
 
B. Dimitrov 
WHY WE NEED PROBABILITY DISTRIBUTIONS WITH PFR 

RT&A, No 2 (45) 
Volume 12, June 2017  

10 

Why We Need Probability Distributions With Periodic 

Failure Rates In Reliability And Risk  
 

Boyan Dimitrov 

• 

Kettering University, Flint, Michigan 

bdimitro@kettering.edu  

 

 

Abstract 
 

We discuss situations in real life where probability distributions with periodic failure rates should 

be considered. This discussion leads us to a new class, called Almost-Lack-of-Memory (ALM) 

probability distributions. We explain the structure of these distributions, and list some of their 

important properties. One of the main properties is its periodic failure rate. Throughout this article 

we notice some areas of possible applications of these distributions, and relate applications to the 

properties of these distributions. However, periodic variability also is observed. This may be another 

interesting continuation of this study. 

 

Keywords: ALM class of probability distributions; Periodic failure rate functions; Non-

homogeneous Poisson Process; periodic random environment 

 

 

I. Introduction 
 

A positive r.v. X (life time) is uniquely determined by its failure rate function (FRF) λ(t). The function 

λ(t)∆t is presenting the conditional probability that the object will fail within the nearest time 

interval [t, t+∆t) given that it did not fail before t. For X continuous with c.d.f. F(x) and p.d.f. f(x), it 

holds   

λ(t) = f(t)/ 1 − F(t), for all t ≥ 0, where 1 − F(t) ≠ 0.                                  (1) 

The function  

Λ(t) = − ln[1 − F(t)], t ≥ 0                                                       (2) 

is known as hazard function (HF) of the object.  

The relationship  

Λ(t) = 
t

dxx
0

)(                                                                    (3) 

allows to understand that either of the four functions f(x), F(x), Λ(t), or λ(t) uniquely determines the 

other three. In demography and survival analysis the FRF λ(t) is known as mortality rate. In [7] for 

the needs of age comparison, we proposed to call λ(t) risk function (risk to fail, risk to die, risk of 

something to happen at age t since the aging process, has started). 

We proposed to call λ(t) with numerous of appropriate names, e.g. risk function (risk to fail, 

risk to die, risk of something to happen at age t since the aging process has started). Another suitable 

terminology for λ(t) is stress function. Λ(x) is the accumulated stress (or accumulated risk) during the life 

up to age x. The FRF λ(t) varies over the time. It reflects the impact of the environment and its 

interaction with the working object. In Risk analysis the FRF usually is related to weariness, fatigue, 

maintenance to stabilization and improvement, or other internal properties of the working objects. 

Traditionally, the FRF are considered increasing, decreasing, bathtub, or arc shaped. It is reasonable 

to consider also periodic FRFs in reliability and in other applications too!  

Periodic intensity rate FRF λ(t) with period c equal to the periodicity in the environmental 
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changes. The function FRF λ(t) should satisfy the equations λ(t + nc)= λ(t) for any t ≥ 0, and for any 

n = 1, 2, . . .  An appropriate choice of the function λ(t) on the interval [0, c) solves the problem of 

determination of the distributions from  this class, and any related characteristics. 

In this work we give several examples where periodic FRF takes place. These examples also 

pinpoint areas of application for our models. Then we discuss the class of ALM probability 

distributions (first Introduced in [11]) which best suits (by physical and analytical properties) to 

model the phenomena described. We also focus some attention on random processes related to the 

ALM probability distributions and on their unique relationships. Each discussion briefly notices 

areas of possible applications. 

 

II. Examples where periodic failure rates appear naturally 
 

Here we describe some examples of life time distributions where distributions with periodic 

FRF can be expected.  By the way, periodicity is in front of our eyes: We have daily periodicity 

in our habits every 24 hours; we have the weekly periodicity in our weekly schedules; we have 

some kind of monthly periodicity, at least while we pay our bills; we have the quarterly 

periodicity in some payments or other dues; we have half a   year periodicity by season changes, 

or vacation opportunity; we have yearly periodicity in many means (season changes, insurance 

or subscription renewals, etc.).  Some of these are described in more detail in the following 

examples. 

