterioration and failure mode. The three stages of deterioration are 

minor, medium and major deteriorations. Minor and major maintenance are allowed at minor and medium 

deterioration states and replacement at system failure. Explicit expressions for the availability and mean time 

to failure of the system are obtained analytically. Graphs have been plotted to determine the behavior of 

availability and mean time to system failure with respect to time for different values of deterioration, 

maintenance and replacement rates. Also, high values of the shape parameter decreases mean time to system 

failure and availability. The system is analyzed using differential difference equations. 

Keywords: list, keywords, enter, here 

 

 

I. Introduction 
 

In practical engineering applications, most repairable systems are deteriorative that system failure 

often cannot be as good as new, it is more reasonable for these deteriorating repairable systems to 

assume that the successive working times of the system after repair will become shorter and 

shorter while the consecutive repair times of the system after failure will become longer and 

longer. Most of these systems are subjected to random deterioration which can result in 

unexpected failures and disastrous effect on the system availability and the prospect of the 

economy. Therefore it is important to find a way to slow down the deterioration rate, and to 

prolong the equipment’s life span. Maintenance policies are vital in the analysis of deterioration 

and deteriorating systems as they help in improving reliability and availability of the systems. 

Maintenance models can assume minor maintenance, major maintenance before system failure, 

perfect repair (as good as new), minimal repair (as bad as old), imperfect repair and replacement at 

system failure.  

Several models on deteriorating systems under different conditions have been studied by several 

researchers such as Bérenguer (2008), Frangopol et al (2004), Lam and Zhang (2003), Nicolai et al 

(2007), Rani and Sukumari (2014), Vinayak and Dharmaraja  (2012), Yuan et al  (2012), Yuan  and 

Xu  (2011). Analysis of reliability and availability model for deteriorating system have been studied 

under different conditions such as Liu et al. (2011) who investigated reliability analysis of a 

deteriorating system with delayed vacation of repairman, Tuan et al (2013).A Reliability-based 

Opportunistic Predictive Maintenance Model for k-out-of-n Deteriorating Systems, Xiao et al (2013) 

proposed the Bayesian reliability estimation for deteriorating systems with limited samples using 

the maximum entropy approach, Yusuf et al (2012). Presents modelling the reliability and 

availability characteristics of a system with three stages of deterioration, Zhang   and Wang  (2007) 
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deal with the study of  deteriorating cold standby repairable system with priority in use.  

This paper considers a system with three consecutive stages of deterioration before failure and 

derived its corresponding mathematical models. Furthermore, we study mean time to system 

failure and availability using differential difference equation method. The focus of our analysis is 

primarily to capture the effect of minor maintenance, minor deterioration and shape parameter on 

mean time to system failure and availability. 

The organization of the paper is as follows. Section 2 contains a description of the system under 

study. Section 3 presents formulations of the models. The results of our numerical simulations are 

presented and discussed in section 4.  Finally, we make some concluding remarks in Section 5. 

 

II. Description and States of the System 
 

In this paper, one unit system is considered. It is assumed that the system most pass through three 

consecutive stages of deterioration which are minor, medium and major deterioration before 

failure. The unit is considered to be non repairable. At early state of the system life, the operating 

unit is exposed to minor deterioration with rate 
1
  and this deterioration is rectified through 

minor maintenance 1 which revert the unit to its earliest position before deterioration. If not 

maintained, the unit is allowed to continue operating under the condition of minor deterioration 

which later changes to medium deterioration with rate 2 . At this stage, the strength of the unit is 

still strong that it can rectify to early state with rate 2 . However, the system can move to major 

deterioration stage with rate 3  where the strength of the unit has decreases to the extent that it 

cannot be reverted to its early state, neither that of minor nor medium deterioration stages. Here 

the unit is allowed to continue operation until it fails with parameter
4
  and the system is 

immediately replaced by with a new one with rate 3 . Deteriorating rates follow Weibull 

distribution   1, 1,2,3kf t t k    ,   is the shape parameter. 

 
 
 
 
 

 
 

 

Figure 1: Transition diagram of the system  

Table 1: States of the system 

State Description 

S0 

S1 

 

S2 

 

S3 

S4 

Initial state, the system is operative. 

The system is in minor deterioration mode  and is under online minor maintenance, and 

is operative.  

The system is in medium deterioration mode  and is under online major maintenance 

and is operative.  

The system is in major deterioration mode and is operative.   

The system is inoperative. 
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III. Formulation of the Models 

 
In order to analyze the system availability of the system, we define ( )iP t to be the probability that 

the system at  0t   is in state
iS . Also let ( )P t  be the row vector of these probabilities at time t . 

The initial condition for this problem is: 

         0 1 2 3 4(0) [ 0 , 0 , 0 , 0 , (0)] 1,0,0,0,0P p p p p p 
 

We obtain the following differential difference equations from Figure 1:

  1

0 1 0 1 1 2 2 3 4( ) ( ) ( ) ( )
d

p t t p t p t p t p t
dt

       
 

   1 1

1 1 2 1 1 0( ) ( )
d

p t t p t t p t
dt

        

 
   1 1

2 2 3 2 2 1( ) ( )
d

p t t p t t p t
dt

         

 
  1 1

3 4 3 3 2( ) ( )
d

p t t p t t p t
dt

       

 
  1

4 3 4 4 3( ) ( )
d

p t p t t p t
dt

                                                                                           (1) 

This can be written in the matrix form as 

P TP ,                                                                                                                                       (2)  
 
where
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 
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1 1 2 3
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1 1 2
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 
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 
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 

 
    

The steady-state availability (the proportion of time the system is in a functioning condition or 

equivalently, the sum of the probabilities of operational states) is given by  

       0 1 2 3( )V

N
A p p p p

D
         

                                                    (3) 

where
 

               
2

1 1 1 1 1 12 2

3 4 1 2 2 3 3 1 4 2 3 3 1 2 3 3 1 2 3N t t t t t t
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Following Trivedi (2002), Wang and Kuo (2000), Wang et al. (2006) to develop the explicit for 

MTSF. The procedures require deleting rows and columns of absorbing states of matrix T and take 

the transpose to produce a new matrix, say M . The expected time to reach an absorbing state is 

obtained from 
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                                                              (4) 

 where the initial conditions are given by

         0 1 2 3(0) [ 0 , 0 , 0 , 0 ] 1,0,0,0P p p p p   and  
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The explicit expression for is given by MTSF 
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IV. Discussion 

Numerical examples are presented to demonstrate the impact of repair and failure rates on steady-

state availability and net profit of the system based on given values of the parameters. For the 

purpose of numerical example, the following sets of parameter values are used:
1

0.1  , 
2

0.3  , 

3
0.5  , 1 0.4  , 2 0.5  , 3 0.6  , 4 0.2  , 0.9  ,

 
0 10t   

 

Figure 2: Mean time to system failure against for different values of 1(0.3,0.4,0.5)
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Figure 3: Availability against for different values of 1(0.3,0.4,0.5)
 

 

 

 

 
 

Figure 4: Mean time to system failure against for different values of 1(0.4,0.5,0.6)  
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Figure 5: Availability against time for different values of 1(0.4,0.5,0.6)
 

 

 

 

 
 

 

Figure 6: Mean time to system failure against for different values of 1(0.4,0.5,0.6)
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Figure 7: Availability against time for different values of (1.2,1.3,1.4)
 

 

Numerical results of mean time to system failure and availability with respect to time are depicted 

in Figures 2 and 3 for different values of minor maintenance rates 
1 . In these Figure the mean 

time to system failure and availability increases as time increases when 
1  increases from 0.3 to 

0.5.  This sensitivity analysis implies that minor maintenance to the system should be invoked to 

increase the life span of the system. On the other hand, simulations in Figures 4 and 5, depicts the 

impact of time on mean time to system failure and availability for different values of minor 

deterioration
1 . From these Figures, the mean time to system failure and availability decreases as 

time increases for different values of
1 . The above sensitivity analysis depicted the effect of minor 

maintenance and deterioration rates on mean time to system failure and availability. It can be 

observe that minor maintenance played a significant role in increasing the mean time to system 

failure and availability whereas minor deterioration slow down the mean time to system failure. 

From simulations depicted in Figures 6 and 7, it is evident that the choice of the shape parameter 

 influences the time taken for the system to reach the failure state.  The higher the value of this 

shape parameter  , the less the values of mean time to system failure and availability. 

 

V. Conclusion 
 

This paper studied a one unit system with three consecutive stages of deterioration before failure. 

Explicit expressions for the mean time to system failure and availability are derived. The numerical 

simulations presented in Figures 2 – 7 provide a description of the effect of maintenance and 

deterioration rates on mean time to system failure.  On the basis of the numerical results obtained 

for particular cases, it is suggested that the system availability can be improved significantly by: 

 Adding more cold standby units. 

 Increasing the maintenance rate. 

 Exchange the system at major deterioration with new one before failure. 
 

  

0 1 2 3 4 5 6 7 8 9 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time (t)

A
va

il
ab

il
it
y

 

 

=1.2

=1.3

=1.4



 
Yusuf I., Gatawa R.I. 
PROBABILISTIC MODELS FOR RELIABILITY ANALYSIS  

RT&A, No4 (43) 
Volume 11, December 2016  

37 

References 

 
[1] Bérenguer C.(2008). On the mathematical condition-based maintenance modelling for continuously 

deteriorating systems, International Journal of Materials and Structural Reliability, 6, 133-151. 

[2] Frangopol, D.M.; Kallen, M.J. and Van Noortwijk, J.M. (2004). Probabilistic models for life-cycle 

performance of deteriorating structures: Review and future directions. Prog. Struct. Eng. Mater., 6, 197–212. 

[3] Lam,Y  and Zhang, Y. L. (2003). A geometric-process maintenance model for a deteriorating system 

under a random environment, IEEE Trans. Reliability. 52(1), 83-89. 

[4] Liu, D., Xu, G and  Mastorakis, N. E. (2011).Reliability analysis of a deteriorating system with delayed 

vacation of repairman, WSEAS Transactions on Systems, 10(12). 

[5] Nicolai, R.P. Dekker, R. and Van Noortwijk, J.M. (2007). A comparison of models for measurable 

deterioration: An application to coatings on steel structures. Reliab. Eng. Syst. Saf. , 92, 1635–1650.   

[6] Pandey, M.D.; Yuan, X.X.; van Noortwijk, J.M. The influence of temporal uncertainty of deterioration 

on life-cycle management of structures. Struct. Infrastruct. Eng. 2009, 5, 145–156. 

[7] Rani, T.C and Sukumari, C. (2014). Optimum replacement time for a deteriorating system, 

International Journal of Scientific Engineering and Research, 2(1), 32-33. 

[8] Tuan K. Huynh, Anne Barros, Christophe Bérenguer. (2013).A Reliability-based Opportunistic 

Predictive Maintenance Model for k-out-of-n Deteriorating Systems, Chemical  Engineering Transactions, 33, 

493-498. 

[9] Vinayak, R and Dharmaraja. S (2012). Semi-Markov Modeling Approach for Deteriorating Systems 

with Preventive Maintenance, International Journal of Performability Engineering Vol. 8, No. 5,  pp. 515- 526. 

[10] Wang, K,-H and Kuo, C,-C. (2000). Cost and probabilistic analysis of series systems with mixed 

standby components, Applied Mathematical Modelling, 24: 957-967. 

[11] Wang, K., Hsieh, C and Liou, C. (2006). Cost benefit analysis of series systems with cold standby 

components and a repairable service station. Journal of quality technology and quantitative management, 

3(1): 77-92. 

[12] Xiao, T.C., Li, Y, -F., Wang, Z., Peng, W and Huang, H, -Z. (2013). Bayesian reliability estimation for 

deteriorating systems with limited samples Using the Maximum Entropy Approach, Entropy, 15, 5492-5509; 

doi:10.3390/e15125492. 

[13] Yuan, W., Z. and Xu, G. Q. (2012). Modelling of a deteriorating system with repair satisfying general 

distribution, Applied Mathematics and Computation 218, 6340–6350 

[14] Yuan, L and Xu, J. (2011).A deteriorating system with its repairman having multiple vacations, 

Applied Mathematics and Computation. 217(10), 4980-4989. 

[15] Yusuf, I., Suleiman, K., Bala, S.I. and Ali, U.A. (2012). Modelling the reliability and availability 

characteristics of a system with three stages of deterioration, International Journal of Science and Technology, 

1(7) , 329-337.  

[16] Zhang, Y.L.  and Wang, G. J. (2007). A deteriorating cold standby repairable system with priority in 

use, European Journal of Operational Research, Vol.183, 1, pp.278–295. 

 

 



 
Mustafayev R., Hasanova L. 
STUDY OF STARTING DUTY OF WIND POWER PLANT  

RT&A, No4 (43) 
Volume 11, December 2016  

38 

Study Of Starting Duty Of Wind Power Plant With 

Asynchronous Generators 
 

Rauf Mustafayev, Laman Hasanova 

• 
Azerbaijan Scientific-Research and Disigned-Prospecting Institute of Energetics,  

Baku,  Azerbaijan AZ1012, Aven. H.Zardabi-94 

mustafyevri@mail.ru, gasanovalg@mail.ru  

 

 

 

Abstract 

 
Presently, the park of wind power plants (WPP) consists mostly of frequency controlled 

asynchronous generators. As the generators the squirrel-cage asynchronous machines and 

generators made on the basis of double fed asynchronous machines (DFAM) are used. When 

WPPs locate far from the powerful sources of energy generation of power system and they are 

connected with the power system by "weak" power grids, i.e. by grids, which are not equipped 

with reactive power sources, then the unwanted voltage dips may occur when connecting the 

WPPs to the power system in the places of their connection to the power system. 

The comparative analysis on the developed three-coordinated mathematical models of 

asynchronous machines of start by underfrequency relay and connection of WPPs with the above 

asynchronous generators to the power system has been carried out.  

It has been found, that in terms of impact of starting duties on electric power networks the most 

preferable are the systems of WPPs with squirrel-cage asynchronous generators. The values of 

starting currents when start by underfrequency relay of WPPs with squirrel-cage asynchronous 

generators are almost 48% lower than in the system of WPPs with DFAM eactive power 

compensation of asynchronous generators wind power and small hydroelectric power stations 

increases the reliability of connecting them to the so-called "weak" power grids of power systems. 

The methods of reactive power compensation for asynchronous generators of various designs. 

 

Keywords: wind power plants, asynchronous machines, double fed asynchronous 

machines  

 

 

I. Introduction 
 

Today small hydropower industry and wind energetics take the leading positions according 

to the quantity of installed capacities and electric power output, generated by renewable power 

sources. 

Park of modern industrial wind power plants (WPP) consists of highly economical and 

reliable complexes, based on the latest blade wind motors, high-tech gearboxes and controlled 

electromechanical converters [1].  For all this the unit capacity of WPPs increases from year to year 

and now reaches the value of 6–7,5 MW.  
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II. Controlled induction generators used in wind turbines   
 

The vast majority of electromechanical converters of WPPs consist of the controlled 

asynchronous machines both with squirrel-cage rotor with a frequency converter, feeding the 

stator winding of machine, and phase-wound rotor equipped with a frequency converter, feeding 

a rotor winding of machine (so-called double fed machine (DFAM)). 

The advantages and disadvantages of each of above-stated options are well-known. Without 

going into details of these known ontions let's only note, that in the option of squirrel-cage rotor 

the simple, reliable generator combines with a frequency converter, made for a full power of 

generator, and in the option of phase-wound rotor the relatively complicated, more expensive and 

less reliable generator combines with a frequency converter, feeding the rotor's winding of 

generator and made for only 20–30% of generator's power. 

In both options, these asynchronous generators in steady- state operation modes correspond 

in full measure to the technological requirements of optimal operation of WPPs, i.e. control of a 

rotational frequency of wind aggregate (wind motor, gearbox and generator) allows improving its 

productivity by 15–20% [1]. 

The purpose of this paper is the study issues of starting duties of WPPs, equipped both with 

squirrel-cage asynchronous generators and the generators, made on the basis of double fed 

asynchronous machines. These issues are particularly urgent in those cases, when WPPs and wind 

parks, containing several dozens of WPPs, are connected to the so-called "weak" power networks, 

i.e., the networks distanced sufficiently from power centers and insufficiently compensated by 

reactive powers. In these cases, the connection modes of WPPs with asynchronous generators to 

them can lead to significant voltage dip of network in startup period [2]. 

Studies are carried out on the developed three-coordinate models of controlled three-phase 

asynchronous machines, whose equations are given in [3, 4]. 

At the first stage let’s study the startup issues of WPP, containing a squirrel-cage 

asynchronous generator, stator winding of which is supplied from a frequency converter, 

performed on fully controlled power transistors (IGBT-transistors) and controlled on the principles 

of sinusoidal PDM. The system’s diagram of connection to power network is shown in Fig. 1. 

 
 

Figure 1: Grid connection diagram of wind turbines with squirrel-cage induction generator  

 

Here WM – wind motor, GB – gearbox, AG – squirrel-cage asynchronous generator, FC – 

frequency converter, operating on power IGBT transistors, Tr – coupling transformer of connection 

with the system.  

As it has been noted in [3], the equations for frequency controlled squirrel-cage asynchronous 

generator are reasonable to represent in the axes αs, βs, γs fixed in space, in this case the equations 

will be presented in the form of: 
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Usα, Usβ, Usγ, Urα, Urβ, Urγ – phase voltages of stator and rotor; isα, isβ, isγ, irα, irβ, irγ  - phase currents of 

stator and rotor; ψsα, ψsβ, ψsγ, ψrα, ψrβ, ψrγ – flux linkages of stator and rotor circuits rsα, rsβ, rsγ, rrα, rrβ, 

rrγ – resistances of stator and rotor circuits;  xsα, xsβ, xsγ, xrα, xrβ, xrγ – full inductances of stator and 

rotor windings; хm – mutual induction reactance; 
r

  – rotational frequency of WPP's rotor, рm – 

number of pairs of generator's poles; р – differentiation symbol with respect to synchronous time 

t 314 sec. 

It should be noted that two kinds of frequency control are used - scalar and vector ones [5, 6]. 

The simplest control of them according to degree of realization is a scalar one. When study the 

issues of start by underfrequency relay, it is reasonable from the point of view of comparing the 

results of study of starting duties impact on electric power network to turn to the scalar control. 

The asynchronous generator of WPP with the capacity of 1500
WPP

P  kW and 690
WPP

U  V 

voltage is taken as the studied object (generator's parameters are given in the Appendix).  

