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In this note we consider how system signatures (D-spectra) can be used in computing system 

reliability for "shock" and "lottery" models of system reliability.  
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Suppose you have a coherent binary system with 𝑛 binary components subject to failure. To 

make this note more visual, imagine that the system is a network and the components subject to 

failure are the edges. So, any edge can be in two states, 𝑢𝑝 and 𝑑𝑜𝑤𝑛, i.e. operational or not, 

respectively. The network can be in two states UP and DOWN. For example, the network is 𝑈𝑃 if 

two nodes of the network, 𝑆 and 𝑇, are connected, and 𝐷𝑂𝑊𝑁, otherwise. Let the components be 

numbered as 1,2, . . . , 𝑛. Let us consider two situations which seem quite different. The first we will 

call "The shock model". 

 

1. The shock model 
 

Suppose there is an external source of "shocks" which act on our system in the following 

way. A shock chooses randomly one component of our system and hits (erases) it as a result of which 

this component goes from 𝑢𝑝 to 𝑑𝑜𝑤𝑛. The next shock chooses randomly one of the remaining (non 

hit, 𝑢𝑝) components and hits it. This process continues until the system goes 𝐷𝑂𝑊𝑁. This model has 

been considered in literature many times, see for example [1] and references there. 

Suppose we check system state after each shock. Initially, before the shock process starts, 

the system is 𝑈𝑃. Sooner or later the shocks will cause the system to go 𝐷𝑂𝑊𝑁. Let us register the 

ordinal number of the shock which turns the system from 𝑈𝑃 to 𝐷𝑂𝑊𝑁. 

If it happens on the first hit, this number is one, if on the second - this number will be 2, and 

so on. By the definition of the shock process, all random sequences of component numbers hit by 

shocks are equally probable, and each particular sequence has probability 1/𝑛! So, we can speak 

about random events {𝐴𝑘} and their probability {𝑓𝑘}  

 
 𝐴𝑘 = (   𝑠𝑦𝑠𝑡𝑒𝑚  𝑤𝑒𝑛𝑡  𝐷𝑂𝑊𝑁  𝑜𝑛  𝑡ℎ𝑒  𝑘 − 𝑡ℎ  𝑠ℎ𝑜𝑐𝑘 ), 𝑓𝑘 = 𝑃(𝐴𝑘). 

 

Obviously the collection of numbers 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑛) is a discrete density and ∑𝑛
1 𝑓𝑘 = 1. F. 

Samaniego [4,5] called the collection 𝑓 signature . M.Lomonosov [5] suggested the name -"ID" 

(internal distribution). 

Let us look now into 𝐹(𝑥) = 𝑓1 + 𝑓2+. . . +f𝑥 = ∑𝑥
𝑘=1 𝑓𝑘 which is called cumulative signature or 

D-spectrum [6]. 

The probabilistic meaning of 𝐹(𝑥) is the following. Suppose we know that the system is 

𝐷𝑂𝑊𝑁. Given this fact, the probability that the system has suffered k shocks equals 𝐹(𝑘). If the 

shocks process starts at 𝑡 = 0 and shocks come with interval 1 hour, then 𝐹(𝑘) will be the CDF of 

system lifetime in hours. Or in other words: in the shock model scheme, 𝐹(𝑘) is the probability that 
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the system failed on the first or the second,..., or the 𝑘-th shock. 

In the shock model, finding 𝐹(𝑘) is the central issue of the resilience study of the system, see 

[6] where we describe Monte Carlo algorithms for obtaining an unbiased estimates for 𝐹(𝑥). These 

algorithms are based on simulating the process of sequential destruction of system components to 

locate the position of the 𝑈𝑃−> 𝐷𝑂𝑊𝑁 transition -from this process comes the prefix "D"- 

destruction. 

  Our personal impression that reliability engineers don’t like too much the signature issue. 

For them the shock process looks as something artificial and not relevant to the main problem which 

is finding system reliability. Let us describe this problem. 