 

Example 1: Periodic Reliability Maintenance with Replacements. The system requires use of 

items with strictly limited workload. S.  

• The airplane motor must work 300 hours, and then replaced by a new one;  

• In military operations this is very strict that an ammunition can be replaced after 

reaching certain age; 

• Medical prescription require medication intake after expiration of certain fixed time;  

• In the food industry the expiration date is strictly enforced. Food supply works as a 

periodic inventory system. 

 

 Assume that a failed item before the expiration date is replaced instantaneously with a 

working item at the same age as the just failed.  

At the times of compulsory maintenance, made periodically any c time units, the operating 

item is replaced by a completely new one and the process continues under the same rules. The 

life time of such system has a FRF of period c.  

Analogous behavior can be noticed in the inventory systems with periodic refill of the 

storage rooms, as considered in [16] and [17].  

Aerospace engineering uses satellites for various purposes for some fixed periods of time 

3-8 years. This example may fit some of their reliability problems too.  

In social life and politics the periodic elections form processes of constant periodic nature. 

Numerous interesting variables with periodic FRFs can be associated with such processes 

elsewhere.  

 

Example 2: Service on non-reliable server (It is borrowed from [9], [11, [16], [18]). 

Consider a job, processed on an unreliable server, according to ”preemptive – repeat - different” 

service discipline.  

• The server may fail during service of a job. After each failure it gets an instantaneous repair, 

and becomes as good as new. The server’ life times Tn are i.i.d. r.v.’s.;  

• The job service time has duration Y if not interrupted; 

• The interrupted job is continued upon the server’s recovery, as new with other 

independent realization of the r.v. Y; 
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•  • The service will be complete when the new service time Yn is less than the server’s life 

time Tn; 

• • The r.v.’s Yn and Tn are mutually independent.  

 

Let X be the total service time of the job, and  

N = inf {n; Yn < Tn, n ≥ 1} .                                                                   (4)  

Then  

X =




1

1

N

n

nT + YN                                                                               (5) 

is the structure of the total service time X. If assume that the server life times Tn are all equal to 

one and the same constant c, i.e. if P(Tn =c)=1 for n=1,2, . . . , and the required service time Y is a 

continuous r.v., then X has periodic FRF of period c. The authors of [9] and [16] derived the 

mathematical expression for the distribution of the total service time.  

 

Example 3: The time to first event in a Non-Homogeneous Poisson Process (NHPP) The NHPP 

{Nt : t > 0} is a counting process the random number of events (arrivals)  Nt in [0, t), t ≥ 0 (discussed 

in [2], [3]). The arrival rate λ(t) is a non-negative function with finite integral on any finite 

interval of integration. The integrated rate function Λ(t) of the NHPP, given by (3), represents 

the expected number of events E(Nt), within [0, t), t ≥ 0 . For any t ≥ 0 the r.v. Nt has Poisson 

distribution of parameter Λ(t) The arrivals on any non-overlapping intervals are independent 

r.v.’s. One can always associate a non-negative r.v. X with every NHPP. X is defined by the 

integrated rate function Λ(t) declaring FX(x) = 0 for x < 0, and Fx(x) = 1 − e − Λ(t), x ≥ 0, according 

to relationships (1) - (3). This r.v. represents the waiting time up to the first event since the 

process starts: F(x) = 1 − P{X ≥ x} = 1 − P{N[0,x) = 0}, x ≥ 0 . Reversely, any non-negative r.v. X 

generates a NHPP {Nt : t > 0} whose intensity function coincides with the FRF of X, treated as 

life time. The times of the events in Nt can be interpreted as the flow of minimal repairs for an 

operating item whose life time is X  (used in [3], [4] and [8]). If the intensity rate λ(t) of the NHPP 

is periodic of period c, so is the FRF of the r.v. X . 