At the first stage let's consider the direct start of generator (in practice it isn't used) for different 

values of driving torque on generator's shaft, which correspond to the specific wind speeds when 

connecting the generator to electric power network. The studies are conducted by the system of 

equations (1), which are recorded in the axes αs, βs, γs, fixed in space. In this process as the machine 

is with squirrel cage rotor Urα, Urβ, Urγ = 0, and stator voltages are equal to 
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III. Study starting modes of wind turbines equipped with squirrel-cage induction 

generators   

 
The fluktogrammas of change of generator's operating conditions are presented in Fig. 2: 

rotational frequency of generator's rotor 
r

  (Fig. 1,a), electromagnetic torque of generator 
em

m  

(Fig. 2, b), and phase stator currents of generator isα, isβ, isγ (Fig. 2 c, d, e). It is seen from the 

fluktogrammas, that at a value of driving torque equal to 3,0
em

m  ("minus" sign indicates a 

generator mode) the time of connecting of generator to network constitutes about 400  rad. (

27,1t  s.), the values of starting currents isα, isβ, isγ   reach 5,2 of multiple value, while their 

duration is not less than 1 second. ( 316
start

  rad.). The value of driving torque equal to 

3,0
WM

m  corresponds roughly to the wind speed equal to 6V   m/s. When connecting the 

generator to network in the presence of a driving torque 1
WM

m  (wind speed is about 5,9V   

m/s), the character of process remains the same as in Fig. 1, but the duration of connection to 

network and correspondingly the duration of starting currents reduces by 33% and constitutes (

210
start

  rad.). 

It is natural, that the significant amounts of starting currents affect negatively on a network 

voltage, if it is distanced from the other power supply units and is lightly compensated one (it 

means the lack of reactive power sources). Therefore, this method of connection of asynchronous 

generator to network isn't used in practice.  
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Figure 2.  Fluctogramms of change in operating parameters of induction generator of wind turbines when direct on-line 

starting 
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If there is a frequency converter connected to the stator winding of asynchronous generator, 

which has a short-circuited rotor, the start by underfrequency relay is carried out. In this process 

both the amplitude and frequency of supplying the generator voltage should be changed in the 

equations (2). With linear change of amplitude and frequency, the equations (2) by the same 

expression will take the form: 
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where 
uouus

kkk  and 
foffs

kkk .   

With simultaneous linear change of 
us

k and
fs

k , 
fu

kk
00

  and 
fu

kk   their initial value and rates 

of rise are equal. It is necessary to pay attention to one circumstance: with a linear change of 

frequency 
fs

k  its rate of rise in accordance with [7] should be coordinated with the inertia constant 

of system and a value of driving torque on the WPP's shaft. 
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Figure 3. Fluctogramms of change of operating parameters of the wind turbines with squirrel-cage induction 

generator in frequency starting 

 

The fluktogrammas of operating conditions change of the same generator when a start by 

underfrequency relay according to the expression  0028,01,0
fsus

kk  are presented in Fig. 3, 
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m/s). Rotational frequency of WPP 
r  (Fig. 3,a) varies practically smoothly from 0 to 1,001, which 

indicates that a speed of frequency change 
fs

k , and together with it the amplitude of voltage 
us

k  

(Fig. 3, f) has been selected the optimum one [7]. The average value of electromagnetic torque mem 

(Fig. 3, b) at the initial section is less than 5,2
.


avem
m  (with direct startup 7,6

em
m  (Fig. 2, b)). And 

the most important fact is, that when the start by underfrequency relay the average current values 

isα, isβ, i sγ in the starting condition practically within the whole startup period do not exceed the 

values of 2,3
nnn sss

iii


 (Fig. 3 c, d, e), and their duration constitutes 315–320 rad. Thus, when 

the start by underfrequency relay with a practically constant duration of action of starting currents 

their average values reduce almost by 40%. And this allows asserting with a high probability that a 

voltage drop in the electric power network in the points of WPPs connection will also reduce by 

40%. 
 

IV. Study starting modes of wind turbines equipped with double-fed induction 

generator  

 
At the second stage let's consider the issues of startup of WPP's asynchronous generator, 

carried out on the basis of double fed machine. Diagram of connection to electric power network is 

shown in Fig. 4 [8]. 

 

Figure 4:  Grid connection diagram of wind turbines with double fed induction machine 

Here: WD – wind motor, GB – gearbox, DFAM – asynchronous generator made on the basis of 

double fed asynchronous machine, the FC – frequency converter made on fully controlled power 

transistors (IGBT – transistors); R – inductive reactor; Tr – coupling transformer of connection with 

the power system (it can be two-winding one (solid lines) or triple-winding one (dashed lines)). 

When study the issues of start by underfrequency relay of WPPs with these generators, it is 

expedient to turn to the form of records of machine's differential equations in three-coordinate 

system of coordinates αr,, βr, γr, rotating with the rotor speed ωr [3]. 

In this case, the first 6 equations of the system (1) are replaced by the following 7 ones, the others 

remain unchanged: 
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The rest equations (1) of system: electromagnetic torque, movement, connection of the 

currents with flux linkages, matrix of determination of this connection factors remains unchanged. 

One variable is added here – θ, the interior angle of machine, i.e. the angle between axis 
os

  of 

three-coordinate system of stator's coordinates, moving with the synchronous speed 
s

  and axis 

r
  of three-coordinate system of rotor's coordinates, moving with a speed of machine's rotor

r  

Technology of start by underfrequency relay of double fed machine of WPP, which can 

consist of two stages, is the following [2]: at the first stage in the presence of driving torque on the 

shaft of WPP –
WM

m  the winding of stator is shorted-circuited, and the frequency converter, feeding 

the winding of rotor of DFAM changes linearly the amplitude and frequency of voltage supplying 

the voltage winding. But because of the limited capacity of converter and its output parameters, 

this change does not exceed a value of 15–25% of the total machine's capacity. At the second stage 

after acceleration of WPP's rotor under the influence of driving torque of WPP – emm  and start by 

underfrequency relay, when the rotor's speed reaches 20–25% of the synchronous one, the rotor's 

winding of generator is short-circuited, and the full line voltage is supplied to the stator's winding, 

which is connected directly to electric power network. Upon reaching the synchronous speed the 

generator rotor's windings come into operation, and WPP operates in a steady-state mode with 

connecting the automatic control of WPP's rotational frequency with the help of frequency 

converter as a function of wind speed value in a certain range of its variation. 

All of described above has been implemented on the three-coordinate mathematical model 

of DFAM of WPP [3], the results of which are shown in Fig. 5. 

As it has been noted, at the first stage the voltage of stator Us = Us=U s =Us= 0 (winding is 

short-circuited) and the rotor winding is fed from the frequency converter according to the linear 

expression   00028,001,0
fsus

kk . The fluktogramma of change of rotational frequency of 

rotor r  is given in Fig. 5, а. In the process of start by underfrequency relay from the rotor side in 

the presence of driving torque of wind motor 3,0
WM

m  (which corresponds to wind speed 6V   

m/s) in the range of from 0 to 500 radian the rotational frequency of WPP's rotor rises to 28,0
r

 , 

in this process   all operating conditions of generator - the electromagnetic torque 
em

m  and currents 

of stator isα, isβ, isγ do not exceed 1–1,5 of values in relative units. After 500-th radian the winding of 

stator is connected to the network voltage Us, and winding of DFAM's rotor is short-circuited Ur=0. 

A direct startup of asynchronous generator occurs, but the acceleration begins not from zero, and 

with the initial rotor's speed equal to 28,0
r

 . The time of startup of this stage constitutes about 

120
.


пr
  rad. (from 500 rad. up to 620 rad.), while the average value of starting electromagnetic 

torque is equal to 3,3
.


avem
m , stator currents isα (Fig. 5, c), isβ (Fig. 5, d) isγ (Fig. 5, e) reach the value of 

8,5
 sss

iii . 
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Figure 5. Fluctogramms of change of operating parameters of double-fed induction generator of wind turbine 

when frequency-direct on-line starting 

 
In order to carry out a comparative analysis of start by underfrequency relay processes of 

asynchronous generators of WPPs, made with the squirrel-cage rotor and winding of rotor 

(DFAM) it needs to transfer the currents received on mathematical model of DFAM into the system 

of fixed coordinates. By trivial conversions let's determine, for example, a current in the fixed in 

space system of coordinate o

s
 , it is determined by the correlation [9]: 
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Where o

si   – reduced current of DFAM's stator along the axis αs, fixed in space, isα, isβ, isγ – 

currents of DFAM's stator recorded in the axes rotating with the rotor speed 
r

 . θ –angle between 

the axis rotating with the rotor speed 
r

  and the axis rotating with synchronous speed 
s

 , and 
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finally    
s

 – angle between the fixed in space axis and axis rotating with synchronous speed 

1
s

 .  

Current in one phase o

s  determined by the expression (5) is presented in Fig.5, f, (unfolded 

fluktogramma of this current is shown in Fig. 5, g). 

As it is seen from the fluktogramma the average starting value of this current reaches the 

value of  2,6
срs

i


 and its duration is equal to 130 radian. 

Thus, comparing the results of studies of start by underfrequency relay modes of 

frequency controlled squirrel-cage asynchronous generator of WPP,and frequency controlled 

from the rotor side DFAM of WPP, it should be noted, that in terms of impact on elect ric 

power network, the starting currents of the first generator constitute of the order of 3,2 relative 

units with the time of their action 315
п

  radian, and the starting currents of DFAM 

constitute of the order of 6,2 relative units with the time of their action 130
п

  radian. In the 

first case the total starting time constitutes 400 radian, and in the second case – 620 radian. 

Conclusion 
1. The methods of comparative analysis of start by underfrequency relay of WPP, 

containing the frequency controlled squirrel-cage asynchronous generator, and WPP, 

containing the asynchronous generator, made on the basis of double fed machine, the rotor 

windings of which is supplied from a frequency converter, has been developed.  

2. The most preferable option out of the investigated ones, in terms of impact on the 

electric power networks in the place of WPP’s connection, is the one with the frequency 

controlled generators with squirrel-cage rotors, starting current of which when the start by 

underfrequency relay is almost 2 times lower than the starting current when startup of WPP 

with DFAM, although its duration is 2.4 times longer than the starting current of DFAM. 

However, the total time of output to steady-state modes for WPP with squirrel-cage 

asynchronous generator is 1,5 times less than for the generator with DFAM. 

3. And finally, the energy expended for startup process in the first case is 55% lower than 

the one expended for startup of DFAM. 
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Appendix 

 
Item 1 

a) Parameters of WPP's generator; resistances in relative units: 

P n = 1500 kW rs=0,0086 xm=3,459 

U= 690 V rr=0,01 xs=3,53993,54 

рm=2 xσs=0,0809 xr=3,5461 

 J total   = 52,4 kgm 2 (WPP's 

rotor) 

xσr=0,871  

nн=1500 .min
.rev        

9550
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



н

н

ном
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b)  Calculated and basic values of parameters 
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c) Values of parameters in relative units 
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Item 2.  Algorithm of study on the three-phase model of start by underfrequency relay of squirrel-

cage asynchronous machine with a linear change of amplitude and frequency of the stator's 

voltage. Amplitude of the phase voltage of stator winding for all three phases changes according to 

the ratio:   00286,01,0
0

kkkk
fsus
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The factors linking the currents with flux linkages are determined from the inverse matrix 

consisting the machine's parameters, i.e. from the matrix of equation (12): 
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Item 3.  Algorithm of study on the three-phase mathematical model of double fed machine, the 

equations of which are recorded in three-phase coordinate system 
r

 , 
r

 , 
r

 , rotating with a rotor 

speed of machine is:   

 

   
   
   

 
 
 

  















































)3,0(00205,0)()(99,500205,0

1

01,0094,2)00286,001,0sin)0,002860,01(

01,0094,2)00286,001,0sin)00286,001,0(

01,0)00286,001,0(sin)0,0002860,01(

0086,0577,009439,2sin

0086,0577,009439,2sin

0086,0577,0sin

,

7

1076

0276

2176






















rsrsrsrsrsrs

r

r

r

s

s

s

IIIIIIIIIIII

Y

I

I

I

IYYY

IYYY

IYYY

YD







 

 

 



 
Chovanec A., Breznická A. 
SIMULATION MODELLING OF A SPORADIC DEMAND  

RT&A, No4 (43) 
Volume 11, December 2016  

49 

Simulation Modelling Of A Sporadic Demand 

Applying A Bootstraping  
 

Alexej Chovanec, Alena Breznická 

• 

Faculty of special technology 

 alexej.chovanec@tnuni.sk 

alena.breznicka@tnuni.sk 

 

 

Abstract 

 

This technique bootraping has been successfully used in various applied statistical problems, although not 

many applications have been reported in the area of time series. In this paper we present a new application of Bootstrap to 

time series. A fundamental aspect of supply chain management is accurate demand forecasting. We address the problem 

of forecasting intermittent (or irregular) demand, i.e. random demand with a large proportion of zero values. Items of 

spare parts with sporadic consumption can make a significant, up to 60% portion of the value of supplies in service and 

workshop inventory areas of many industrial segments. An understanding of key features of demand data is important 

when developing computer systems for forecasting and inventory control. 

 

Keywords: Simulation modelling, sporadic demand,  bootstraping, forecasting 

 

 

I. Introduction 

 

So called driving systems are the most common from advanced approaches in 

management and optimization of inventory management. They are included into stochastic and 

dynamic inventory models defined by a random demand. As input random variables are 

generated data on consumed amount of material gained from a statistical probability distribution. 

The arithmetic, moving average or a weighted moving means. An exponential averaging of the 

first and the second degree are used in a trend development of a demand or a linear regression.  

Auto correlation and identification models are used as well.  However arrays of empirical data on 

a sporadic demand include a random variety of null values with no nulls. It might provide for 

variable results in defining needed amount in forecast of a mean, a standard deviation or 

dispersion in a very simple parametric way in mathematical operations.  Due to deviousness of 

input data the distribution of random variable (demand) obviously does not meet standard 

probability distribution. An applicable option, being used, is a non-parametric method using past 

data on a sporadic demand called bootstrapping. We classify it among MC simulation statistical 

methods, based on a stochastic forecast of a future demand from data on a recent demand.   

Numerous methods of bootstrapping work with random data on demand, from which an 

experimental pdf, cdf functions of a distribution of random variable (demand) are generated 

through a computer experiment applicable for assignment of parameters for modelling par a level 

inventory management.  

Bootstraping is a method aiming to increase an accuracy value of statistic estimations.  The 

results are dependent only on bootstrapping samples. We do not need to know the basic 

distribution of a random variable. Bootstraping creates a large amount of random choices from 

input data of a bootstraping sample and it calculates improved statistics on each of such choice. In 

addition to numerical characteristics it provides data for statistical characteristics in form of 

frequency histograms and choices probability histograms.  From a data set being reviewed we 

generate bootstrapping y random choices several thousands times so that we choose with 

mailto:john@smith.com


 
Chovanec A., Breznická A. 
SIMULATION MODELLING OF A SPORADIC DEMAND  

RT&A, No4 (43) 
Volume 11, December 2016  

50 

repetition (by a substitution of chosen data) from a data set being reviewed x = (x1, x2,.........,xn), a 

needed amount of m data  y = (y1, y2,.........,ym). The chosen numerical values  yi are inter 

independent and they are chosen for a bootstraping sample with the same probability  /uniform 

distribution/. The samples usually differ from each other and they differ from a base data set being 

reviewed.  As we sample with repetitions, it is possible, that some xi  data appear several times in a 

sample or that we do not choose them ever. In case of a specification of a future demand within a 

delivery term /a delivery leadtime - LT/ we choose from a bootstrapping sample a number of data 

corresponding with LT. 

 

II. Simulation model of a sporadic demand 

 

The presented simulation model applies stochastic and dynamic principles of inventories 

modeling.  The simulation model was created based on simple algorithms and MATLAB language 

commands.  It consists of two parts: The first part of a model applies the principle of a 

bootstrapping aiming to define an optimal stock level for an item with a following sequence: 

 Downloading the array and a bootstrapping sample of demand data. Fig. 1.  

 Computation of numerical characteristics for a bootstrapping sample of a demand for any 

term, number of data, min, max, mean, std. 

 Specification of simulation input data – number of bootstrapping choices, number of chosen 

periods for a delivery time period, specification of a quantile of a demanded logistic support of 

delivery.  

 Generating a matrix of indices for bootstrapping samples of uniform distribution.   

 Transference of indices matrix into a matrix of demand of bootstrapping choices.  

 Sum of values in a row of demand matrix of bootstrapping choices.   

 Graphic and statistical processing of output data for a definition of a size of an optimal stock. 

 

 

 
 

Figure 1: Sample of demand data for 50 periods 

 

 

We simulate choices from a demand sample for 50 time periods. For each choice we randomly 

choose a number of values corresponding to a lead time. For simplicity LT=2 time periods. Each 

choice from a sample is represented by a row of a matrix, each column represents a delivery time 

period. Table1 ...  displays a generating of values of bootstrapping indices matrix on 10 choices 

with a uniform distribution, transformation of the indices matrix into a matrix of bootstrapping 

choices demand and a sum of values of the rows from a bootstrapping choices demand matrix. 
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Table 1: 1 Generating  10  choices of indices of an item being reviewed and a demand for LT=2 

Choice 

number 

Index 1 Index 2 expenditure1 expenditure2 SUM 

expenditure  

1 26 12 0 4 4 

2 31 46 0 0 0 

3 45 34 0 0 0 

4 7 37 0 0 0 

5 15 35 2 5 7 

6 4 40 2 0 2 

7 8 27 0 1 1 

8 4 38 2 6 8 

9 10 26 2 0 2 

10 39 46 0 0 0 

 

Number of choices – simulations has an impact on a provision of a same probability that an item 

index will be chosen by which we assign a demand in pieces Fig. 2.  A requirement of an uniform 

distribution does not become evident at a small number of simulations, amount of choices of 

indices lines up with an increasing number of simulations and it confirms an algorithm rightness 

of a procedure for a generator of a uniform distribution from a choice. 

 

Number 

of choices 

For a delivery time period /LT  2 periods 

100 

 

1000 

 

10000 

 

1000000 

 

 

Figure 2: Choice of indices of time periods being modelled and a verification of a uniform distribution 

 

 

We develop a histogram from a sum of values from the rows of a demand matrix made based on 

bootstrapping choices.  For 100 choices of the delivery time period 2 periods with a probability 

0.95, in the Fig. 3, we see that the intervals with a null demand are represented with the greatest 
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frequency. Statistics of the set: min: 0, max: 13, mean: 2.63, median: 1, std: 3.25 

 

 

 

 
Figure 3: Histogram of a sum of choices frequencies 

 

The second part of a model implements a simulation algorithm of a supplying process with a 

variable time step.  

Characteristics of model parameters: 

 Lead Time, a number of time units from sending an order until delivery of an item. A delivery 

time of an order is defined by contract terms. It may be adjusted by a discharge time of the 

delivery / a logistic delay.   

 Provision probability – Service Level, that a demand will not exceed an offer during 

implementation with a specified probability. Requested provision probability / Service level is 

specified ranging from 0.95 - 0.99 by an item criticality.  

 Level or stock ordering - Reorder Level is specified as an optimal level with respect to a lead 

time – is specified as an optimal level with respect to a reorder level and service level. It should 

ensure that a level of stock during a service level will not drop below zero. Optimal reorder 

level is specified by a bootstrapping in accordance with a demand forecasting during a lead 

time of a supplier rounded to the nearest higher ordered amount. Fig. 4. In a moment when a 

reorder level is intersected, the information system generates an order to a supplier marked 

with a red asterisk. The above mentioned approach allows a setting of a reorder level and a 

moment for drawing an offer to refill the stocks in accordance with a specified level of logistic 

provision.  