 

2. The lottery model 
 

Suppose the system consists of independent components and each component is 𝑢𝑝 with 

probability 𝑝 and 𝑑𝑜𝑤𝑛 with probability 𝑞 = 1 − 𝑝. We can think also that these probabilities are 

related to a particular instant 𝑡, i.e. the component is 𝑢𝑝 at 𝑡 with probability 𝑝 = 𝑝(𝑡). If the 

components have i.i.d. lifetimes, then 𝑝(𝑡) is the probability that component lifetime 𝜏 ≥ 𝑡.The 

central problem is finding system reliability, i.e. 𝑃(   𝑠𝑦𝑠𝑡𝑒𝑚  𝑖𝑠   𝑈𝑃), or 𝑃(𝐷𝑂𝑊𝑁) = 1 − 𝑃(𝑈𝑃). 

  We will call this situation "the lottery" model. Assume that for each system component we 

carry out an independent lottery. In this lottery, the component is declared to be in state 𝑢𝑝 with 

probability 𝑝 and 𝑑𝑜𝑤𝑛with probability 𝑞 = 1 − 𝑝. After the lottery ends, the system will be either 

in 𝑈𝑃 or in 𝐷𝑂𝑊N, and we are interested in finding 𝑃(𝑈𝑃). 

  This is a solid reliability problem and its solution is an important practical issue. From the 

first sight, this problem has nothing in common with the above artificial shock model. How the 

reliability engineer would solve his problem? Most probably, by using the following formula  

 

 𝑃(𝐷𝑂𝑊𝑁) = ∑𝑛
𝑘=1 𝐶(𝑘)𝑞𝑘(1 − 𝑝)(𝑛−𝑘), (1) 

 

 where 𝐶(𝑘) is the number of failure sets having exactly 𝑘 components 𝑑𝑜𝑤𝑛 and the remaining (𝑛 −

𝑘) components 𝑢𝑝. The real issue is finding the 𝐶(𝑘)’s. 

 

But it turns out that the solution of the shock model provides easily the solution of the lottery 

model and vice versa. It turns out that there is a simple formula connecting 𝐹(𝑘) and 𝐶(𝑘):  

 

 𝐶(𝑘) = 𝐹(𝑘)
𝑛!

𝑘!(𝑛−𝑘)!
 (2) 

 

  The proof of (2) can be carried out by purely combinatorial arguments or analytically. We 

will present both proofs in the 

Appendix Important is the following fact: 𝐹(𝑘) and 𝐶(𝑘) do not depend on 𝑝 or 𝑞. They are 

what we call a combinatorial invariant, depending only on system structure and not depending on 

probabilistic properties of its components. 

  Let us consider an 

 

Example 

 

 
 

Figure  1:  (S-a) -edge 1, (a-T)-edge 2, (a-T)-edge 3. 𝑈𝑃 is S-T connection 

  

The figure shows a network with three edges, which is 𝑈𝑃 if S is connected to T. In shock 

model, the first shock "kills" the system if it hits component 1. So, 𝑓1 = 1/3. If the system survives 
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the first shock, then the second shock always kills the system. So, 𝑓2 = 1 − 𝑓1 = 2/3. Then 𝑓3 = 0. So, 

𝐹(1) = 1/3, 𝐹(2) = 1, 𝐹(3) = 1. By (1), 𝐶(1) = (1/3) ⋅ 3!/2! = 1. Indeed, there is only one failure set 

with one component down: {1}. 𝐶(2) = 1 ⋅ 3!/2! = 3. The failure sets with two components down 

are: {1,2}, {1,3}, {2,3}. There is only one failure set with three components down- {1,2,3}. So, system 

is 𝐷𝑂𝑊𝑁 with probability  

 
 𝑃(𝐷𝑂𝑊𝑁) = 𝑞𝑝2 + 3𝑝𝑞̇2 + 𝑞3. 