 

 Example 4: Periodicity in Earth’ life generates periodic NHPPs. Periodicity in surrounding 

environmental conditions may have a considerable impact on the chances of random events to 

occur, on the random variables and the processes these events generate. As a natural descriptor 

of the effects of the periodic random environment on the rates of related random events, we 

suggest to use NHPP with periodic intensity rate λ(t) with period c equal to the periodicity in 

the environmental changes. The function λ(t) should satisfy the equations  

λ(t + nc) = λ(t) for any t ≥ 0, and for any n = 1, 2, . . . .                                     (6) 

 An appropriate choice of the function λ(t) on the interval [0, c) solves the problem of 

determination of the NHPP and any related characteristics.  

Car accidents: The winter intensity rates due to wet, snowy or foggy weather are higher 

compare to what is in dry summer months; A bathtub-shape for the claims rate can be repeatedly 

expected every year in the northern countries. Natural periodicity of 1 year is reasonable, but 

periodic behavior of several years also seems admissible.  

Hurricane activities: More than hundred years of records show that ”the hurricane season 

starts by the end of May, has a season of high activity from second half of August to the first 

half of October and vanishes by the second half of December”. The hurricane activity at coastal 

U.S. is modeled with a bell-shaped intensity function with a mode about the second half of the 

year. Natural periodicity seems to be 1 year; More realistic however, is the 6 year periodic 

alternation ”El Ni˜no - La Ni˜na” seasons. In the South Hemisphere the shape of hurricane’s 

intensity function should be bathtub (in a yearly interval starting in January) Sinusoidal 

up/down shifts with depression in the yearly behavior on a 3 year segment are reported and 

clearly visible on the site  
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http://www.cpc.ncep.noaa.gov/products/CDB/Tropics/figt3.gif   

Go there, and you’ll see the picture 

 
We do believe that you clearly see periodicity and agree to our suggestions. But, this 

variability is observed in the standard deviation too. This is a deep challenge to see what class of life time 

distributions it may call. 

Forest fires: Their intensity is low during wet seasons and high during dry seasons of the 

year. Usually, wet are Fall, Winter and Spring, and dry is the Summer. Respectively, a symmetric 

bell-shaped intensity function for the counts of the forest fires could be an appropriate model.  

Flooding related events: Their intensity obviously goes high with snow melting when Winter 

ends and Spring comes. Somewhere the flooding may be related to hurricanes, or Summer 

thunderstorms. The respective behavior of λ(t) may depend on the local specifics. Generally, 

λ(t) is expected to have a bell shape with maximum shifted to the first third of the period. For 

some areas λ(t) may be a multi-modal shaped flooding intensity. 

 House and car sales: Here everything can be expected. Most likely, there are two picks of the 

sale’ intensity function, in the Spring and in the Fall. In such cases a mixture of two one pick 

functions, or a polynomial function of third degree may fit an appropriate model for the sale’ 

intensity function λ(t). 

The examples may assume that the intensity at the yearend smoothly matches the value of 

this intensity at the beginning of the next year. There are possible situations with picks either at 

the beginning of the year (e.g. intensity of new loan contracts, purchase intensity of certai n 

consumer’s goods), or picks located near the end of the year (e.g. donations, spending funds 

related to taxes, and similar reasons in financial models). Respective λ(t).can be decreasing in t, 

increasing, any, and no need to match the starting values with the values at the end of a cycle, 

and is a periodic function. The waiting time up to the occurrence of the first event in either of 

these processes is having periodic FRF.  

http://www.cpc.ncep.noaa.gov/products/CDB/Tropics/figt3.gif
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Example 5: Extended in time Bernoulli Trials (BTs) generate periodic NHPP  Numerous 

processes with established periodicity may be related to certain events (”successes”) in an 

artificially created sequence of extended in time BTs.  

The traditional sequence of Bernoulli trials is based on the following conditions: – The 

consecutive trials are independent;  

– Each trial has only two possible outcomes conditionally called “success” (S) and ”failure” (F)  

– The probability P(S)=1−α does not depend on the current trial (so does the probability for 

failure P(F) = α), and is the same for each trial.  

Let us add three more components (requirements to the sequence of BTs as in [9]) due to 

the facts that: Each trial essentially takes some considerable time to be conducted. As soon as 

success is observed it can be immediately recognized and recorded. 