 Safety stock is created due to an unstable demand / or a lead time as a protection against an 

item shortage.  A safety stock is not created in case of a bootstrapping definition of an optimal 

stock. A safety factor should be taken into consideration by a Service Level. 

 

Sequence of a simulation algorithm: 

 It takes the random data over from bootstrapping choices in order to define a demand of a 

time period from the first part of the model.  

 It monitors a decrease of a stock level / a blue color  

 It matches when the stock ordering level reaches a reorder level / green level.  

At a moment when a reorder level is reached, or the stock is below the ordering level, it orders an 

optimal amount of stock, that have been defined in the first part of the model by bootstrapping. 

Time to draw an order is a random variable.  

 It monitors a lead time.  

 It carries out a model delivery of an item and it increases a stock level / a red vertical line.  

 It collects needed data for computations.  
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 It computes the costs when a simulation time is shifted.  

 It creates graphs of stock and costs courses.  

 It repeats a procedure in line with a defined number of time periods in an experiment.  

 

The model allows changing of input values level / delivery time period - LT, number of 

bootstrapping choices, number of time periods of a demand simulation, a needed level of 

probability for logistic support, and an initial stock level.   

Graphic outputs of a simulation of a short time period are shown in Fig. 4 and Fig. 5. 

 
Figure 4: Course of simulation of stock item movement for 67 time periods at LT=7 

 
Figure 5: Course of simulation of stock costs for an item for 67 time periods 

 

III. Discussion 

 

For evaluation and prediction of the consumption is used arithmetic, moving or weighted moving 

average. For the trend development of consumption is used exponential equalizing of first and 

second degree, or linear regression. Auto correlation and identification models are also used. 

Empirical data arrays of sporadic consumption, however, contain randomly substituting zero 

values with non-zero. This may, by use of calculations provide variable results for determining the 
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required amount. The bootstrap distribution of a point estimator of a parameter has been used to 

produce a bootstrapped confidence interval for the parameter's true value, if the parameter can be 

written as a function of the distribution. Parameters are estimated with many point estimators. A 

Bayesian point estimator and a maximum-likelihood estimator have good performance when the 

sample size is infinite, according to asymptotic theory. For practical problems with finite samples, 

other estimators may be preferable. Asymptotic theory suggests techniques that often improve the 

performance of bootstrapped estimators; the bootstrapping of a maximum-likelihood estimator 

may often be improved using transformations related to pivotal quantities [6]. It is obvious from 

the above mentioned results, that the increased demand for logistic support of an optimum stock / 

delivery causes an increased level of an optimum stock /Service level and naturally the costs as 

well.  It is interesting, that costs of acquisition are about on the same level, the transportation costs 

decrease and storage costs increase. 
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Abstract 

 

The properties of x-Exponantial Bathtub shaped failure rate model are discussed. Estimation 

process and failure rate behavior is explained.    

 

Keywords: Bathtub failure rate 

 

 

I. Introduction 
 

There are many distributions for modeling lifetime data. Among the known parametric models, 

the most popular are the Lindley, Gamma, log-Normal, Exponentiated Exponential and the 

Weibull distributions. These five  distributions are suffer from a number of drawbacks. None of 

them exhibit bathtub shape for their failure rate functions. The  distributions exhibit only 

monotonically increasing, montonically decreasing or constant failure rates. Most real life system 

exhibit bathtub shapes for their failure rate functions. Generalized Lindley (GL), Generalized 

Gamma (GG) and Exponentiated Weibull (EW) distributions are proposed for modeling lifetime 

data having bathtub shaped failue rate model. In this paper we consider  a simple model but 

exhibiting bathtub shaped failure rate, x-Exponential distribution, and discuss the failure rate 

behavior of these distributions.  The x-Exponential distribution  has properties similar to 

Generalized Lindley, but it is more simple and can be used instead of Generalized Lindley, 

Generalized Gamma and Exponentiated Weibull. The inference procedure also become simple 

than these distributions. 

 Section II, discussed x-Exponential distribution and their properties, Generalized Lindley 

distribution, Generalised Weibull distribution, discussed Generalized Gamma distribution  and 

conclusions are given at the final section. 

 

II. Bathtub shaped failure rate models 

 
I. X-Exponential Distribution 

 

In this section, consider a simplified form of distribution function, 

                        𝐹(𝑥) = (1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0.                  (1) 

It is an alternative model GL, GG, EW distributions. A life time random variable X has                                                          

X-Exponential distribution if its cumulative distribution function is (1), [2].  

 Clearly F(0)=0, F(∞) = 1, F is non-decreasing and right continuous. More over F is 

absolutely continuous. 

The probability density function (pdf) of a x-Exponential random variable X, with scale parameter 

λ  is given by  

mailto:%20chackovm@gmail.com
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𝑓(𝑥) = 𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0. 

It is positively skewed distribution. Failure rate function of x-Exponential distribution is 

ℎ(𝑥) =
𝛼𝑒^(−𝜆𝑥) (𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))^(𝛼 − 1)

1 − (1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼
, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0. 

 

 
 

Figure 1. Failure rate function of x-Exponential distribution for 𝛂=0.01 and  λ= 6 

 

 
 

Figure 2. Failure rate function of x-Exponential distribution for 𝛂=0.0001 and  λ= 6 
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Figure 3. Failure rate function of x-Exponential distribution for 𝛂=0.001 and  λ= 10 

 
 

 

Figure 4. Failure rate function of x-Exponential distribution for 𝛂=0.000000001 and  λ= 9 

 

From Figure 1,2,3 and 4, the shape of the hazard rate function appears monotonically decreasing or 

to initially decrease and then increase , a bathtub shape if α < 1 ; the shape appears monotonically 

increasing if α ≥ 1. So the proposed distribution allows for monotonically decreasing, 

monotonically increasing and bathtub shapes for its hazard rate function. As 𝛂 decreases from 1 to 

0, the graph shift above whereas if λ increases from 1 to ∞ the shape of the graph concentrate near 

to 0. It is the distribution of the failure of a series system with independent components. The 

equation (1) has two parameters, α and λ just like the Gamma, log Normal, Weibull and 

Exponentiated Exponential distributions. 

 

Moments  

Calculating moments of X requires the following lemma.  

Lemma 2.1: For 𝛂>0, λ>0, x>0, K(𝛂,λ,c)=∫ 𝑥𝑐 [1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

𝑒−𝜆𝑥𝑑𝑥
∞

0
, Then, 

K(α, λ, c) = ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗  [∫ 𝑥2𝑗+𝑐

∞

0

 𝑒−𝑖𝜆𝑥𝑒−𝜆𝑥𝑑𝑥  

𝑖

𝑗=0

] 

 

Proof: 
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We know (1 − 𝑧)𝛼−1 = ∑ 𝐶𝑖
𝛼−1(−1)𝑖  𝑧𝑖𝛼−1

𝑖=0 . Therefore 

                          K(𝛂,λ,c)=∫ 𝑥𝑐  [1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

𝑒−𝜆𝑥𝑑𝑥
∞

0
 

= ∫ 𝑥𝑐  ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

[(1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝑖
 𝑒−𝜆𝑥𝑑𝑥

∞

0

 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

∫ 𝑥𝑐
∞

0

    [(1 + 𝜆𝑥2)𝑒−𝜆𝑥]

𝑖

 𝑒−𝜆𝑥𝑑𝑥 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

∫ 𝑥𝑐
∞

0

    [(1 + 𝜆𝑥2)]𝑖  𝑒−𝑖𝜆𝑥𝑒−𝜆𝑥𝑑𝑥 

                                              = ∑ 𝐶𝑖
𝛼−1(−1)𝑖𝛼−1

𝑖=0 ∫ 𝑥𝑐∞

0
    ∑ 𝐶𝑗

𝑖(𝜆𝑥2)𝑗𝑖
𝑗=0  𝑒−(𝑖+1)𝜆𝑥 𝑑𝑥 

 

                                             = ∑ 𝐶𝑖
𝛼−1(−1)𝑖𝛼−1

𝑖=0   ∑ 𝐶𝑗
𝑖𝜆𝑗 ∫ 𝑥𝑐∞

0
  (𝑥2)𝑗𝑖

𝑗=0 𝑒−(𝑖+1)𝜆𝑥𝑑𝑥 

 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗 ∫ 𝑥𝑐

∞

0

𝑥2𝑗 

𝑖

𝑗=0

𝑒−(𝑖+1)𝜆𝑥𝑑𝑥 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗 ∫ 𝑥2𝑗+𝑐

∞

0

  

𝑖

𝑗=0

𝑒−(𝑖+1)𝜆𝑥𝑑𝑥 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗  [

𝛤(2𝑗 + 𝑐 + 1)

((𝑖 + 1)𝜆)2𝑗+𝑐+1
  

𝑖

𝑗=0

] 

 

K(α, λ, c) = ∑ 𝐶𝑖
𝛼−1(−1)𝑖

𝛼−1

𝑖=0

  ∑ 𝐶𝑗
𝑖𝜆𝑗  [

𝛤(2𝑗 + 𝑐 + 1)

((𝑖 + 1)𝜆)𝑗+𝑐+1
  

𝑖

𝑗=0

] 

It follows that 

𝐸(𝑋) = ∫ 𝑥𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1𝑑𝑥
∞

0

 

𝐸(𝑋𝑛) = ∫ 𝑥𝑛𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1𝑑𝑥
∞

0

 

𝐸(𝑋1) = 𝛼𝜆2K(α, λ, 3) − 2αλK(α, λ, 2) + 𝛂𝛌K(α, λ, 1) 

The moments are  

𝐸(𝑋𝑛) = 𝛼𝜆2K(α, λ, n + 2) − 2𝛼𝜆 K(α, λ, n + 1) + 𝛂𝛌K(α, λ, n), n=1,2,3,... 

 

Moment Generating Function 

𝑀𝑋(𝑡) = ∫ 𝑒𝑡𝑥  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−𝜆𝑥𝑑𝑥
∞

0

 

 

𝑀𝑋(𝑡) = ∫  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

 

 𝑀𝑋(𝑡) = 𝛼𝜆2K(α, λ − t, 3) − 2𝛼𝜆 K(α, λ − t, 2) + 𝛂𝛌K(α, λ − t, 1) 

 

 

Characteristic Function 

 𝛷𝑋(𝑡) = ∫ 𝑒𝑖𝑡𝑥  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−𝜆𝑥𝑑𝑥
∞

0

 

 

𝛷𝑋(𝑡) = ∫  𝛼(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)[1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−(𝜆−𝑖𝑡)𝑥𝑑𝑥
∞

0
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𝛷𝑋(𝑡) =  𝛼𝜆2K(α, λ − it, 3) − 2𝛼𝜆 K(α, λ − it, 2) + 𝛂𝛌K(α, λ − it, 1) 

Shape of the density function 

Consider probability density function, 

𝑓(𝑥) = 𝛼𝑒−𝜆𝑥(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼−1, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0 

 

𝑙𝑜𝑔𝑓(𝑥) = log(𝛼) − 𝜆𝑥 + 𝑙𝑜𝑔 (𝜆2𝑥2 − 2𝜆𝑥 + 𝜆) + (𝛼 − 1) 𝑙𝑜𝑔(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥)) , 𝑥, 𝜆, 𝛼 > 0 
d

dx
𝑙𝑜𝑔 𝑓(𝑥) = −𝜆 +

(2𝜆2𝑥 − 2𝜆)

(𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)
+   

(𝛼 − 1)

(1 − (1 + 𝜆𝑥2)𝑒^(−𝜆𝑥))
((1 + 𝜆𝑥2)(−𝜆)𝑒−𝜆𝑥 + 2𝜆𝑥𝑒−𝜆𝑥  )  

d2

dx2 𝑙𝑜𝑔 𝑓(𝑥) = −
1

𝑥2 +   
(𝛼−1)

(1− (1+𝜆𝑥2)𝑒−𝜆𝑥 )1 ((−𝜆)((1 + 𝜆𝑥2)(−𝜆)𝑒−𝜆𝑥 + 2𝜆𝑥𝑒−𝜆𝑥 ) −

(𝜆2𝑥2−2𝜆𝑥)2𝑒−2𝜆𝑥

(1− (1+𝜆𝑥2)𝑒−𝜆𝑥 )2 ) , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0. 

Here f(x) first increases and then decreases, it is unimodel. 

 

Mean Deviation about Mean 

The amount of scatter in a population is evidently measured to some extent by the totality of  

deviations from the mean and median. Mean deviation about the mean defined by 

 

MD(Mean)=2µ𝐹(µ) − 2µ + 2 ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

µ
 

      𝑀𝐷(𝑀𝑒𝑎𝑛) = 2µ𝐹(µ) − 2µ + 2(𝛼𝜆2L(α, λ, 3, µ) − 2𝛼𝜆 L(α, λ, 2, µ) + 𝛂𝛌L(α, λ, 1, µ) 

where   𝐿(𝛼, 𝜆, 𝑐, µ) = ∫ 𝑥𝑐  [1 − (1 + 𝜆𝑥2)𝑒−𝜆𝑥]
𝛼−1

 𝑒−𝜆𝑥𝑑𝑥
∞

µ
 

= ∑ 𝐶𝑖
𝛼−1(−1)𝑖𝛼−1

𝑖=0   ∑ 𝐶𝑗
𝑖𝜆𝑗  [∫ 𝑥2𝑗+𝑐+1𝑒−(𝑗+1)𝜆𝑥∞

µ
𝑑𝑥𝑖

𝑗=0 ]. 

Mean deviation about the Median defined by 

 

MD(Median)=−𝑀 + 2 ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

𝑀
 

      𝑀𝐷(𝑀𝑒𝑎𝑛) = −𝑀 + 2(𝛼𝜆2L(α, λ, 3, M) − 2𝛼𝜆 L(α, λ, 2, M) + 𝛂𝛌L(α, λ, 1, M) 

Estimation 

Here, we consider estimation by the methods of moments and maximum likelihood. We also 

consider estimation issues for censored data. Let 𝑋1, 𝑋2, … , 𝑋𝑛 are random sample taken from                    

x-Exponential distribution.  Let 𝑚1 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1    𝑚2 =

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 . Equating sample moments to 

population moments we get moment estimators for parameters. 

 
 𝑚1 = 𝛼𝜆2K(α, λ, 3) − 2αλK(α, λ, 2) + 𝛂𝛌K(α, λ, 1) 
𝑚2 = 𝛼𝜆2K(α, λ, 4) − 2αλK(α, λ, 3) + 𝛂𝛌K(α, λ, 2) 

The solution of these equations are moment estimators. 

To find maximum likelihood estimator, consider likelihood function as, 

𝐿(𝛼, 𝜆) = ∏ 𝑓(𝑥𝑖)
𝑛

𝑖=1
 

𝐿(𝛼, 𝜆) = ∏ 𝛼𝑒−𝜆𝑥𝑖(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)(1 − (1 + 𝜆𝑥𝑖

2)𝑒^(−𝜆𝑥𝑖))𝛼−1
𝑛

𝑖=1
 

𝐿(𝛼, 𝜆) = (𝛼)𝑛 𝑒−𝜆 ∑ 𝑥𝑖
𝑛
𝑖=1 ∏(𝜆2𝑥𝑖

2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

∏   (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))𝛼−1

𝑛

𝑖=1
 

 

𝑙𝑜𝑔𝐿(𝛼, 𝜆) = 𝑛𝑙𝑜𝑔 (𝛼) − 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑  𝑙𝑜𝑔(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

+ ∑  (𝛼 − 1)𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1

 

= 𝑛𝑙𝑜𝑔 (𝛼) − 𝜆 ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑  𝑙𝑜𝑔(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆) +

𝑛

𝑖=1

(𝛼 − 1) ∑  𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1
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∂

∂α
 𝑙𝑜𝑔 𝐿(𝛼, 𝜆) =

𝑛

𝛼
+ ∑  𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖

2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1

 

𝛼̂ = −1/𝑛 ∑  𝑙𝑜𝑔 (1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

𝑛

𝑖=1

 

∂

∂λ
  𝑙𝑜𝑔 𝐿(𝛼, 𝜆) =  − ∑ 𝑥𝑖

𝑛

𝑖=1

+ ∑
(2𝜆2𝑥𝑖 − 2𝑥𝑖)

(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

+ (𝛼 − 1) ∑  
1

(1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

 ((1 + 𝜆𝑥𝑖
2)(−𝑥𝑖)𝑒−𝜆𝑥𝑖 + 𝑥𝑖

2𝑒−𝜆𝑥𝑖)  

𝑛

𝑖=1

 

 

 

The MLE of λ will be solution of the following non-linear equation. 

∑ 𝑥𝑖

𝑛

𝑖=1

= ∑
(2𝜆2𝑥𝑖 − 2𝑥𝑖)

(𝜆2𝑥𝑖
2 − 2𝜆𝑥𝑖 + 𝜆)

𝑛

𝑖=1

+ (𝛼 − 1) ∑  
1

(1 − (1 + 𝜆𝑥𝑖
2)𝑒^(−𝜆𝑥𝑖))

 ((1 + 𝜆𝑥𝑖
2)(−𝑥𝑖)𝑒−𝜆𝑥𝑖 + 𝑥𝑖

2𝑒−𝜆𝑥𝑖)  

𝑛

𝑖=1

 

 

II. Generalized Lindley Distribution 

 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  are independent random variables distributed according to Lindley 

distribution and  𝑇 = min (𝑋1, 𝑋2, … , 𝑋𝑛)  represent the failure time of the components of a series 

system, assumed to be independent, [2]. Then the probability that the system will fail before time x 

is given by 
𝐹(𝑥) = [1 −  (1 + 𝜆 + 𝜆𝑥)/(1 + 𝜆) 𝑒^(−𝜆𝑥)]𝑛, 𝑥 > 0, 𝜆 > 0. 

It is the distribution of the failure of a series system with independent components. The 

cumulative distribution function and pdf of Generalized Lindley distribution are 
𝐹(𝑥) = [1 − (1 + 𝜆 + 𝜆𝑥)/(1 + 𝜆) 𝑒^(−𝜆𝑥)]𝛼 , 𝑥 > 0, 𝜆 > 0, 𝜶 > 0 

𝑓(𝑥) =
𝛼𝜆(1 + 𝑥)

1 + 𝜆
[1 −  (1 + 𝜆 + 𝜆𝑥)/(1 + 𝜆) 𝑒^(−𝜆𝑥)]𝛼−1𝑒−𝜆𝑥 , 𝑥 > 0, 𝜆 > 0, 𝜶 > 0 

The equation has two parameters, λ and 𝛂 just like the Gamma, log Normal, Weibull and 

Exponentiated Exponential distribution.  For   n= 1 it  reduces to Lindley  distribution. 