 

The traditional reliability analysis would be the following. Denote the 𝑑𝑜𝑤𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 by zero and 

the 𝑢𝑝 component by one. The list of all 23 = 8 system states is the following:  

 
 000,001,010,011,100,101,110,111. 

 

The numbers 000,001,010,100,011 correspond to the 𝐷𝑂𝑊𝑁 state. There is exactly one state with three 

zeroes, one state with only one zero on the first position (shown bold), and three states with two 

zeroes, which are failure states with two 𝑑𝑜𝑤𝑛 components. This is exactly the above result obtained 

in the shock model.#   

 

 APPENDIX 

 

  a. Combinatorial proof of (2) ([2], page 114-115). 

  Consider random permutation of component numbers 𝜋 = 𝑖1, 𝑖2, . . . , 𝑖𝑛. Declare the first 𝑥 

of its members as system component’s numbers which are down and all the rest -as being up. 

If this permutation now determines system DOWN state, call it the (𝑥; 𝐷)-type permutation. 

Denote by 𝑁(𝑥) the total number of of (𝑥; 𝐷) permutations. Obviously, the probability to have an 

(𝑥; 𝐷) permutation is 𝑁(𝑥)/𝑛!. On the other hand, this probability equals 𝑓1 + 𝑓2+. . . +𝑓𝑥, which 

follows from the definition of the destruction process. Suppose that the permutation 𝜋 has the 

property that the system failure was observed at the instant of 𝑘-th failure, 1 ≤ 𝑘 ≤ 𝑥. Declare for 

this permutation that all components whose numbers appear on the next 𝑥 − 𝑘 positions as being 

𝑑𝑜𝑤𝑛, and all the other components -as being 𝑢𝑝. In this way we will reconstruct all permutations 

of (𝑥;𝐷)-type. Note also that any permutation which in the destruction process produces 𝐷𝑂𝑊𝑁 

state after the 𝑥-th step is not of (𝑥; 𝐷)-type. Therefore,  

 
 𝑁(𝑥) = (𝑠1 + 𝑠2+. . . 𝑠 + 𝑥) ⋅ 𝑛! 

 

Now note that we define system 𝐷𝑂𝑊𝑁 state with exactly 𝑥 components being 𝑑𝑜𝑤𝑛, the order of 

their appearance is not relevant. All permutations obtained by permuting 𝑥 down components 

between themselves, and (𝑛 − 𝑥) remaining also between themselves, determine, in fact, the same 

system failure state. Therefore,  

 

 𝐶(𝑥) =
𝑁(𝑥)

𝑥!(𝑛−𝑥)!
# 

 

  b. Analytic proof of (2) 

Take the well known Samaniego formula for system lifetime probability [4,5]:  

 
 𝑃(𝜏𝑠 ≤ 𝑡) = ∑𝑛

𝑘=1 𝑓𝑘𝐹(𝑘:𝑛)(𝑡), 

 

  where 𝐹(𝑘:𝑛) is the CDF of the 𝑘-th order statistics from the sample of 𝑛 i.i.d random variables with 

CDF 𝐹(𝑡) . Substitute the explicit formulas for the order statistics and change the order of 

summation. You will obtain the expression 
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 𝑃(𝜏𝑠 ≤ 𝑡) = ∑𝑛
𝑘=1 (𝑓1+. . . +𝑓𝑘)𝑞

𝑘(1 − 𝑞)(𝑛−𝑘)𝑛!/(𝑘! (𝑛 − 𝑘)!),. 

 

  where 𝑞 = 𝐹(𝑡). But the right-hand side of this expression is system 𝐷𝑂𝑊𝑁 probability expressed 

via its failure sets:  

 

 𝑃(𝐷𝑂𝑊𝑁) = ∑𝑛
𝑘=1 𝐶(𝑘)𝑞𝑘(1 − 𝑞)(𝑛−𝑘). # 
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