 Hence: 

– There is a need of considerable time c > 0 to complete each one of these BT; 

 – If success occurs within a trial, the time from the start of this trial until the success occurs, 

is a r.v. Y. Its distribution has support on the interval [0, c). 

 – The fact that a particular trial fails can be confirmed only when it is completed.  

We list some of the potential contenders to the BTs constructions.  

– Periodic alternations between cold and warm eras on Earth (of yet to be established 

periodicity);  

– The 24 hours rotation of the Earth around its axis;  

– The 11 years periodic cycles in solar activity;  

– Other periodic configurations between planets or other spatial objects;  

– The 24 hours and 50 minutes in length cycle in the tidal events (tides are cyclic rises and 

falls of seawater);  

– The mentioned yearly changing climatic and meteorological conditions. Numerous 

pollution characteristics (chemical concentrations, emissions) can be related to this periodic 

process;  

Equidistant check-points (measured in time, in miles, or in other workload units) in the 

maintenance procedures, associated with the normal work of a production system, a technical 

item, or a social system, are good sources for consideration of embedded extended ”in time” 

BTs;  

Risk-associated events, such as house fires, diseases, fertility, mutation, bankruptcy, 

consumption rates, currency exchange rates, investment’ revenue, etc. may be involved in 

extended in time BTs of appropriate periodicity (time to perform a trial);  

Human bio-rhythmic cycles like breathing cycles, heartbeats, eating cycles, use of prescription 

drugs, and others; 

The waiting time until the occurrence of the first success in extended in time BTs has a periodic 

FRF (Khalil and Dimitrov [9]).  

 

III. The role of origin in the time count 
 

In the definition of periodic NHPP the origin is fixed as the beginning of a period, e.g. 1 st of 

January each year. Imagine, the time origin t0 is moving within the year, and can be located at 

any other day on the calendar. For instance   

 – April 15th as the last day to submit tax documents in the United States 

. – July 1st as start of the new Academic year for most American 

 – A 12-month fiscal year, begins on October 1 and ends on September 30 next year, 

 In the sequel it will be important to have the same fixed start of any next period of time of 

duration c, as shown in [8] and [12]. The flows of events related to such determination of the 

time origin may change the analytical expression that fits best. Such variability creates some 
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challenging statistical problems, namely to find the best position of the time origin that might 

produce the best goodness of fit to given observations.  

The nature of the waiting time up to the occurrence of the first event of the process is not 

changed no matter what is the time origin. The properties of the r.v.’s related with periodic 

NHPPs, remain stable despite of some variability in the explicit mathematical forms in their 

description. 

  

IV. Presentations of the distributions with periodic failure ratesons with 

periodic failure rates: equivalent analytical presentations 
 

In this section we give a summary of results found by various authors during last 20 years on 

establishing properties and analytical forms of the distributions with periodic failure rates (see [6], 

[7], [8], [10], [15]).  

Theorem 1: (A) The cdf of the waiting time X up to the first event in a periodic NHPP has the 

form  

FX(t) = 1 − 


























)()1(1 c
c

t
tFY

c

x

 ,    t ≥ 0,                            (7) 

where α ∈ [0, 1], and FY(y) is a cdf with support on the interval [0, c). These are determined by the 

equations 

–  α = 


c

X duu

e 0
)(

; 

 – The r.v. Y is defined either by its cdf  

FY (y) = 






 









y

X

c

X

duu

duu

e

e

0

0

)(

)(

1

1

1 



 ,  for  y ∈ [0, c]. 

 Its pdf is  

fY (y) =









y

X

c

X

duu

duu

X e

e

y
0

0

)(

)(

1

)( 




 ,  with y ∈ [0, c). 