The failure rate function is 

ℎ(𝑥) =

𝛼𝜆(1 + 𝑥)
1 + 𝜆

[1 −
1 + 𝜆 + 𝜆𝑥

1 + 𝜆
𝑒−𝜆𝑥]

𝛼−1

𝑒−𝜆𝑥

1 − [1 −
1 + 𝜆 + 𝜆𝑥

1 + 𝜆
𝑒−𝜆𝑥]

𝛼 ,  

𝑥 > 0, 𝜆 > 0, 𝜶 > 0 

The shape of the failure rate function appears monotonically decreasing or to initially decrease and 

then increase, a bathtub shape if 𝛂< 1, the shape appears monotonically increasing if 𝛂≥1. So the 

Generalized Lindley distribution allows for monotonically decreasing, monotonically increasing 

and bathtub shapes for its failure rate function. 
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Figure 5. Failure rate function of Generalized Lindley distribution 

 

III.  Exponentiated Weibull Distribution 

 

Exponentiated Weibull (EW) distribution has a scale parameter and two shape parameters, [4]. The 

Weibull family and the Exponentiated Exponential (EE) family are found to be particular cases of 

this family. The cumulative distribution function of the EW distribution is given by 

𝐹(𝑥) = (1 − 𝑒
−(

𝑥
𝛽

)
𝛼

)

𝜆

, 𝜆 > 0, 𝜶 > 0, 𝛽 > 0. 

Here λ and 𝛂 denote the shape parameters and  β  is the scale parameter. For When  λ= 1, the 

distribution   reduces to the Weibull Distribution with parameters.  When β = 1, 𝛂=1 it represents 

the EE family. Thus, EW is a generalization of EE family as well as the Weibull family. 

Then the corresponding density function is 

𝑓(𝑥) = (
𝛼𝜃

𝜎
) [1 − exp {−(𝑥/𝜎)𝛼}]𝜃−1exp {−(

𝑥

𝜎
)𝛼}(

𝑥

𝜎
)𝛼−1, 𝑥 ≥ 0. 

The failure rate function is  

ℎ(𝑥) =
(

𝛼𝜃
𝜎

) [1 − 𝑒𝑥 𝑝 {− (〖
𝑥
𝜎

)〗𝛼}]
𝜃−1

𝑒𝑥 𝑝 {− (
𝑥
𝜎

)
𝛼

} (
𝑥
𝜎

)
𝛼−1

1 − [1 − 𝑒𝑥 𝑝 {− (〖
𝑥
𝜎

)〗𝛼}]
𝜃

, 𝑥 ≥ 0, 𝛼, 𝜃, 𝜎 > 0. 

 

 
Figure 6: Plot of the failure rate function of EW distribution 
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 The EW distribution is constant for 𝛂= 1 and  = 1.  The EW distribution is IFR for 𝛂 > 1 and 𝛉≥1.  

The EW distribution is DFR for 𝛂< 1 and 𝛉≤1.  The EW distribution is BT(Bathtub) for 𝛂> 1 and 𝛉< 

1.  The EW distribution is UBT (Upside down Bathtub) for 𝛂 < 1 and 𝛉 > 1. 

 

IV.  Exponentiated Gamma Distribution 

 

The Gamma distribution is the most popular model for analyzing skewed data and hydrological 

processes, [3]. This model is flexible enough to accommodate both monotonic as well as non-

monotonic failure rates. The Exponentiated Gamma (EG) distribution is one of the important 

families of distributions in lifetime tests. The EG distribution has been introduced  as an alternative 

to Gamma and Weibull distributions.  

The Cumulative Distribution function of the Exponentiated Gamma  distribution is given by 

𝐺(𝑥) = [1 − exp{−𝜆𝑥} (1 + 𝜆𝑥)]𝜃 , 𝑥 > 0, 𝜆, 𝜽 > 0. 

where  λ and  𝛉 are scale and shape parameters respectively.  Then the corresponding probability 

density function (pdf) is given by 

𝑔(𝑥) = 𝜃𝜆2𝑥 exp {−𝜆𝑥}([1 − exp{−𝜆𝑥} (1 + 𝜆𝑥)]𝜃−1, 𝑥 > 0, 𝜆, 𝜽 > 0. 

The failure rate function is 

ℎ(𝑥) =
𝜃𝜆^2 𝑥 𝑒𝑥𝑝 {−𝜆𝑥}([1 − 𝑒𝑥𝑝 {−𝜆𝑥} (1 + 𝜆𝑥) ]^(𝜃 − 1)

1 − [1 − 𝑒𝑥𝑝 {−𝜆𝑥} (1 + 𝜆𝑥) ]^𝜃
, 𝑥 > 0, 𝜆, 𝜽 > 0. 

Then the other advantage is that it has various shapes of failure function for different values of  . It 

has increasing failure function when 𝛉≥ 1/2 and its failure function takes Bath-tub shape for 𝛉<1/2. 

 

 
 

Figure 7: Failure rate function of EG distribution. 

 

 

III. Generalized X-Exponential Class Distribution 
 

Consider the Distribution function, 

𝐹(𝑥) = (1 − ( 𝛽 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0, 𝛽 > 0. 

 

The failure rate function, provided various Bathtub shaped models as see in Figure 8,9,10. For 

𝛂=0.001, λ=6 and β=5, the failure rate function is  

ℎ(𝑥) =
𝛼𝑒^(−𝜆𝑥) (𝜆2𝑥2 − 2𝜆𝑥 + 𝜆)(1 − (𝛽 + 𝜆𝑥2)𝑒^(−𝜆𝑥))^(𝛼 − 1)

1 − (1 − (𝛽 + 𝜆𝑥2)𝑒^(−𝜆𝑥))𝛼
, 𝑥 > 0, 𝜆 > 0, 𝛼 > 0, 𝛽 > 0. 
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Figure 8. Generalized X-Exponential failure rate function 𝛂=0.01, λ=9 and β=5 

 
Figure 9. Generalized X-Exponential failure rate function 𝛂=0.01, λ=9 and β=50 

 
Figure 10. Generalized X-Exponential failure rate function 𝛂=0.001, λ=5 and β=50 
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Upside down Bathtub shaped failure rate  viewed for 𝐹(𝑥) = (1 − ( 𝛽 + 𝜆𝑥 )𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 >

0, 𝛼 > 0, 𝛽 > 0 𝛂=0.001, λ=6 and β<1, see figure 11. 

 

 
Figure 11. Generalized X-Exponential failure rate function 𝛂=0.001, λ=6 and β=0.1 

 

All the procedure for finding moments, moment generating function, characteristic function, and 

estimation are same as that of X-Exponential distribution. If we insert one more parameter 𝛉 in the 

model still we get beautiful Bathtub and Upside down bathtub shapes for its failure rate functions 

as seen below. For 𝐹(𝑥) = (1 − ( 𝛽 + 𝜆𝑥 + 𝜃𝑥2)𝑒^(−𝜆𝑥))𝛼 , 𝑥 > 0, 𝜆 > 0, 𝛼 > 0, 𝛽 > 0, 𝜃 > 0. 

 

 
Figure 11. Generalized X-Exponential failure rate function 𝛂=0.001, λ=6, β=0.1, 𝛉=6. 

 

Generalized Lindely distribution is a special case of Generalized X-Exponential distribution. 

 

IV. Conclusions 
 

There are many distributions in reliability which exhibit Bathtub shaped failure rate model, but 

most of them are complicated in finding the moments, reliability etc. Moreover the increased 

number of parameters make complication and difficulty in estimation process. The proposed 

model is similar to Generalized Lindley, so all the computational procedures are like GL 

distribution.  The complication in using GL,GG,GE distributions is reduced in the proposed model. 

Moreover MLE of 𝛂 is readily available and that of λ can be computed numerically. Generalized X-
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Exponential distribution provided various Bathtub shaped and Upside down Bathtub shaped 

failure rates. 
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Abstract 
 

We study symmetric queueing networks with moving servers and FIFO service discipline. 

The mean-field limit dynamics demonstrates unexpected behavior which we attribute to the 

metastability phenomenon. Large enough finite symmetric networks on regular graphs such as 

cycles are proved to be transient for arbitrary small inflow rates. However, the limiting non-linear 

Markov process possesses at least two stationary solutions. The proof of transience is based on 

martingale technique.1  

 

Keywords: ad hoc network, transience, metastability, mean field 

 

I  Introduction 
 

In this paper we consider networks with moving servers. The setting is the following: the 

network is living on a finite or countable graph 𝐺 = (𝑉, 𝐸) , at every node 𝑣 ∈ 𝑉 of which one 

server 𝑠 is located at any time. For every server, there are two incoming flows of customers: the 

exogenous customers, who come from the outside, and the transit customers, who come from 

some other servers. Every customer 𝑐 coming into the network (through some initial server 𝑠(𝑐)) is 

assigned a destination 𝐷(𝑐) ∈ 𝑉 according to some randomized rule. If a customer 𝑐 is served by a 

server located at 𝑣 ∈ 𝑉, then it jumps to a server at the node 𝑣′ ∈ 𝑉, such that 

dist(𝑣′ , 𝐷(𝑐)) =dist(𝑣, 𝐷(𝑐)) − 1, thereby coming closer to its destination. If there are several such 

𝑣′, one is chosen uniformly. There the customer 𝑐 waits in the FIFO queue until his service starts. If 

a customer 𝑐 completes his service by the server located at 𝑣, and it so happens that dist(𝑣, 𝐷(𝑐)) is 

1 or 0, the customer is declared to have reached its destination and leaves the network. 

The important feature of our model is that the servers of our network are themselves 

moving over the graph 𝐺. Namely, we suppose that any two servers 𝑠, 𝑠′ located at adjacent nodes 

of 𝐺 exchange their positions as the alarm clock associated to the edge rings. The time intervals 

between the rings of each alarm clock are i.i.d. exponential with rate 𝛽. When this happens, each of 

the two servers takes all the customer, waiting in its buffer or being served, to the new location. In 

particular, it can happen that after such a swap, the distance between the location of the customer 𝑐 

and its destination 𝐷(𝑐) increases (at most by one). We assume that the service times of all 

customers at all servers are i.i.d. exponential with rate 1. 

The motivation for this model comes from opportunistic multihop routing in mobile ad 

hoc wireless networks, see [5, 9, 7, 1, 3, 4]. Within this context, the servers represent mobile 

wireless devices. Each device moves randomly on the graph 𝐺 which represents the phase space of 

device locations. The random swaps represent the random mobile motions on this phase space. 

                                                           
1 The authors gratefully acknowledge the support of grants 16-29-09497, 14-01-00379, 14-01-00319, 13-01-12410 by Russian 
Foundation for Sciences. 
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Each node 𝑣 ∈ 𝐺 of the phase space generates an exogenous traffic (packetized information) with 

rate 𝜆𝑣 corresponding to the exogenous customers alluded to above. Each such packet has some 

destination, which is some node of 𝐺. In opportunistic routing, each wireless device adopts the 

following greedy routing policy: any given packet scheduled for wireless transmission is sent to 

the neighboring node which is the closest to the packet destination. The neighbor condition 

represents in a simple way the wireless constraints. It implies a multihop route in general. This 

routing policy is the most natural one to use in view of the lack of knowledge of future random 

swaps. 

In this paper we restrict consideration to cyclic graphs 𝐶𝐾 = ℤ1/𝐾ℤ1 and their  mean-field 

versions, see below. Our main results, however, can be easily extended to much wider classes of 

networks. 

The interest in mean-field versions is both of mathematical and practical nature. The 

mathematical interest of the mean-field version of a network is well documented. There are also 

practical motivations for analyzing such networks: their properties are crucial for understanding 

the long-time behavior of finite size networks. 

The results we obtain look somewhat surprising. First of all, we find that for finite graphs 

the network is transient once the diameter of the graph is large enough. For example, consider the 

network on the graph 𝐶𝐾 with Poisson inflows with rate 𝜆 > 0 at all nodes, exponential service 

times with rate 1, FIFO discipline and node swap rate 𝛽 > 0. Then for all 𝐾 ≥ 𝐾(𝜆, 𝛽) the queues at 

all servers tend to infinity as time grows. In words this means that the network is unstable for any 

𝜆, however small it is – once the network is large enough. 

The same picture takes place for mean-field graphs 𝐶𝐾
𝑁 with 𝑁 finite. They consist of 𝑁 

“parallel" copies of 𝐶𝐾 such that two nodes in different copies are adjacent if and only if the 

projections of these nodes to a single copy of 𝐶𝐾 are adjacent. However, the limiting picture, for 

𝑁 = ∞, is different: the corresponding NLM process on 𝐶𝐾 has stationary distributions, provided 

0 < 𝜆 ≤ 𝜆𝑐𝑟(𝐾, 𝛽), with 𝜆𝑐𝑟(𝐾, 𝛽) < ∞ for all 𝐾 ≤ ∞. Moreover, for all 𝜆 < 𝜆𝑐𝑟 there are at least two 

different stationary distributions, see Sect. 4 for more details. We demonstrate results of numerical 

modeling that suggest existence of three equilibria in some cases. 

On the other hand, the general convergence result of [2] claims the convergence of the 

networks on 𝐶𝐾
𝑁 to the one on 𝐶𝐾

∞ as 𝑁 → ∞, which seem to contradict to the statements above. The 

explanation of this ‘contradiction’ is that the convergence in [2] holds only on finite time intervals 
[0, 𝑇]. 

That is, for any 𝑇 there exists a value 𝑁 = 𝑁(𝑇), such that the network on 𝐶𝐾
𝑁 is close to the 

limiting network on 𝐶𝐾
∞ for all 𝑡 ∈ [0, 𝑇], provided 𝑁 ≥ 𝑁(𝑇). Putting it differently, the 𝐶𝐾

𝑁 network 

behaves like the limiting 𝐶𝐾
∞ network – and might even look as a stationary process – for quite a 

long time, depending on 𝑁, but eventually it departs from such regime and gets into the divergent 

one. Clearly, the picture we have is an instance of metastable behavior. We believe that more can 

be said about the metastable phase of our networks, including the formation of critical regions of 

servers with oversized queues, in the spirit of statistical mechanics, see e.g. [8], but we will not 

elaborate here on that topic. 

 

II  Finite networks 

2.1  The 𝑪𝑲 network 

 

The only case of a finite network we study here is the cyclic graph 𝐶𝐾 = ℤ1/𝐾ℤ1. As was 

mentioned, our main results proved for this graph are easily extendable to much wider classes of 

networks. We use notation 𝐶𝐾 = (𝑉𝐾 , 𝐸), where 𝑉𝐾 = {1, … , 𝐾} and 𝐸 = {(1,2), … , (𝐾 − 1, 𝐾), (𝐾, 1)}. 

For simplicity we take 𝐾 to be odd. 
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We study a continuous-time Markov process on a countable state 𝑄, related to the graph 

𝐶𝐾. Namely,  
 𝑄 = {𝑞𝑣: 𝑣 ∈ 𝑉𝐾} = (𝑉𝐾

∗)𝑉𝐾 , 

where 𝑉𝐾
∗ is the set of all finite words in the alphabet 𝑉𝐾, including the empty word ∅. 

The queue 𝑞𝑣 ∈ 𝑉𝐾
∗ at a server located at 𝑣 ∈ 𝑉𝐾 consists of a finite (≥ 0) number of 

customers which are ordered by their arrival times (FIFO service discipline) and are marked by 

their destinations which are vertices of the graph 𝐶𝐾. Since the destination of the customer is its 

only relevant feature, in our notations we sometime will identify the customers with their 

destinations. 

 

2.1.1  Dynamics 

 

Let us introduce the continuous-time Markov process ℳ ≪ ℳ(𝑡) with the state space 𝑄. 

Let ℎ𝑣 be the length of the queue 𝑞𝑣 at node 𝑣. We have 𝑞𝑣 = {𝑞1
𝑣, … , 𝑞ℎ𝑣

𝑣 } if ℎ𝑣 > 0 and 𝑞𝑣 = ∅ if 

ℎ𝑣 = 0. 

The following events may happen in the process ℳ. 

An arrival event at node 𝑣 changes the queue at this node. If the newly arrived customer 

has for its destination the node 𝑤, then the queue changes from 𝑞𝑣 to 𝑞𝑣 ⊕ 𝑤, that is, to 

{𝑞1
𝑣 , … , 𝑞ℎ𝑣

𝑣 , 𝑤} if ℎ𝑣 > 0 or from ∅ to {𝑤} if ℎ𝑣 = 0. 

In this paper we consider the situation where each exogenous customer acquires its 

destination at the moment of first arrival to the system, in a translation-invariant manner: the 

probability to get destination 𝑤 while arriving to our network at the node 𝑣 depends only on 𝑤 − 𝑣 

mod 𝐾. The case 𝑤 = 𝑣 is not excluded. We thus have the rates 𝜆𝑣,𝑤, 𝑣, 𝑤 ∈ 𝐶𝐾 , and the jump from 

𝑞𝑣 to 𝑞𝑣 ⊕ 𝑤, corresponding to the arrival to 𝑣 of the exogenous customer with final destination 𝑤 

happens with the rate 𝜆𝑣,𝑤. We introduce the rate 𝜆 of exogenous customers as  

 𝜆 = ∑𝑤 𝜆𝑣,𝑤 (1) 

 (according to our definitions it does not depend on 𝑣). 

Each node is equipped with an independent Poisson clock with parameter 1 (the service 

rate). As it rings, the service of the customer 𝑞1
𝑣 is over, provided ℎ𝑣 > 0; nothing happens if ℎ𝑣 = 0. 

In the former case the queue at node 𝑣 changes from 𝑞𝑣 to  

 𝑞−
𝑣 = {𝑞2

𝑣, … , 𝑞ℎ𝑣

𝑣 } 

(we also define ∅− = ∅) and immediately one of the two things happen: either the customer 𝑞1
𝑣 

leaves the network, or it jumps to one of the two neighboring queues, 𝑞𝑣±1. The customer 𝑞1
𝑣 leaves 

the network only if its current position, 𝑣, is at distance ≤ 1 from its destination, i.e. iff 𝑞1
𝑣 = 𝑣 − 1, 

𝑣, or 𝑣 + 1. (This is just one of many possible choices we make for simplicity.) Otherwise it jumps 

to one of the neighboring vertices 𝑤 = 𝑣 ± 1, which is the closest to its destination, i.e. to the one 

which satisfy: dist(𝑤, 𝑞1
𝑣) = dist(𝑣, 𝑞1

𝑣) − 1 (there is a unique such 𝑤 ∈ 𝑉𝐾  since we assume 𝐾 to be 

odd. The case of even 𝐾 requires small changes). 

The last type of event is the swap of two neighboring servers. Namely, there is an 

independent Poisson clock at each edge 𝑢𝑣 ∈ 𝐸 of 𝐶𝐾 , with rate 𝛽 > 0. As it rings, the queues at the 

vertices 𝑢 and 𝑣 swap their positions, that is,  
 𝑞𝑣(𝑡+) = 𝑞𝑢(𝑡),        𝑞𝑢(𝑡+) = 𝑞𝑣(𝑡). 

 

2.1.2  Submartingales 

 

Here we introduce some martingale technique that will be used for the proof of transience 

of ℳ for 𝐾 large enough. To begin with, we label the 𝐾 servers by the index 𝑘 = 1, . . . , 𝐾; this 

labelling will not change during the evolution. Together with the original continuous-time Markov 

process ℳ(𝑡) we will consider the embedded discrete time process 𝑀(𝑛), which is the value of 

ℳ(𝑡) immediately after the 𝑛-th event. The state of the process 𝑀 consists of the states of all 𝐾 
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servers and all their locations. 

The general theorem below will be applied to the quantities 𝑋𝑛
𝑘, which are, roughly 

speaking, the lengths of the queues at the servers 𝑘, 𝑘 = 1, . . . , 𝐾, of the process 𝑀(Λ𝑛). The integer 

parameter Λ = Λ(𝐾, 𝜆, 𝛽) will be chosen large enough, so that, in particular, after time Λ, the 

locations of the servers are well mixed on the graph 𝐶𝐾 , and the joint distribution of their location 

on 𝐶𝐾 is close to the uniform one. Moreover, we want the expectations of all the differences 𝑋𝑛+1
𝑘 −

𝑋𝑛
𝑘 to be uniformly positive. 

We start with the following theorem. 

 

Theorem 1  Let ℱ = ℱ𝑛, 𝑛 = 0,1, …, be a filtration and let 𝑋𝑛
𝑘, 𝑘 = 1, … , 𝐾, be a finite family of 

non-negative integer-valued submartingales adapted to ℱ, such that for all 𝑘 = 1, … , 𝐾, and all 𝑛 = 0,1, …, 

the following assumptions hold: 

(1) For some 𝜌 > 0 the inequality  

 𝔼ℱ𝑛
(𝑋𝑛+1

𝑘 − 𝑋𝑛
𝑘) ≥ 𝜌 (2) 

 holds whenever 𝑋𝑛
𝑘 > 0. 

(2) The increments are bounded by a constant 𝑅:  

 |𝑋𝑛+1
𝑘 − 𝑋𝑛

𝑘| ≤ 𝑅    a. s. (3) 

 

Then there exists an initial state (𝑋0
1, … , 𝑋0

𝐾) such that, with positive probability, 𝑋𝑛
𝑘 → +∞ 

as 𝑛 → +∞ for all 𝑘 = 1, … , 𝐾.  

 

In order to prove the theorem we begin with an auxiliary lemma. 

 

Lemma 2  Let 𝒴𝑘 = {𝑌𝑛
𝑘: 𝑛 = 0,1, …, 𝑘 = 1, … , 𝐾, be a finite family of submartingales adapted to 

the same filtration ℱ and such that 𝑌𝑛
𝑘 ∈ 0,1] for all 𝑘, 𝑛. Suppose also that for any 𝜀 > 0 there exists a 𝛿 >

0 such that  

 𝔼(𝑌𝑛+1
𝑘 − 𝑌𝑛

𝑘) > 𝛿    once    0 < 𝑌𝑛
𝑘 < 1 − 𝜀 

for all 𝑘 and 𝑛. Suppose that the initial vector 𝑌0 ∈ 𝐴 = [0,1]𝐾 is deterministic and satisfies the 

condition  

 ∑𝐾
𝑘=1 𝑌0

𝑘 > 𝐾 − 1., (4) 

 Then, with positive probability, 𝑌𝑛
𝑘 → 1 as 𝑛 → ∞, for all 𝑘 = 1, … , 𝐾.  

 

 

Proof. Since all submartingales 𝑌𝑘 are bounded, there is a limit lim𝑛→∞𝑌𝑛
𝑘 almost surely for 

all 𝑘, see the Martingale Convergence Theorem in [6]. The value of this limit vector with 

probability 1 is either the ‘maximal’ vertex (1, … ,1) of the cube 𝐴 or a point 𝑎 on the ‘lower 

boundary’ 𝐵 of 𝐴: 𝐵 = {𝑎: min𝑘=1,…,𝐾𝑎𝑘 = 0}. Indeed, for all other vectors 𝑣 ∈ 𝐴, we have  

 𝔼(𝑌𝑛+1
𝑘 − 𝑌𝑛

𝑘) > 0    if    𝑌𝑛
𝑘 = 𝑣𝑘 = 𝑣,    𝑘 = 1, … , 𝐾. 

Note that  

 ∑𝐾
𝑘=1 𝑏𝑘 ≤ 𝐾 − 1 (5) 

 for any vector 𝑏 ∈ 𝐵. By the submartingale property, we conclude that  

 𝔼 ∑𝐾
𝑘=1 𝑌𝑛

𝑘 ≥ ∑𝐾
𝑘=1 𝑌0

𝑘 > 𝐾 − 1 (6) 

 for all 𝑛 = 1, …. Inequalities (4)-(6) rule out the option that the limit of 𝑌𝑛 belongs to 𝐵 with 

probability 1.  

 

Now, in order to derive Theorem 1 from Lemma 2, we make the following change of 

variables for submartingales 𝑋𝑛
𝑘. For a positive parameter 𝛼 < 1 we define an ‘irregular lattice’ ℎ𝑖 ∈

ℝ+, by  

 ℎ0 = 0,    ℎ𝑖+1 = ℎ𝑖 + 𝛼𝑖,    𝑖 = 0,1, …. 

We get lim𝑖→∞ℎ𝑖 = 𝐻 = (1 − 𝛼)−1 < ∞. Now, for each 𝑘 = 1, … , 𝐾, we define the process 𝑌𝑛
𝑘 on the 

same filtration ℱ by the relation  



 
Baccelli F., Rybko A., Shlosman S., Vladimirov A. 
METASTABILITY OF LARGE NETWORKS WITH MOBILE SERVERS 

RT&A, No4 (43) 
Volume 11, December 2016  

70 

 𝑌𝑛
𝑘(𝜔) = ℎ𝑋𝑛

𝑘(𝜔). 

The processes 𝑌𝑛
𝑘 take values at the ‘lattice’ {ℎ𝑖} for 𝑘 = 1, … , 𝐾. They are still submartingales if 1 −

𝛼 is small enough. Indeed, for such 𝛼 the local structure of the lattice in an 𝑅-neighborhood of a 

given point is modified only slightly. Since |𝑋𝑛+1
𝑘 − 𝑋𝑛

𝑘| ≤ 𝑅 and 𝔼(𝑋𝑛+1
𝑘 − 𝑋𝑛

𝑘) ≥ 𝜌 > 0, we 

conclude that the submartingale property is preserved. 

Then the hypothesis of Lemma 2 holds (up to a constant factor 𝐻) and Theorem 1 is 

proved. 

2.1.3  Transience 

 

Let us return to the process ℳ(𝑡). Suppose that the parameters 𝜆 > 0 and 𝛽 > 0 are fixed. 

We remind the reader that our service rate is set to 1. 

 

Theorem 3  For each 𝜆 > 0 and 𝛽 > 0, there exists 𝐾∗ ∈ ℤ+ such that for any 𝐾 ≥ 𝐾∗ the process 

ℳ is transient.  

 

Proof. First of all, we construct a discrete time Markov chain 𝒟 on the state space 𝑄. To 

define it, we start with the embedded Markov chain 𝑀(𝑛), defined earlier, and then pass to the 

chain 𝑀(Λ𝑛), with the integer Λ to be specified later. To get the chain 𝒟 ≪ {𝒟𝑛}, we modify the 

chain 𝑀(Λ𝑛) as follows: if for some 𝑛 at least one of the 𝐾 queues is at most Λ, we add to all such 

queues extra customers, to make these queues to be of length exactly Λ and then stop the process 

forever. Otherwise we do no changes. The obtained Markov chain is denoted by 𝒟. 

We start the process 𝒟 at some configuration 𝑄0 with all queues longer than Λ. 

We now prove the following statement: if Λ is large enough, the queue length process 𝒟 at 

any given server is a submartingale satisfying the conditions of Theorem 1, with respect to the 

filtration defined by our discrete-time Markov chain 𝑀(𝑛) (the individual queue length processes 

are clearly adapted to this filtration). This completes the proof because of Theorem 1. We need the 

following lemmas. 

 

Lemma 4  (1) Let us consider the following function 𝜋(𝑡) of the process ℳ. At each 𝑡 ≥ 0, 𝜋(𝑡) is 

the current permutation of indices of 𝐾 servers with respect to indices of 𝐾 nodes. Then the evolution of 𝜋(𝑡) 

is a continuous time Markov process, independent of service and arrival processes, and, as 𝑡 → ∞, the 

distribution of 𝜋(𝑡) converges to the uniform one on the set 𝑆𝐾  of all permutations. 

(2) Let us fix index 𝑖 and denote by 𝑣(𝑖, 𝑡) the position of the server 𝑖 at time 𝑡. Then the 

distribution of 𝑣(𝑖, 𝑡) converges to the uniform distribution on {1, … , 𝐾} as 𝑡 → ∞.  

 

Proof. Let us introduce the graph structure on the permutation group 𝑆𝐾 . Namely, we 

consider all the transpositions 𝜏 ∈ 𝑆𝐾  corresponding to the exchanges of pairs of neigboring 

servers, and we call two permutations 𝜋′, 𝜋′′ to be connected by an edge iff 𝜋′ = 𝜋′′𝜏 for some 𝜏. 

The resulting graph on 𝑆𝐾  is connected – because 𝐺 is connected. The process of migration 

of servers is, obviously, a random walk on this graph, that is, a reversible process. Hence, as 𝑡 → ∞, 

the distribution of permutations converges to the uniform one uniformly on all initial states. The 

assertion of the lemma clearly follows.  

 

Lemma 5  For any initial state 𝑄0, the probability of a customer with position 𝐻 > 0 in the queue 

to leave the network after being served, tends to 3/𝐾 as 𝐻 → ∞, uniformly in 𝑄0.  

 

Proof. As the waiting time of the customer tends to infinity with 𝐻 → ∞, the distribution of 

its server on 𝑉𝐾 tends to the uniform one on 𝐶𝐾 (see Lemma 4). In order for the customer 𝑐 to exit 

the network, the last server of 𝑐 has to be located at this moment at one of the three nodes: 𝐷(𝑐) +

1, 𝐷(𝑐), or 𝐷(𝑐) − 1. The lemma follows.  
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Now we see that for all the customers in the initial queues whose positions are at least 𝐻, 

the mean chance of exit approaches 3/𝐾 as 𝐻 → ∞, and the rate of this approach does not depend 

on the particularities of the initial state 𝑄0, but only on 𝐻. 

The next remark is that if a customer is served and then jumps to a different server, then 

the index 𝑗 of that server is distributed almost uniformly over the remaining 𝐾 − 1 indices. This 

fact follows from Lemma 5. Again, the rate of convergence is independent of 𝑄0 because the 

servers swap positions independently of anything else. So we have established a lemma, 

analogous to Lemma 5: 

 

Lemma 6  The probability of a customer with position 𝐻 on server 𝑖 to jump to server 𝑗 tends to 

1/(𝐾 − 1) as 𝐻 → ∞ uniformly in 𝑖, 𝑗, and in the initial states 𝑄0 ∈ 𝑄.  

 

We need a third combinatorial lemma, and we start with some definitions, and then 

formulate and prove it. Let {𝑢, 𝑣} ⊂ 𝐶𝐾 be an ordered pair of elements. We define the map 𝑇 from 

the set of all such pairs into the union 𝑉𝐾 ∪ {∗}, by 

 𝑇{𝑢, 𝑣} = {
𝑤

for𝑤definedby|𝑢 − 𝑤| = 1, |𝑣 − 𝑤| = |𝑢 − 𝑣| − 1,

provided|𝑢 − 𝑣| > 1,
∗ otherwise.

 

For 𝐾 odd the map 𝑇 is well-defined. In case 𝑇{𝑢, 𝑣} = 𝑤 we say that a customer transits through 𝑤 

(on his way from 𝑢 to 𝑣). 

Let 𝐷: 𝑉𝐾 → 𝑉𝐾  be an arbitrary map. We want to compute the quantity 

 𝑝𝐾 =
1

𝐾!
∑𝜋∈𝑆𝐾,𝑖∈𝑉𝐾

𝕀{𝑇{𝜋(𝑖),𝐷(𝑖)}=𝜋(𝑗)}, (7) 

 where 𝑆𝐾  is the symmetric group, 𝜋 runs over all permutations from 𝑆𝑁 , while 𝑖 and 𝑗 are taken 

from some fixed labelling of the elements of 𝑉𝐾 . Thus 𝑝𝐾  is the probability of transit through the 

node 𝜋(𝑗) in the ensemble defined by the uniform distribution on 𝑆𝐾 . Of course, it does not depend 

on 𝑗. (Note that we consider the action of 𝑆𝐾  on pairs {𝑢, 𝑣} given by 𝜋{𝑢, 𝑣} = {𝜋𝑢, 𝑣}. ) 

 

Lemma 7  

 𝑝𝐾 =
𝐾−3

𝐾
. 

 

 

Proof of the Lemma. Let 1,2, . . . , 𝐾 be the labelling fixed; without loss of genelarily we can 

take 𝑗 = 1. Instead of performing the summation in (7) over whole group 𝑆𝐾 , we partition 𝑆𝐾  into 

(𝐾 − 2)! subsets 𝐴𝜋, and perform the summation over each 𝐴𝜋 separately. If the result will not 

depent on 𝜋, we are done. Here 𝜋 ∈ 𝑆𝐾 , and, needless to say, for 𝜋, 𝜋′ different we have either 𝐴𝜋 =

𝐴𝜋′  or 𝐴𝜋 ∩ 𝐴𝜋′ = ∅. 

Let us describe the elements of the partition {𝐴𝜋}. So let 𝜋 is given, and the string 

𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝐾 is the result of applying the permutation 𝜋 to the string 1,2, . . . , 𝐾. Then we 

include into 𝐴𝜋 the permutation 𝜋, and also 𝐾 − 1 other permutations, which correspond to the 

cyclic permutations, e.g. we add to 𝐴𝜋 the strings 𝑖𝐾 , 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . ., 

𝑖𝐾−1, 𝑖𝐾 , 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . ., and so on. We call these transformations ‘cyclic moves’. Now with 

each of 𝐾 permutations already listed we include into 𝐴𝜋 also 𝐾 − 2 other permutations, where the 

element 𝑖1 does not move, and the rest of the elements is permuted cyclically, i.e., for example from 

𝑖𝐾−1, 𝑖𝐾 , 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . ., we get 𝑖𝐾 , 𝑖2, 𝑖1, 𝑖3, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝐾−1, 𝑖2, 𝑖3, 𝑖1, . . . , 𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝐾−1, 𝑖𝐾 , and 

so on. We call these transformations ‘restricted cyclic moves’. The main property of thus defined 

classes of configurations is the following: Let 𝑎 ≠ 𝑏 ∈ {1,2, . . . , 𝐾} be two arbitrary indices, and 𝑙 ∈

{2, . . . , 𝐾} be an arbitrary index, different from 1. Then in every class 𝐴𝜋 there exists exactly one 

permutation 𝜋′, for which 𝑖1 = 𝑎 and 𝑖𝑙 = 𝑏. 

Given 𝜋, take the customer 𝑙 ≠ 1(= 𝑗), and its destination, 𝐷(𝑙). If we already know the 

position 𝑖1 of customer 1 on the circle 𝐶𝐾 , then in the class 𝐴𝜋 there are exactly 𝐾 − 1 elements, each 
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of them corresponds to a different position of the server 𝑙 on 𝐶𝐾 . If it so happens that 𝑖1 = 𝐷(𝑙), then 

for no position of the server 𝑙 the transit from 𝑙 through 𝑖1 happens. The same also holds if 𝑖1 =

(𝐷(𝑙) +
𝐾−1

2
) 𝑚𝑜𝑑𝐾 or 𝑖1 = (𝐷(𝑙) +

𝐾+1

2
) 𝑚𝑜𝑑𝐾. For all other 𝐾 − 3 values of 𝑖1 the transit from 𝑙 

through 𝑖1 happens precisely for one position of 𝑙 (among 𝐾 − 1 possibilities). Totally, within 𝐴𝜋 

we have (𝐾 − 1)(𝐾 − 3) transit events. Since |𝐴𝜋| = 𝐾(𝐾 − 1), the lemma follows. + 

End of the proof of the theorem. Now we define the submartingales 𝑋𝑛
𝑘 and show that 

they satisfy all the properties of Theorem 1. We define 𝑋𝑛
𝑘 to be the length of the queue of the 𝑘-th 

server in the process 𝒟𝑛, from which the constant Λ is subtracted. Clearly, 𝑋𝑛
𝑘 ≥ 0. We now show 

that if 𝐾 and Λ are both suitably large, then the properties (1) and (2) of Theorem 1 hold. 

Relation (3) is evidently satisfied with 𝑅 = Λ. Let us check (2). Let us start the process 𝑀 at 

a configuration where all the queue lengths are of the form 𝑋0
𝑘 + Λ with 𝑋0

𝑘 > 0, 𝑘 = 1, . . . , 𝐾. We 

want to show that after time Λ, we have 𝔼(𝑋1
𝑘 − 𝑋0

𝑘) ≥ 𝜌, for some 𝜌 > 0. Let 𝐻 = 𝐻(𝐾) be the time 

after which the distribution of the 𝐾 servers is almost uniform on 𝐶𝐾 , see Lemma 5. Before this 

moment, we do not know much about our network, so we bound the lengths of the queues 𝑀𝐻
𝑘  

roughly, by 𝑀𝐻
𝑘 ≥ 𝑀0

𝑘 − 𝐻. After the time 𝐻 the probability that a customer leaving a server leaves 

the network is almost 1/𝐾, and the probabilities that it jumps to the left or the right are both close 

to 
𝐾−1

2𝐾
. 

More precisely, by Lemma 7, the rate of arrival to every server after time 𝐻 is almost 𝜆 +

(𝐾 − 3)/𝐾, which is higher than the exit rate, 1, provided 𝐾 is large enough (namely, 𝐾 > 𝐾∗ = 3/

𝜆). Hence the expected queue lengths in the process 𝑀 grow linearly in time, at least after time 𝐻, 

which implies the existence of Λ > 0 such that 𝔼(𝑀Λ
𝑘) ≥ 𝑀0

𝑘 + 𝜌. So, Theorem 1 applies.  

 

III  Infinite networks  
 

3.1  NLMP on ℤ𝟏 

 

In this section we consider the limit of the network (ℤ1)𝑁 as 𝑁 → ∞, i.e. the NLMP on ℤ1. 

The limit of the network 𝐶𝐾
𝑁 can be studied in the same way. This NLMP is described in details in 

[2], and we use the notations therein. Here we are interested in its stationary distributions. 