It is said that a r.v. X with a cdf of the form (7) belongs to the class of ALM(α, c, FY (y)) 

distributions. α, c , and FY (y) are parameters of this class of probability distributions;  

(B) In the continuous case the pdf fX(t) exists and has the form 

fX(t) = )()1( c
c

t
tfY

c

x




















 ,       t ≥ 0 ;                                               (8) 

 (C) If a r.v. X has the distribution given by (7), then it satisfies the conditional probability 

property 

P{X − nc ≥ t | X ≥ nc} = P{X ≥ t}                                                    (9) 

for all t ≥ 0, and for arbitrary integer n = 0, 1, 2, ....  

Namely, this property is called ”Almost-Lack-of-Memory (ALM) property”, first in [13].  

(D) Let a non-negative r.v. X have the lack of memory at a point c, c > 0, i.e. let  

P{X − c ≥ t | X ≥ c} = P{X ≥ t}                                                      (10)  

holds for all values of t ≥ 0 and for the given value of the constant c. Then it holds: 

(Di) X possesses the LM(nc) property with the value of c, for arbitrary integer n = 1, 2, ...;  

(Dii) The cdf FX(t) is given by equation (7), where FY (y) is a cdf with support on the interval 

[0, c) if and only if (10) holds;  

(E) A r.v. X has the LM property at some moment c > 0 if and only if X belongs to the class 

of ALM(α, c, FY (y)) distributions; 

(F) A r.v. X belongs to the class of ALM(α, c, FY (y)) distributions if and only if it can be 

represented as a sum X = Y + cZ of two independent r.v.‘s Y and Z, where  
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– Y is located on the interval [0, c) with probability 1, and  

– Z has the geometric distribution P{X = k} = α k (1 − α), k = 0, 1, 2, ... with some α ∈ (0, 1); 

(G) The Laplace-Stieltjes transform of the life time X is given by the formula 

ϕX(s) = ϕY (s) 
sce







1

1
 ; 

(H) The Hazard Distribution Function (HDF), defined as a two argument function by the 

relation  

ΛX(x, t) = P{X − x < t | X ≥ x} = 
(x)F -1

  (x)F-  t)+(x F

X

XX                  (11) 

 is periodic with respect to first argument x, i.e. it satisfies 

ΛX(x + c, t) = ΛX(x, t), x ≥ 0, for any t ≥ 0 ; 

(I) If a life time r.v. X has periodic HDF of period c > 0 then its cdf FX(t) has the form 

(7), where α ∈ [0, 1], and FY (y) is a cdf with support on the interval [0, c). 

Moreover, it is fulfilled: 

 (Ia)    The FRF of X has the form  

λX(t) = 

)()1(1

)()1(

c
c

t
tF

c
c

t
tf

Y

Y

























 ,    t ≥ 0; 

(Ib) The FRF λX(t) is periodic function of period c;  

(J) If a r.v. X ∼ ALM(α, c, FY (y)) distribution, then  

P{X − (nc + y) < t | X ≥ nc + y} = P{X − y < t | X ≥ y}                       (12) 

holds for all t ≥ 0, for arbitrary y ∈ [0, c), and for arbitrary integer n = 1, 2, .... This property 

explains that the ALM property is irrelevant in respect of the location of the origin within 

the interval [0, c);  

(K) If X ∼ ALM(α, c, FY (y)) with α > 0, and c > 0, then the r.v. X is unbounded, i.e. for 

arbitrary M > 0 it is fulfilled  

P{X ≥ M} > 0 . 

Precise expressions for cases of discrete distributions and discrete times are also feasible. 

Some of these are shown in [11] and [12].  

 

V. Distributions with periodic failure rates: equivalent analytical 

presentations 
 

In this section we give a summary of results found by various authors during last 20 years on 

establishing properties and analytical forms of the distributions with periodic failure rates (see [6], 

[7], [8], [10], [15]).  

Theorem 1: (A) The cdf of the waiting time X up to the first event in a periodic NHPP has the 

form  

FX(t) = 1 − 


























)()1(1 c
c

t
tFY

c

x

 ,    t ≥ 0,                            (7) 

where α ∈ [0, 1], and FY(y) is a cdf with support on the interval [0, c). These are determined by the 

equations 

–  α = 


c

X duu

e 0
)(

; 

 – The r.v. Y is defined either by its cdf  
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FY (y) = 
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 ,  for  y ∈ [0, c]. 