The NLMP is the evolution of the measure ⊗ 𝜇𝑣 on the states (queues 𝑞𝑣) of the (jumping) 

servers at the nodes 𝑣 ∈ ℤ1, given by the equations  

 
𝑑

𝑑𝑡
𝜇𝑣(𝑞𝑣 , 𝑡) = 𝒜 + ℬ + 𝒞 + 𝒟 + ℰ (8) 

 with  

 𝒜 = −
𝑑

𝑑𝑟𝑖∗(𝑞𝑣)(𝑞𝑣)
𝜇𝑣(𝑞𝑣 , 𝑡) (9) 

 being the derivative along the direction 𝑟(𝑞𝑣) (in our case of the exponential service time with rate 

1 we have, of course, that 
𝑑

𝑑𝑟𝑖∗(𝑞𝑣)(𝑞𝑣)
𝜇𝑣(𝑞𝑣 , 𝑡) = 𝜇𝑣(𝑞𝑣 , 𝑡) )  

 ℬ = 𝛿 (0, 𝜏(𝑒(𝑞𝑣))) 𝜇𝑣(𝑞𝑣! 𝑒(𝑞𝑣), 𝑡)[𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) + 𝜎𝑒(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣)] (10) 

 where 𝑞𝑣 is created from 𝑞𝑣! 𝑒(𝑞𝑣) by the arrival of 𝑒(𝑞𝑣) from 𝑣′, and 𝛿 (0, 𝜏(𝑒(𝑞𝑣))) takes into 

account the fact that if the last customer 𝑒(𝑞𝑣) has already received some amount of service, then 

he cannot arrive from the outside;  

 𝒞 = −𝜇𝑣(𝑞𝑣 , 𝑡) ∑𝑞𝑣
′ [𝜎𝑡𝑟(𝑞𝑣 , 𝑞𝑣

′ ) + 𝜎𝑒(𝑞𝑣 , 𝑞𝑣
′ )], (11) 

 which corresponds to changes in queue 𝑞𝑣 due to customers arriving from other servers and from 

the outside (in the notations of (1), 𝜎𝑒(𝑞𝑣 , 𝑞𝑣 ⊕ 𝑤) = 𝜆𝑣,𝑤);  

 𝒟 = ∫
𝑞𝑣

′ :𝑞𝑣
′ !𝐶(𝑞𝑣

′ )=𝑞𝑣
𝑑𝜇𝑣(𝑞𝑣

′ , 𝑡)𝜎𝑓(𝑞𝑣
′ , 𝑞𝑣

′ ! 𝐶(𝑞𝑣
′ )) − 𝜇𝑣(𝑞𝑣 , 𝑡)𝜎𝑓(𝑞𝑣 , 𝑞𝑣! 𝐶(𝑞𝑣)), (12) 

 where the first term describes the situation where the queue 𝑞𝑣 arises after a customer was served 
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in a queue 𝑞𝑣
′  (longer by one customer), and 𝑞𝑣

′ ! 𝐶(𝑞𝑣
′ ) = 𝑞𝑣 , while the second term describes the 

completion of service of a customer in 𝑞𝑣;  

 ℰ = ∑𝑣′n.n.𝑣 𝛽𝑣𝑣′[𝜇𝑣′(𝑞𝑣 , 𝑡) − 𝜇𝑣(𝑞𝑣 , 𝑡)], (13) 

 where the 𝛽-s are the rates of exchange of the servers. 

For the convenience of the reader we repeat the equation (8 − 813) once more:  

 
𝑑

𝑑𝑡
𝜇𝑣(𝑞𝑣 , 𝑡) = −

𝑑

𝑑𝑟𝑖∗(𝑞𝑣)(𝑞𝑣)
𝜇𝑣(𝑞𝑣 , 𝑡) 

 +𝛿 (0, 𝜏(𝑒(𝑞𝑣))) 𝜇𝑣(𝑞𝑣! 𝑒(𝑞𝑣))[𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) + 𝜎𝑒(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣)] 

 −𝜇𝑣(𝑞𝑣 , 𝑡) ∑𝑞𝑣
′ [𝜎𝑡𝑟(𝑞𝑣 , 𝑞𝑣

′ ) + 𝜎𝑒(𝑞𝑣 , 𝑞𝑣
′ )] + ∫

𝑞𝑣
′ :𝑞𝑣

′ !𝐶(𝑞𝑣
′ )=𝑞𝑣

𝑑𝜇𝑣(𝑞𝑣
′ )𝜎𝑓(𝑞𝑣

′ , 𝑞𝑣
′ ! 𝐶(𝑞𝑣

′ )) (14) 

 −𝜇𝑣(𝑞𝑣)𝜎𝑓(𝑞𝑣 , 𝑞𝑣! 𝐶(𝑞𝑣)) + ∑𝑣′n.n.𝑣 𝛽𝑣𝑣′[𝜇𝑣′(𝑞𝑣) − 𝜇𝑣(𝑞𝑣)]. 

 

We are looking for the fixed points 𝜇 of the evolution (14). Then the measures 𝛿𝜇 (on 

measures) will be stationary measures of our NLMP. Note that the dynamical system (14) might 

have other stationary measures (on measures) then those corresponding to the fixed points. We 

will simplify our setting. Namely, we make the following changes: 

  

    1.  for the graph 𝐺 we take the lattice ℤ1; 

 

    2.  all the customers have the same class; 

 

    3.  the service time distribution 𝜂 is exponential, with the mean value 1; 

 

    4.  the service discipline considered is FIFO; 

 

    5.  the exogenous customer 𝑐 arriving to the node 𝑣 has for its destination the same node 

𝑣, i.e. 𝐷(𝑣) = 𝑣; inflow rates at all the nodes are constant, equal to 𝜆; 

 

    6.  the two servers at 𝑣, 𝑣′, which are neighbors in ℤ1 can exchange their positions with 

the same rate 𝛽 ≡ 𝛽𝑣𝑣′ ;  

 

The queue 𝑞𝑣 can in this setting be identified with the sequence of destinations 𝐷(𝑐𝑖) of its 

customers. The equation for the fixed point then becomes:  

 0 = 𝜇𝑣(𝑞𝑣! 𝑒(𝑞𝑣))[𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) + 𝜎𝑒(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣)] 

 −𝜇𝑣(𝑞𝑣) ∑𝑞𝑣
′ [𝜎𝑡𝑟(𝑞𝑣 , 𝑞𝑣

′ ) + 𝜆] + ∑𝑞𝑣
′ :𝑞𝑣

′ !𝐶(𝑞𝑣
′ )=𝑞𝑣

𝜇𝑣(𝑞v
′ ) 

 −𝜇𝑣(𝑞𝑣)𝕀𝑞𝑣≠∅ + ∑𝑣′=𝑣±1 𝛽[𝜇𝑣′(𝑞𝑣) − 𝜇𝑣(𝑞𝑣)]. 

 

We are interested in translation-invariant solutions. In that case the queue 𝑞𝑣 can be 

identified with the sequence of (signed) distances between the node 𝑣 and the destinations 𝐷(𝑐𝑖) of 

its customers, so it becomes a finite integer sequence 𝒩 ≡ {𝑛1, . . . , 𝑛𝑙; 𝑛𝑖 ∈ ℤ1}, where 𝑙 ≥ 0 is the 

length of the queue 𝑞𝑣 . The rate of the arrival of the transit customer, 𝜎𝑡𝑟(𝑞𝑣! 𝑒(𝑞𝑣), 𝑞𝑣) ≡

𝜎𝑡𝑟([𝑛1, . . . , 𝑛𝑙−1], [𝑛1, . . . , , 𝑛𝑙−1, 𝑛l]) is then a function of one integer, 𝑛𝑙, and so we adopt the notation 
 𝜆𝑛𝑙

≡ 𝜎𝑡𝑟([𝑛1, . . . , 𝑛𝑙−1], [𝑛1, . . . , , 𝑛𝑙−1, 𝑛𝑙]). 

According to our definitions, we thus have 

 𝜆𝑘 ≡ 𝜆𝑘(𝜇) = {
∑𝒩 𝜇(𝑘 + 1, 𝒩) if𝑘 > 0,
∑𝒩 𝜇(𝑘 − 1, 𝒩) if𝑘 < 0,
0 if𝑘 = 0.

 (15) 

 

In what follows we look only for states 𝜇 which have symmetric rates 𝜆𝑘 : 

 𝜆𝑘 = 𝜆−𝑘. (16) 

 The probability 𝜇𝑣(𝑞𝑣) then turns into 𝜇(𝒩); note, however, that for 𝑣′ = 𝑣 ± 1 we need to 

interpret 𝜇𝑣′(𝑞𝑣) as 𝜇(𝑛1 ∓ 1, . . . , 𝑛𝑙 ∓ 1). The equation now becomes: 

 𝜇(𝑛1, . . . , 𝑛𝑙−1)[𝜆𝑛𝑙
+ 𝜆𝛿(𝑛𝑙 , 0)] − 𝜇(𝑛1, . . . , 𝑛𝑙)(∑𝑘 𝜆𝑘 + 𝜆) 
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 + ∑𝑘 𝜇(𝑘, 𝑛1, . . . , 𝑛𝑙) − 𝜇(𝑛1, . . . , 𝑛𝑙)𝕀𝑙≠0 (17) 
 +𝛽[𝜇(𝑛1 + 1, . . . , 𝑛𝑙 + 1) + 𝜇(𝑛1 − 1, . . . , 𝑛𝑙 − 1) − 2𝜇(𝑛1, . . . , 𝑛𝑙)] = 0. 

 As we see later, the equations (15) − (1517) can have several solutions, one solution or no 

solution, depending on the value of the parameter 𝜆. If 𝜇 is a solution of the equations (15) −

(1517) for some 𝜆, then we denote by  
 𝜈(𝜇) = ∑𝑘 𝜆𝑘(𝜇) 

the rate of the transit customers to every node in the state 𝜇, and by 𝜂(𝜇) the rate of the total flow 

to every node in the state 𝜇: 
 𝜂(𝜇) = 𝜈(𝜇) + 𝜆. 

 

Theorem 8 For every positive 𝜂 < 1 there exist a unique value 𝜆(𝜂) of the exogenous flow rate 

𝜆  and the state 𝜇𝜂 on the set of the queues {𝒩}, satisfying the equations (15) − (1517) with 𝜆 = 𝜆(𝜂), such 

that  

 𝜂(𝜇𝜂) = 𝜂. 

 

Proof. Consider the process which is described just by the relation (17), with arbitrary 

parameters 𝜆𝑘 , 𝑘 = 0, ±1, . .. and 𝜆. This is an ordinary queuing system with a single server and 

with infinitely many types of customers. The customer of type 𝑘 arrives with rate 𝜆𝑘 (and with rate 

𝜆0 + 𝜆 for 𝑘 = 0). Consider the random variable 𝜉𝜂, which is the total time a customer spends in 

such a server in the stationary state. It has exponential distribution, which depends only on 𝜂 =

∑𝑘 𝜆𝑘 + 𝜆 (and which does not depend on the type of the customer), namely, 𝔼(𝜉𝜂) = (1 − 𝜂)−1. 

Suppose a customer of type 𝑘 arrives to such a server. When it leaves the server, its type is 

changed to 𝑘 + 𝜏𝜂, where 𝜏𝜂 is a random (integer valued) variable. That change happens due to the 

𝛽-terms in (17). By symmetry, 𝔼(𝜏𝜂) = 0. The distribution of 𝜏𝜂 is the following. Consider a 

random walker 𝑊(𝑡), living on ℤ1, which starts at 0 – i.e. 𝑊(0) = 0, and which makes ±1 jumps 

with rates 𝛽. Then 𝜏𝜂 = 𝑊(𝜉𝜂). 

We now are going to present a choice of the rates 𝜆𝑘 and 𝜆 in such a way that the equations 

(15) is satisfied as well. Our choice of the rates 𝜆𝑘 , 𝜆 is related to the stationary distribution of a 

certain ergodic Markov process on ℤ1, which we describe now. Define the matrix of transition 

probabilities 𝑃1 = {𝜋𝑠𝑡} by 𝜋𝑠𝑡 = Pr(𝜏𝜂 = 𝑠 − 𝑡). Of course, this Markov chain on ℤ1 is not positive 

recurrent since its mean drift is zero. Let 𝑃2 be the second Markov chain, with transition 

probabilities 

 𝜌𝑠𝑡 = {

1 for𝑡 > 0, 𝑠 = 𝑡 + 1,
1 for𝑡 = 0, 𝑠 = 1,0, −1,
1 for𝑡 < 0, 𝑠 = 𝑡 − 1,
0 inothercases.

 

I.e. 𝑃2 is non-random map of ℤ1 into itself. Consider the composition Markov chain, with transition 

matrix 𝑄 being the product, 𝑄 = 𝑃1𝑃2. This chain is, in contrast, positive recurrent (it has a positive 

drift towards the origin), and it has a stationary state 𝑞 = {𝑞𝑘 , 𝑘 ∈ ℤ1}. We take  

 𝜆𝑘 = 𝜂𝑞𝑘 , 𝑘 ≠ 0;   𝜆 = 𝜂𝑞0. (18) 

 

The relations (15) are satisfied since the process 𝑄 describes the evolution of the type of 

the customer in the stationary state of the process (15) − (1517).  

 

We now state some properties of the function 𝜆(𝜂) as the parameter 𝜂 varies in (0,1). 

 

Proposition 9  There is a 𝜆+ > 0 such that, for any positive 𝜆 < 𝜆+, there are at least two different 

velues 𝜂 = 𝜂−(𝜆) and 𝜂 = 𝜂+(𝜆) satisfying the relation 𝜆(𝜂) = 𝜆 and such that 𝜂−(𝜆) → 0 and 𝜂+(𝜆) → 1 

as 𝜆 → 0.  

 

Proof. Clearly, 𝜆(𝜂) → 0 as 𝜂 → 0. We want to argue that 𝜆(𝜂) → 0 also when 𝜂 → 1. Indeed, 

in this regime every customer spends more and more time waiting in the queue, so for every 𝑘 the 
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probability Pr(𝜉𝜂 ≤ 𝑘) → 0 as 𝜂 → 1. Therefore the distribution of the random variable 𝜏𝜂 becomes 

more and more spread out: for every 𝑘, Pr(|𝜏|𝜂 ≤ 𝑘) → 0 as 𝜂 → 1. Therefore the same property 

holds for the stationary distribution 𝑞, and the claim follows from relations (18) and Proposition 9. 

In particular, it means that the following equation on 𝜂:  
 𝜆(𝜂) = 𝑎 > 0 

has at least two solutions for small 𝑎: the corresponding 𝜂 is either small or close to 1. Indeed, this 

follows from the continuity of 𝜆(𝜂).  

 

IV  Some examples 
 

Let us look at the function 𝜆(𝜂) for some finite cyclic graphs 𝐶𝐾 with different parameters, 

that is, with different randomized rules for the destination assignment. As we see, there are cases 

with one, two, and three equilibrium solutions. 

 

Typical case: two solutions 

 
Single solution 

 
 



 
Baccelli F., Rybko A., Shlosman S., Vladimirov A. 
METASTABILITY OF LARGE NETWORKS WITH MOBILE SERVERS 

RT&A, No4 (43) 
Volume 11, December 2016  

76 

 

Three solutions 

 
 

Three solutions: closer look 
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Abstract 

 

In today’s competitive marketplace, the design phase presents a perfect opportunity to test a product to find its 

maximum limitations and weak links. On the same context HALT (Highly Accelerated Life Test) has been 

adopted by many industries. HALT is a destructive stress testing methodology for accelerating product 

reliability during the engineering development process. It is a great process used for precipitating failure 

mechanisms in an electronics hardware design and product which may occur into the field. 

The traditional HALT process which is followed by most of the industries, deals with destructive stress testing 

and subjective approach to fix the design weaknesses based on experience, followed by iterative HALT to check 

the robustness against the design fixes done which may not be relevant fixes. 

This paper summarizes the effective way of conducting HALT by emphasizes on the “Analysis First” approach, 

the FMEA (Failure Mode Effect Analysis) and FEA (Finite Element Analysis) which will help identifying the 

critical functions along with associated components to be monitored during HALT and reduces the iteration of 

HALT by analyzing the board robustness against the stresses i.e. temperature and vibration prior to HALT 

respectively. And also presents the specification limits derived based on the product specification and chamber 

standard deviation, up to which the root cause and design fixes needs to be done, eliminating the subjectivity 

around it. 

Keywords: HALT, FMEA, FEA 

  

 

I. Introduction 

 
HALT (Highly Accelerated Life Testing) is a qualitative approach to identify the design 

weaknesses and improve on the design margins of the electronics assemblies. Extensive studies 

have been done to understand the HALT methodology and its benefits by many industries. 

Conducting conventional HALT requires a detailed plan with understanding of applicable stress 

profiles, functional test, cross functional team responsibilities [1]. This paper will explain in brief 

the effective HALT methodology including the FMEA and FEA activities prior to HALT to reduce 

design iteration and also derive specification limits [2] for the root cause analysis. The placements 

of thermocouple and accelerometer have also been discussed to take a decision for design fixes. 

 

HALT tests methods are developed to find design defects and weaknesses in electronic and 

electromechanical assemblies so that a more reliable product can be released to market in rapid 

order. The product specification always can be defined as per the Figure 1 below which shows 

how the product can be used in unknown environment (red in color). 
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Figure 1: Product Specifications & Field Environment 

 

Based on the field profile and applicable stress study, the engineered systems deliver stresses of 

temperature, rapid thermal cycling, and random, tri-axial vibration which are used to rapidly 

reveal design weaknesses in electronics and electromechanical product assemblies. Hence the 

conventional HALT is performed considering the sequence of stresses as follows: 

 

 Thermal Cold Step Stress 

 Thermal Hot Step Stress 

 Rapid Thermal Transition Cycling 

 Vibration Step Stress 

 Combined Environment (Thermal Transition Cycling and Vibration Step Stress) 
 

Traditionally in the HALT process, product design/material limitations may be discovered for each 

stress that is applied. Each of these limitations should have their root-cause understood and 

corrective action implemented based on product specification. The specification limits for doing 

the RCA (Root Cause Analysis) for all issues which should be corrected are subjective in nature. 

 

The process of conventional HALT and proposed effective way of conducting HALT is explained 

in below paragraphs with their limitation and advantages respectively. 

 

II. Conventional HALT Methodology 
 

The conventional HALT methodology deals with the five different stress profiles as mentioned 

above. The detail test is conducted based on the profiles with limited inputs from the FMEA and 

FEA. The conventional HALT process is depicted in the below Figure 2. 
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Figure 2: Conventional HALT Methodology 

 

III. Proposed Effective HALT Methodology 

 
The effective HALT methodology incorporates inclusion of FMEA outputs for identification of 

critical components and functions to be monitored along with FEA to validate the PCB design 

against the temperature cycling and the random vibration stresses prior to testing. This approach 

helps to identify the weak links in the design through analysis and reduces the iteration of HALT. 

The advantages of Effective HALT are as follows: 

 

 The inclusion of FMEA helps in identification of critical function which needs to be 

monitored during HALT and hence cross verify the performance of all the component as 

per the functional requirement and its criticality ranking. 

 Inclusion of FEA helps in identification of design flaws prior to HALT and reduce the 

design iteration post HALT. 

 Placement of thermocouple and accelerometer can be identified based on the FEA results 

i.e. most heat dissipating component and most resonant component respectively. 

 Identification of specification limit helps in taking decisions for RCA needs to be done and 

Start 

accomplishm

PCB Layout, 

Schematics, 

Operating 

Specification 

Functional Test Setup including 

monitoring system and placement of 

thermocouple and accelerometer 

Conduct HALT 

to identify weak 
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with its limits. 

 The effective HALT helps in identification of weak links and improve the design 

robustness by involving cross functional team inputs and recommendations. 

 

In the process of doing FMEA and FEA there may be chances of getting multiple number of 

functions and component which needs to monitored during HALT. The functional test of 

associated component along with the placement of thermocouple and accelerometer can be 

finalized by doing tradeoff between the severity ranking (can be rated in scale of 1 to 10) for the 

functions in FMEA and occurrence ranking (can be rated in scale of 1 to 10) for the identified 

stressed component in FEA. The proposed approach enables to identify the functions to be 

monitored and component based on the tradeoff on severity*occurrence rating. 

 

The flow chart shown in Figure 3 summarizes the steps to conduct HALT effectively with brief 

explanation of key activities. 

 

 
 

Figure 3: Effective HALT Methodology 
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I. Failure Mode Effect Analysis 
 

The main objective of Failure Mode Effect Analysis (FMEA) is to thoroughly analyzes product 

design against all failure modes and reduce the associated risks. During each stress profile, 

functional testing is performed on the product sample to evaluate its operation performance.  To 

verify the functionality of the board the FMEA is best way to identify the safety or mission critical 

functions and the respective associated failure mode of the components. For conducting effective 

HALT this exercise helps in identification of critical functions of the product which needs to be 

monitored during HALT and respective components. The functional test setup during the HALT 

should be made such that it covers all the critical functionalities of the product. 
 

II. Finite Element Analysis 
 

Finite Element Analysis (FEA) as applied in engineering is a computational tool for performing 

engineering analysis. This analysis is carried out for electronic and electromechanical assemblies to 

verify its performance against the temperature and vibration profile. These exercises help on 

identification of the stressed components and also design flows, if any prior to HALT to reduce the 

HALT iteration. The placement of thermocouples and accelerometers also becomes very important. 

The outputs of both needs to be analyzed to take a decision for the fixes. So the placement of 

thermocouple and accelerometer is also needs to be done based on the stressed component 

identified during the analysis. 

 

III. Specification Limits 
 

After conducting HALT two concerns always arise. The first is: which issues should be corrected; 

and the second is: should all issues be corrected? To resolve this issues in HALT the operating 

limits are considered, and the specification limits are derived for which the root cause analysis 

must be done, considering the components specification and operational limits with ±3σ range [3]. 

An example is shown in below Table 1 to derive the specification limits considering 2°C & 2 Grms 

as standard deviation for the thermocouple and accelerometer reading respectively. 

 

Table 1: Specification Limits Calculation 
 

 

S. No. Factors Values 

1 Hot Temperature Specification 85°C 

2 Hot Temperature Operating Limit 98°C 

3 
Proposed Hot Temperature 

Specification Limit 

98°C + 6°C (i.e. 3*(σ)) =  

104°C  

4 Cold Temperature Specification -40°C 

5 Cold Temperature Operating Limit -54°C 

6 
Proposed Cold Temperature 

Specification Limit 

-54°C +(-6°C) (i.e. 3*(σ)) =  

-60°C 

7 Vibration Specification 2.24 Grms 

8 Vibration Operating Limit 5 Grms 

9 Proposed Vibration Specification Limit 
5 Grms +(6 Grms) (i.e. 

3*(σ)) = 11 Grms 

 

The above derived specification limits are shown in graphical form in the below Figure 4. 

 Temperature 
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Figure 4: Proposed HALT Specification Limits 

III. Conclusions 

 
In this paper effective way of conducting HALT is explained in detail. Inclusion of FMEA and FEA 

with specification limits up to which RCA needs to be conducted are mentioned with the 

respective advantages. The above mentioned way of conducting HALT helps in identifying the 

weak links more accurately and reduce the iteration of HALT also the design. 

 

References 

 
[1] Qualmark. HALT Testing Guideline Document: 933-0336 Rev. 04. 

[2] Doertenbach, N. Highly Accelerated Life Testing – Testing With a Different Purpose: White Paper 

at http://www.qualmark.com/resources/library-documents. 

[3] Mclean, H. HALT, HASS, AND HASA EXPLAINED: American Society of Quality, Quality Press, 

2009. 

 

Product Specification 

-60°C -54°C -40°C 85°C 98°C 104°C 

2.24 Grms 5 Grms 11 Grms 

Operating Limits 

Proposed HALT Specification Limits 

Vibration 



 
Artykhova M., Polesskiy S., Linetsky B., Ivanov I. 
SIMULATION OF RELIABILITY FOR ELECTRONIC MEANS 

RT&A, No4 (43) 
Volume 11, December 2016  

84 

Simulation Of Reliability For Electronic Means With 

Regard To Temperature Fields 
 

Artyukhova M., Polesskiy S., Linetskiy B., Ivanov I. 

  

National Research University Higher School of Economics, Moscow, Russia 
mayaartyukhova@gmail.com, spolessky@hse.ru, blinetskiy@hse.ru, i.ivanov@hse.ru 

 

 

Abstract 
 

The paper considers the technique of modeling of electronic reliability based on modeling electrical 

components environment temperature. As experience of the simulation and exploitation of 

electronic shows, one of the main factors that significantly affect the reliability characteristics is the 

thermal effect. This is confirmed by the statistics of a number of companies. In the paper for the 

simulation were used systems ASONIKA-K and ASONIKA-TM. On the example of a real 

electronic mean proved the need for a point temperature estimate for each electrical component and 

the account of these temperatures, instead of the average values in predicting the reliability indices. 

Such approach will significantly improve (20% - 40%) the accuracy of estimates of the mean time 

to failure. Developed engineering method to predict reliability, built on the "downward" 

hierarchical circuit simulation. 
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I. Introduction 
 
Reliability is a complex electronic device property, which, depending on the purpose and 

conditions of its application consists of a combination of properties: dependability, durability, 

maintainability and conservation. 
Today the actual direction of the reliability theory is the prediction of indicators of reliability 

in the early stages of design. The direction uses different approaches, one of the key is a 

methodology for the synthesis of highly reliable electronic means on the criteria of reliability.  

Practice of design and operation shows that the greatest impact on the reliability by climatic, 

mechanical and electrical effects [1]. General failure rate model of the printing assembly of the 

electronic means in the mode of operation is as follows [2]: 

 

𝛬𝑃𝐴 𝐸𝑀 = 𝐾𝑎 ∙ ∑ ∑ 𝜆𝑒𝑖𝑗                                                           (1)

𝑛

𝑖=1

𝑚

𝑗=1

 

 

where: Ka – quality factor of production equipment, relative units; λeij – operational failure rate of 

the i-th type of product j-th group (see model below), 1/h; n – the number of products j-th group, 

items; m – number of product groups, items. 
The model λeij in general for standard electronic components (chip resistors, chip capacitors, 

etc.) is as follows [2]: 
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𝜆𝑒𝑖𝑗 = 𝜆𝑏(𝜆𝑏.𝑔.) ∙ 𝐾𝑟(𝐾𝑡) ∙ 𝐾𝑒 ∙ ∏ 𝐾𝑖                                             (2)

𝑛

𝑖=1

 

 

where: λb(λb.g.) – basic failure rate of type (group) of electrical components, calculated according to 

the results of tests on the electrical component reliability, durability, life, 1/hr; Kr(Kt) – mode 

coefficient (temperature) takes into account the magnitude of the electrical load and (or) the 

ambient temperature (the product's enclosure), relative units; Ke – operating factor takes into 

account the severity of operating conditions, relative units; Ki – coefficient taking into account 

changes in operational failure rate depending on various other factors, relative units; n - number of 

factors taken into account, items. 

Affecting electronic factors can be divided into four types of effects, as shown in Table 1. 

 
 

Table 1: List of external influencing factors 

№ Effects Factor name 

1 Climatic  high pressure air or gas 

 reduced atmospheric pressure 

 changes in atmospheric pressure 

 Low ambient temperature 

 Increased ambient temperature 

 high humidity 

 atmospheric condensed precipitation 

 low air humidity 

 salt mist 

 solar radiation 

2 Mechanical  Broadband random vibration 

 acoustic noise 

 linear acceleration 

 seismic shock 

 Mechanical shock of single action 

 Mechanical shock of repeated action 

3 Biological  mold fungi 

 insects 

 rodents 

4 Other  static dust 

 Dynamic dust 

 aggressive environment (ozone, ammonia, 

nitrogen dioxide, sulfur dioxide, hydrogen 

sulfide) 
 

Objective factors are determined by the time and conditions of use and include the operation 

time; climatic factors; mechanical factors; biological factors; operating modes. The typical 

distribution of electrical component failure due to objective reasons shown in Figure 1. 
 



 
Artykhova M., Polesskiy S., Linetsky B., Ivanov I. 
SIMULATION OF RELIABILITY FOR ELECTRONIC MEANS 

RT&A, No4 (43) 
Volume 11, December 2016  

86 

 

Figure 1: The electrical component failure rate of various objective factors 

 

As seen from the model (2) and the real statistical failure (see. Figure 2) for each electrical 

component makes the largest contribution Kr(Kt), and it, in turn, is determined by the point 

modeling of ambient temperature (or shell) of the element or of experimental investigations [3]. As 

shown in Figure 2 for a typical printing assembly change in the ambient temperature of +25 ° C to 

+80 ° C leads to a change in failure rate of more than 1.66 times. 
 

 

Figure 3: Graph of operational failure rate of a typical printing assembly from ambient temperature 

 

II. Thermal analysis of electronic equipment 
 

As shown in [3] thermal modeling reveals the weakness of the development, to correct them 

and protect from heat. This approach also allows one to get a more accurate value of time to failure 

under the conditions of use of the object prior to disposal. Thermal analysis will allow at a stage of 

simulations increase the value of system reliability indicators in the possible reduction of cost and 

the geometric dimensions. The fact that the higher the temperature, the lower the reliability. In the 

presence of operational data can be predicted the mean time to failure for a newly developed 

product.  

Thermal modeling relevant because: 

1. Analysis of temperature fields of electronic means - is rapidly expanding area of research; 

2. Thermal analysis is applicable to many areas of design; 
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3. Thermal analysis is very important for engineering research. 

Model of the failure rate of the temperature λd. The failure rate for any reference temperature 

Tr can be calculated using the following equation, and with known Tb and λb: 

 

𝜆𝑑 = 𝜆𝑏/𝑒𝑥𝑝
−𝐴𝐸 (

1
𝑇𝑏

−
1
𝑇𝑑

)

8.61735 ∙ 10−5
                                                          (3) 

 

The failure rate is doubled by raising to 10 °C ambient temperature (K=293 °C) for AE=0.53. 

Most electronic solid state components have AE=0.4, and failure rate is doubled when the 

temperature rises to 13,5 °C. 

Cooling systems [3] should be designed to control the temperature of the components. By 

varying the cooling systems in board electronic means in some cases could increase by 500% the 

average time to failure. 

Implementation of the requirements of the thermal analysis leads to an additional increase in 

the cost of the design. However, the average cost of a heat-resistant electronic means compensated 

by saving operating costs. 

A thermal analysis of the electronic means should be performed at the system level. Without 

it, it can happen that parts and components will continue to refuse. Components can be designed 

to work in normal conditions, but due to the low heat transmission from different heat generators, 

they can not work at increased temperatures. 

There are two main areas in the thermal analysis of electronic means: 1. Knowing electrical 

component temperature and therefore to quantify the degradation of electrical parameters; 2. 

Reduce the temperature of the electronic components that improve system reliability. The first may 

predict "hot" spots in the development through detailed analytical prediction or through direct 

measurement of heat. The second allows local cooling of these areas that will significantly increase 

the component life time. 

To select the mathematical models for calculating the reliability of foreign and national 

reference books were analyzed. For the basics reference [6] was taken as the most used and 

reliable.  

Thermal modeling was carried out on the example of a typical printed board assembly of 

electronic means. 

The task is this: to calculate the printing assembly for given thermal actions. Based on the 

analysis of the thermal characteristics of printed assembly conclude that the technical requirements 

for electrical components for thermal characteristics performed. 

Data for calculation. 

The initial data for the calculation of blueprints printed board assembly and output PCAD 

system files have been received, as well as maps electrical component operating modes. Design 

printed board assembly subsystem ASONIKA-TM, is shown in Fig. 3 (first side) and Fig. 4 (second 

side).  

The capacity of heat generation electrical component in the PCA: B2 – 0,6 mW; R7 – 30 mW; 

R8 – 40 mW; R14 – 200 mW; R15 – 200 mW; R17 – 30 mW; R20 – 110 mW; R21 – 10 mW; R23 – 20 

mW; R24 – 110 mW; R25 – 10 mW; R26 – 20 mW; R27 – 110 mW; R28 – 80 mW; R29 – 30 mW; D5 – 

1500 mW; D6 – 1500 mW; D7 – 1500 mW; D20 – 157 mW; VT1 … VT3 - 40 mW; Total 5777,6 mW. 

According to the results of thermal calculation unit in the subsystem ASONIKA-T obtained 

the following air temperature inside the unit: 

 for natural convection 100,2 °C; 

 with forced convection blowing speed of 1 m/s 53 °C. 

Use the data the temperature values as the boundary conditions for the thermal design of 

printed assembly. 
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Figure 3: Design of printed assembly in the subsystem ASONIKA-TM (side 1) 

 

 

 

 

Figure 4: Design of printed assembly in the subsystem ASONIKA-TM (Side 2) 
 

 

Results of thermal analysis. 

 

Calculation of thermal characteristics of printed board assembly was held in an automated 

subsystem ASONIKA-TM. Fig. 5 and Fig. 6 shows obtained thermal characteristics for printed 

board assembly mode 1 in operation (the air inside the unit for natural convection 100.2 °C) and 

mode 2 (air inside the unit in a forced convection blowing speed of 1 m/s 53 °C). Maps of thermal 

modes of electrical component are presented in tables 2 and 3. 
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Figure 5: Temperature Field for printed board assembly in mode 1 
 

Table 2: Section of the map of thermal modes of electrical component (when stationary thermal action) for of 

printed assembly in mode 1 

№ 

Symbol of 

electrical 

components 

si
d

e 

The temperature of electrical 

components 

Coefficient of 

thermal load, 

[relative 

units] 

Overheat, 

[°C] Estimated, 

[°C] 

Maximum 

permissible, [°C] 

1 R1 1 111.222 100.000 1.112 11.222 

2 R17 1 105.574 100.000 1.056 5.574 

3 R18 1 105.445 100.000 1.054 5.445 

4 R19 1 105.418 100.000 1.054 5.418 

5 R2 1 107.819 100.000 1.078 7.819 

6 R20 1 106.025 100.000 1.060 6.025 

7 R21 1 105.487 100.000 1.055 5.487 

8 R22 1 105.418 100.000 1.054 5.418 

9 R23 1 105.479 100.000 1.055 5.479 

10 R24 1 106.004 100.000 1.060 6.004 

………………………………………... 

20 C1 1 108.730 85.000 1.279 23.730 

………………………………………... 

179 C95 2 105.153 100.000 1.052 5.153 
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Figure 6: The temperature field for a printed assembly in mode 2 

 

Table 3: Section of the map of thermal modes of electrical component (when stationary thermal action) for the 

printing unit in mode 2 

№ 

Symbol of 

electrical 

components 

si
d

e 

The temperature of electrical 

components Coefficient of 

thermal load, 

[relative units] 

Overheat, 

[°C] Estimated, 

[°C] 

Maximum 

permissible, [°C] 

1 R1 1 64.652 100.000 0.647  

2 R17 1 58.946 100.000 0.589  

3 R18 1 58.820 100.000 0.588  

4 R19 1 58.790 100.000 0.588  

5 R2 1 61.206 100.000 0.612  

6 R20 1 59.401 100.000 0.594  

7 R21 1 58.863 100.000 0.589  

8 R22 1 58.790 100.000 0.588  

9 R23 1 58.855 100.000 0.589  

10 R24 1 59.376 100.000 0.594  

………………………………………... 

20 C1 1 62.169 85.000 0.731  

………………………………………... 

179 C95 2 58.530 100.000 0.585  

 

III. Calculation of reliability printed board assembly 
 

The first and one of the main steps of calculating the reliability of the printed board assembly 

is to identify the electrical component parameters. 

Under the parameter identification should be understand the process of determining the 

parameters of a mathematical model of reliability calculation, for each specific type of electronic 

components. The process of identification of electronic components can be represented 

schematically in the form of an algorithm, illustrated in Figure 7. When performing the 
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identification of electronic components, according to the algorithm, some points should be noted. 

Secondly, found in prior specifications, not always this information is sufficient for the calculation 

of reliability, in such cases, according to the block 9, was searched averaged parameters of 

technological groups and subgroups in the directory of the reliability of foreign-made product 

when checking the adequacy of the information. As a result of the identification of all part types 

from the list, we were assigned to a particular class of electrical component, and in line with the 

previously selected mathematical models, all the necessary parameters have been found. 

Calculation of reliability of the printed board assembly. 

An indicator of reliability of printed board assembly is its mean time to failure with no 

recovery in the process. Reliability of printed assembly is characterized by a set of failure rates of 

its components (electrical component). The scheme of calculating the reliability of printed board 

assembly corresponding to a predetermined criterion of failure, is a serial connection of a 

technologically and functionally combined electrical component groups.  

Figure 8 shows the sequence diagram for calculating the reliability of the device included in 

printed assembly on the level of technology combined electrical component groups.  

Operational electrical component failure rate was calculated according to the corresponding 

reference books [7-9] and a set of maps the correct application of electrical component. 
 

 

Figure 7: Algorithm for electrical component identification process 
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Figure 9 shows the window ASONIKA-K system with the results of printed assembly 

calculation (estimation). 

 
 

 

 

Figure 8: The scheme of calculating the reliability of printed assembly 

 

 

 

Figure 9: ASONIKA-K system: the results of printed assembly calculation (estimation) 

 

As can be seen from Fig. 9, obtained by calculating the value of the average operating time of 

printed assembly is ≈21,364 thousand [hours] (Electric Load coefficients varying depending on the 

type of electric components from 0.1 to 0.7 at a temperature of 65 [°C]) that does not satisfy the 

technical requirements (T0=150 thousand [hours]). 
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Figure 10: System ASONIKA-K: The results of printed assembly calculation (adjusted calculation) 

 

Adjusted calculation printed board assembly reliability. 

Adjusted calculation operating electrical component failure rate was based on electrical 

component temperature, the resulting heat-transfer simulation using subsystem ASONIKA-TM, 

and other data about the electrical component of printed assembly were taken from the set of maps 

of the correct application of electrical component. 

Fig. 10 shows the window ASONIKA-K system with the results of printed assembly 

calculation (adjusted calculation). 

As can be seen from Fig. 10 obtained by calculating the average value of use of printed 

assembly is ≈ 19,802 thousand [hours] (Load for electric coefficients varying depending on the type 

of electrical component from 0.1 to 0.7 at temperatures electro obtained by subsystem ASONIKA-

TM), which does not meet the technical requirements (T0=150 thousand. [hours]). 

Analysis of the results of calculations. 

To assess the influence of ambient temperature environment was constructed operational 

temperature dependence of printed board assembly failure rate in the temperature range +25 ... + 

85 [°C] for given values of electrical load coefficient depending on the type of electrical component 

from 0.1 to 0.7 (see Fig. 11). 
 

 

Figure 11: Dependence of operational failure rate of printed assembly of temperature 
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As can be seen from Fig. 11, a simultaneous change of electrical component temperature in the 

range +25 ... + 85 [°C] causes a change in the intensity of printed board assembly failures in 2 times. 

Assessing the impact of the specific characteristics of reliability of electrical component on 

operational intensity printed board assembly failures carried out directly during the calculation. 

Figure 12 shows the contribution classes printed board assembly electrical component to the 

total failure rate. 
 

 

Figure 12: Contributions of electrical component classes to the total intensity of the printed board assembly 

failure 

 

As shown in Figure 12 of the most unreliable class electrical component is a class "Integrated 

circuits" and "connectors". 

Figure 13 shows the contribution of electrical component class "Integrated circuits" to the total 

failure rate. 
 

 

Figure 13: Contributions of class "Integrated circuits" electrical components to the total failure rate 

 

As it follows from Fig. 13 unreliable chips are chips D1, D2 type TMS320VC5416PGE160 and 

D3-D5 type TPS73HD301PWPR, TPS73HD325PWPR.  

Figure 14 shows the contribution of electrical component class "connectors" to the total failure 

rate. As it follows from Fig. 14, the connectors are unreliable connectors X1, X2 type C 6921 03164. 

 

 
 

Figure 14: The electrical component class contributions of "connectors" to the total failure rate 
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IV. Conclusion 
 

The calculation of printed assembly reliability has shown that: 

- At a temperature of 65 [° C] average time to failure is not less than 21.364 thousand [hours.]. 

Electric load factor depending on the type of electrical component that varies in the range from 0.1 

to 0.7; 

- At temperatures of electrical component derived from simulations using subsystem 

ASONIKA-TM, the average time to failure is not less than 19.802 thousand [hours.], For the electric 

load factor depending on the type of electrical component, varying in the range of 0.1 to 0.7. 

Options considered analysis printed board assembly reliability showed that the reliability of 

the product does not meet the requirements (mean time to failure is to be not less than 150000 

hours). The most unreliable electrical component classes are the class of "Integrated circuits" and 

"connectors". To improve reliability, we can recommend the following measures: 

- change the type of electrical component (use electrical components with less b); 

- to facilitate the operation of the electronic components (lower operating thermal and 

electrical load); 

- reduce the number of electrical component (use the chip higher degree of integration); 

- use electrical components with a high level of quality; 

- reduce the ambient temperature (to increase the efficiency of the cooling system). 

Using the concept of mathematical modeling of complex heterogeneous physical processes in 

the development of printed board assemblies within systems ASONIKA-K and ASONIKA-TM 

allows one to improve the accuracy of reliability parameters modeling; 

In this paper: 1) proved by the example of printed board assembly need for differential 

evaluation of the temperature of each electronic components and their integration in predicting 

reliability, rather than the averaged temperature values; 2) developed a technique of mathematical 

modeling of reliability for thermal printed board assemblies that the example has proved its 

effectiveness. 
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Abstract: 

 
In this paper, we have studied the estimation of parameters under failure censored data 

using step stress partially accelerated life testing. The lifetimes of test items are 

assumed to follow Mukherjee-Islam distribution. The estimation of different parameters 

and acceleration factor are obtained by Maximum Likelihood Method. Relative absolute 

bias (RAB), mean squared error (MSE), relative error (RE), standard deviation and 

confidence intervals are also obtained. Asymptotic variance-covariance matrix and also 

test method are given. Simulation studies have been introduced to illustrate the 

performance of all the statistical assumptions. 

 

Keywords: Mukherjee-Islam distribution, Step-stress partially accelerated life test, Maximum 

likelihood, failure censoring. 

 

Introduction: 
 

The present era is the era of high reliability. The products and items made nowadays are 

too much reliable. Usually they do not fail early at normal use condition. So it is not easy 

to get reasonable amount of failure data under use condition for a given period of time. 

For this reason, Accelerated Life Testing is the modest procedure to be applied. By using 

it, products would fail early and at the end of test we have sufficient failure data to study 

the behaviour of products. ALT quickens the procedure that’s why it costs less money 

and consume less time. 

 In ALT, the relationship between lifetime stress is known either in the form of 

acceleration factor or there exists a mathematical model. But in many situations neither 

acceleration factor is known nor there exist any such model. Then partially accelerated life 

test is the better option to use. In PALT, the acceleration factor and mathematical model 

which sustain the relationship between the life time and stress are not known and cannot 

be assumed any type of such model. 

 Nelson [19] introduced that the stress can be applied on test item in various ways, 

commonly used are step-stress and constant-stress. Under step-stress PALT, a test unit is 

first subjected to run at normal use condition and if it does not fail for a specified time, 

then it is run at accelerated use condition until failure occurs or the observation is 

censored. But in constant stress PALT each item runs at daily use condition or at 

accelerated condition. 

DeGroot and Goel [12] have introduced the concept of step-stress PALT in which a 
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test item is first run at use condition and, if it does not fail for a specified time ‘τ’, then it is 

run at accelerated condition until failure. 

A lot of literature is available on SS-PALT analysis, for example, see Goel [13], 

Bhattacharyya and Soejoeti [11], Bai and Chung [10], Abdel-Ghani [8] and Abdel-Ghaly et 

al. [6,7], Abdel-Ghani [9].  Ismail [15] studied the estimation and optimal design problems 

for the Gompertz distribution in SS-PALT with type I censored data. P.W. Srivastava and 

N. Mittal [20] considered optimum step stress partially accelerated life tests for the 

truncated logistic distribution with censoring. This article include type I and type II both 

censoring. S. Hyun and J. Lee [21] used constant stress partially accelerated life testing for 

log logistic distribution with censored data. F. K. Wang et al [22] have studied partially 

accelerated life tests for the Weibull distribution under multiply censored data. Recently, 

Showkat Ahmad Lone et al [23] studied estimation in step stress partially accelerated life 

tests for the Mukherjee-Islam distribution using time constraint. For a brief knowledge of 

step-stress ALT, one should go through [14, 17, 16, and 18]. 

 

II. Test Methods and Model 
 

Mukherjee-Islam failure model is introduced by Mukherjee and Islam [1]. It is finite range 

distribution which is one of the most important property of it in recent time in reliability 

analysis. Its mathematical form is simple and can be handled easily, that is why, it is 

preferred to use over more complex distribution such as normal, Weibull, beta etc. The 

pdf of the distribution is given as 

0,0,0,),,( 1   



 


xxxf  

Where λ is the scale parameter and α is the shape parameter. 

The cdf is given as 
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And the Reliability function of finite range model is given as 




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
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xR 1)(  

  

     In SS-PALT, all of the n units are tested first under normal condition, if the unit does 

not fail for a pre-specified time  , then it runs at accelerated condition until failure. This 

means that if the item has not fail by some pre-specified time  , the test is switched to the 

higher level of stress and it is continued until items fail. The effect of this switch is to 

multiply the remaining lifetime of the item by the inverse of the acceleration factor β. In 

this case, switching to the higher stress level will shorten the life of the test item. Thus the 

total lifetime of a test item, denoted by Y, passes through two stages, which are the 

normal and accelerated conditions. 

The lifetime of the test unit in SSPALT is given as follows 










 


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TifT
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)(1
 

Where T is the lifetime of item at use condition. 

Therefore, the probability density function of total lifetime Y of an item is given by 
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III. Estimation Procedure 
 

The maximum likelihood estimation method is used here because it is very robust and 

gives the estimates of the parameters with good statistical properties such as consistency, 

asymptotic unbiasedness, asymptotic efficiency and asymptotic normality. In this section, 

point and interval estimation for the parameters and acceleration factor of Mukherjee-

Islam distribution based on type II censoring are evaluated using this method. 

3.1. Point estimates 

 In type II censoring scheme, we set the number of units or subject to the experiment 

and stop the experiment at a predetermined number of failure. The observed values of the 

total lifetime Y are         )(111 ...... rnnnn yyyyy
auuu

  , where un  and an are 

the number of subjects or items failed at normal conditions and accelerated conditions 

respectively. Let i1 and i2  be indicator functions, such that 
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For our convenience,  iy is written as iy . The likelihood function of independent and 

identically distributed random variables nyy ,...,1 , the life times of the items is given by
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Where ii 11 1    and ii 22 1   ,We take the logarithm of the likelihood function 

and write it as follows; 

     

)2.1.3(

1loglogloglog1loglogln
1 1

21

 BrnnAyrrL a

n

i

n

i

iii 








  
 

 

Where,    ,  iyA    
 

,
)(








 




 ry
B     ,

1

1 u
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i
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2 a
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aui
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i nnn 

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1

1     &    au nnr   

    The maximum likelihood estimates of β, α and λ can be obtained by solving the system 

of equations which are the first partial derivatives of the above log likelihood equation, 

and equate to zero with respect to β, α and λ respectively. 

 Thus the system of solutions are given as:    

        
 
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)(111
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 
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                                                                  

 

    )5.1.3(01
1







   





BB

rnrInL
                                                         

The solution of above equations cannot be obtained in closed form because the equations 

are non linear in three unknown parameters β, α and λ. Therefore, to find numerical 

solution we use an iterative method. Newton-Raphson Method is used to obtain the 

numerical estimate of the parameters β, α and λ. 

 

3.2. Interval estimates 

     If  nyyyLL ,...,, 21   and   nyyyUU ,...,, 21   are functions of the sample data

,,...,1 nyy then the confidence interval for a population parameter   is given by 

  )1.2.3(   ULp
 

    

Where, L  and U are the lower and upper confidence limits which enclose   with 

probability . The interval   UL , is called a %100 confidence interval for . For large 

sample size, the maximum likelihood estimates, under appropriate regularity conditions, 

are consistent and asymptotically normally distributed. Therefore, the approximate 

%100 Confidence limits for the maximum likelihood estimate


 of a population 

parameter  can be constructed, such that 

 
)2.2.3(

ˆ

ˆ

















 ZZp

                                                                       

Where, Z is the 
 








 

2

1100 
 standard normal percentile. Therefore, the approximate 

%100  confidence limits for a population parameter   can be obtained, such that 

       ˆˆˆ ZZp                     (3.2.3) 

Then, the approximate confidence limits for  , and   will be constructed using Eq. 

(3.2.3) with confidence levels 95% and 99%.   

 

IV. Asymptotic variances and covariance of Estimates       
   

 The asymptotic variances of maximum likelihood estimates are the elements of the 

inverse of the Fisher information matrix    jiIJ InLEI   /2 . The exact 

mathematical expressions for the above expectation are very difficult to obtain. Therefore, 

the observed Fisher information matrix is given by    jiIJ InLI   /2  which is 
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obtained by dropping the expectation on operation E . The approximate (observed) 

asymptotic variance–covariance matrix F for the maximum likelihood estimates can be 

written as follows 

   )1.4(),,()(3,2,1,   jiIF ij  
The second partial derivatives of the maximum likelihood function are given by the 

following 
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Consequently, the maximum likelihood estimators of  , and have an asymptotic 

variance–covariance matrix defined by inverting the Fisher information matrix F and by 

substituting ̂  for  ,̂ for   and ̂  for . 

 

V. Simulation studies 
   

   Simulation studies are very important part of the study. It has been performed to 

illustrate the precision and consistency of the theoretical results of estimation parameters. 

R software is used in simulation studies. Absolute relative bias (RAB), mean square error 

(MSE) and relative error (RE) are the main measure to check the performance of resulting 

estimators. The detailed steps of procedures are presented below: 

Step 1. 1000 random samples of sizes 50, 75, 100, 125 and 150 were generated from the 

Mukherjee-Islam distribution. The data generation of the Mukherjee-Islam distribution is 

very simple, if U has a uniform (0, 1) random number, and then )]/1(^.[  uY   follows 

a Mukherjee-Islam distribution. The true parameter values are selected as 

)05.1,2,6.1(   and )1.1,2,5.1(   . 

Step 2. Choosing the censoring time τ at the normal condition to be τ=1 and the total 

number of failure in PALT is to be r=0.75*n 

Step 3. For each sample and for the two sets of parameters, the acceleration factor and the 

parameters of distribution were estimated in SS-PALT under type II censored sample. 

Step 4. The Newton–Raphson method was used for solving the nonlinear equations given 

in (3.1.3), (3.1.4) and (3.1.5). 

Step 5. The RABias, MSEs, and REs of the estimators for acceleration factor and other 
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parameters for all sample sizes were tabulated. 

Step 6. The confidence limit with confidence level γ=0.95 and γ =0.99 of the acceleration 

factor and other parameters were constructed. 

The results are summarized in Tables 1 and 2. Table 1 presents the RABias, MSEs, and 

REs of the estimators. The approximated confidence limits at 95% and 99% for the 

parameters and acceleration factor are presented in Table 2. 

 Following are the observations can be made from the tabulated data on the performance 

of SS-PALT parameter estimation of the above used lifetime distribution: 

 

1. For the second set of parameters )1.1,2,5.1(   , the maximum 

likelihood estimators have good statistical properties than the first set of 

parameters )05.1,2,6.1(    for all sample sizes (see Table 1) 

2. As the acceleration factor increases the estimates have smaller MSE, and RE. As 

the sample size increases the RABias and MSEs of the estimated parameters 

decreases. Hence the estimates provide asymptotically normally distributed and 

consistent estimators for the acceleration factor and other parameters. 

3. The interval of the estimators decreases when the sample size is increasing. Also, 

the range of the interval estimate at γ=0.95 is smaller than the range of the interval 

estimate at γ=0.99 (see Table 2). 

 

Table 1 The RABias, MSE and RE of the parameters (α, λ, 𝛽) for different sample sizes 

under type II censoring 
N Parameters 

(α, λ, β) 

(1.6,2,1.05) (1.5,2,1.1) 

RABias MSE RE RABias MSE RE 

 

 

50 

        α 

 

λ 

 

β 

0.0102 

 

0.0576 

 

0.0013 

0.0616 

 

0.0829 

 

0.0655 

0.0385 

 

0.0414 

 

0.0013 

0.0008 

 

0.0157 

 

0.0702 

0.0634 

 

0.0861 

 

0.0850 

0.0422 

 

0.0430 

 

0.0773 

 

 

75 

α 

 

λ 

 

β 

0.0094 

 

0.0484 

 

0.0471 

0.0591 

 

0.1006 

 

0.0747 

0.0369 

 

0.0503 

 

0.0711 

0.0019 

 

0.1139 

 

0.0148 

0.0411 

 

0.0448 

 

0.0761 

0.0274 

 

0.0569 

 

0.0692 

 

 

100 

        α 

 

λ 

 

β 

0.0280 

 

0.0371 

 

0.0184 

0.0451 

 

0.0674 

 

0.0550 

0.0282 

 

0.0337 

 

0.0524 

0.0211 

 

0.0448 

 

0.0289 

0.0328 

 

0.1139 

 

0.0643 

0.0219 

 

0.0569 

 

0.0584 

 

 

125 

α 

 

λ 

 

β 

0.0061 

 

0.0641 

 

0.0807 

0.0392 

 

0.1070 

 

0.1287 

0.0245 

 

0.0535 

 

0.1225 

0.0066 

 

0.0331 

 

0.0325 

0.0458 

 

0.0951 

 

0.0755 

.0305 

 

0.0475 

 

0.0687 

 

 

150 

α 

 

λ 

 

β 

0.0125 

 

0.0304 

 

0.0012 

0.0185 

 

0.0284 

 

0.0264 

0.0115 

 

0.0142 

 

0.0251 

0.0425 

 

0.0065 

 

0.0255 

0.0568 

 

0.0748 

 

0.1080 

0.0379 

 

0.0374 

 

0.0982 
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Table 2 Confidence bounds of the estimates at confidence levels 0.95 and 0.99 

N Parameters 

   (α, λ, β) 

(1.6,2,1.05) (1.5,2,1.1) 

Standard 

Deviation 

Lower 

Bound 

Upper 

Bound 

Standard 

Deviation 

Lower 

Bound 

Upper 

Bound 

 

 

 

50 

 

α 

 

λ 

 

β 

 

0.2547 

 

 

0.2955 

 

 

0.2627 

 

 

1.0842  

0.9263 

 

1.5359 

1.3527 

 

0.5364 

0.3735 

 

2.0829 

2.2409 

 

2.6944 

2.8776 

 

1.5664 

1.7293 

 

0.2584 

 

 

0.3011 

 

 

0.2991 

 

0.9948 

0.8346 

 

1.4413 

1.2546 

 

0.4363 

0.2508 

  

 2.0078 

2.1680 

 

2.6218 

2.8085 

 

1.6091 

1.7946 

 

 

 

      75 

 

α 

 

λ 

 

        β 

 

 

0.2495 

 

  

0.3255 

 

 

0.2804 

 

 

1.0956 

0.9409 

 

1.4588 

1.2570 

 

0.5498 

0.3759 

 

2.0739 

2.2287 

 

2.7349 

2.9367 

 

1.6491 

1.8230 

 

0.2080 

 

 

0.3463 

 

 

0.2830 

 

 

1.0950 

0.9660 

 

1.4110 

1.1962 

 

0.5615 

0.3860 

 

1.9107 

2.0397 

 

2.7685 

2.9832 

 

1.6712 

1.8467 

 

 

 

100 

 

 

α 

 

λ 

 

β 

 

0.2179 

 

 

0.2664 

 

 

0.2408 

 

1.1277 

0.9926 

 

1.5521 

1.3869 

 

0.5973 

0.4480 

 

1.9823 

2.1174 

 

2.5966 

2.7618 

 

1.5414 

1.6907 

 

0.1860 

 

 

0.3463 

 

 

0.2602 

 

1.1035 

0.9881 

 

1.4110 

1.1962 

 

0.6218 

0.4604 

 

1.8329 

1.9482 

 

2.7685 

2.9832 

 

1.6419 

1.8033 

 

 

 

125 

 

α 

 

λ 

 

β 

 

0.2032 

 

 

0.3356 

 

 

0.3680 

 

 

1.2115 

1.0855 

 

1.4705 

1.2624 

 

0.4132 

0.1850 

 

2.0081 

2.1341 

 

2.7862 

2.9943 

 

1.8562 

2.0844 

 

0.2199 

 

 

0.3169 

 

 

0.2824 

 

1.0789 

0.9425 

 

1.4449 

1.2484 

 

0.5105 

0.3354 

 

1.9411 

2.0774 

 

2.6875 

2.8840 

 

1.6179 

1.7930 

 

 

 

150 

 

α 

 

λ 

 

β 

 

0.1397 

 

 

0.1731 

 

 

0.1667 

 

 

1.3060 

1.2194 

 

1.7214 

1.6140 

 

0.7218 

0.6184 

 

1.8537 

1.9404 

 

2.4003 

2.5077 

 

1.3754 

1.4788 

 

0.2446 

 

 

0.2806 

 

 

0.3372 

 

1.0842 

0.9325 

 

1.4629 

1.2889 

 

0.4109 

0.2018 

 

2.0433 

2.1950 

 

2.5631 

2.7372 

 

1.7328 

1.9419 
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Conclusion 

 
Here, we have used type II censored data to obtain the likelihood estimation for 

performance of Mukherjee-Islam distribution and the acceleration factor under SSPALT. 

The censoring scheme along with SSPALT will be feasible to the experimenter and he/she 

will have a fixed number of failure prior to the experiment. That will save cost as well as 

money. The maximum likelihood estimation technique is used to estimate the parameters 

and the estimators of it are consistent and asymptotically normally distributed. The 

current research shows that the second set of parameters has good statistical properties 

than the first set of parameters. As the sample size increases, the confidence interval 

become narrower. It can also be noted that interval of the estimators at γ=0.99 is greater 

than the corresponding at γ=0.95. Therefore, it can be inferred that the model and test 

method used in this study works satisfactorily for step stress partially accelerated life 

testing under the certain assumptions. 
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