 Its pdf is  

fY (y) =









y

X

c

X

duu

duu

X e

e

y
0

0
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
 ,  with y ∈ [0, c). 

It is said that a r.v. X with a cdf of the form (7) belongs to the class of ALM(α, c, FY (y)) 

distributions. α, c , and FY (y) are parameters of this class of probability distributions;  

(B) In the continuous case the pdf fX(t) exists and has the form 

fX(t) = )()1( c
c

t
tfY

c

x




















 ,       t ≥ 0 ;                                               (8) 

 (C) If a r.v. X has the distribution given by (7), then it satisfies the conditional probability 

property 

P{X − nc ≥ t | X ≥ nc} = P{X ≥ t}                                                    (9) 

for all t ≥ 0, and for arbitrary integer n = 0, 1, 2, ....  

Namely, this property is called ”Almost-Lack-of-Memory (ALM) property”, first in [13].  

(D) Let a non-negative r.v. X have the lack of memory at a point c, c > 0, i.e. let  

P{X − c ≥ t | X ≥ c} = P{X ≥ t}                                                      (10)  

holds for all values of t ≥ 0 and for the given value of the constant c. Then it holds: 

(Di) X possesses the LM(nc) property with the value of c, for arbitrary integer n = 1, 2, ...;  

(Dii) The cdf FX(t) is given by equation (7), where FY (y) is a cdf with support on the 

interval [0, c) if and only if (10) holds;  

(E) A r.v. X has the LM property at some moment c > 0 if and only if X belongs to the class 

of ALM(α, c, FY (y)) distributions; 

(F) A r.v. X belongs to the class of ALM(α, c, FY (y)) distributions if and only if it can be 

represented as a sum X = Y + cZ of two independent r.v.‘s Y and Z, where  

– Y is located on the interval [0, c) with probability 1, and  

– Z has the geometric distribution P{X = k} = α k (1 − α), k = 0, 1, 2, ... with some α ∈ (0, 1); 

(G) The Laplace-Stieltjes transform of the life time X is given by the formula 

ϕX(s) = ϕY (s) 
sce







1

1
 ; 

(H) The Hazard Distribution Function (HDF), defined as a two argument function by the 

relation  

ΛX(x, t) = P{X − x < t | X ≥ x} = 
(x)F -1

  (x)F-  t)+(x F

X

XX                          (11) 

 is periodic with respect to first argument x, i.e. it satisfies 

ΛX(x + c, t) = ΛX(x, t), x ≥ 0, for any t ≥ 0 ; 

(II) If a life time r.v. X has periodic HDF of period c > 0 then its cdf FX(t) has the form 

(7), where α ∈ [0, 1], and FY (y) is a cdf with support on the interval [0, c). 

Moreover, it is fulfilled: 

 (Ia)    The FRF of X has the form  

λX(t) = 

)()1(1

)()1(

c
c

t
tF

c
c

t
tf
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Y



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 ,    t ≥ 0; 

(Ib) The FRF λX(t) is periodic function of period c;  

(J) If a r.v. X ∼ ALM(α, c, FY (y)) distribution, then  
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P{X − (nc + y) < t | X ≥ nc + y} = P{X − y < t | X ≥ y}                       (12) 

holds for all t ≥ 0, for arbitrary y ∈ [0, c), and for arbitrary integer n = 1, 2, .... This property 

explains that the ALM property is irrelevant in respect of the location of the origin within 

the interval [0, c);  

(K) If X ∼ ALM(α, c, FY (y)) with α > 0, and c > 0, then the r.v. X is unbounded, i.e. for 

arbitrary M > 0 it is fulfilled  

P{X ≥ M} > 0 . 

Precise expressions for cases of discrete distributions and discrete times are also feasible. 

Some of these are shown in [11] and [12].  

 

VI. Properties of periodic NHPP 
 

The only process which can be uniquely associated to the r.v.’ s with periodic failure rates are 

the NHPPs with periodic intensity functions and with same interval of periodicity [2], [3], [5], 

[8]. They possess some interesting and important properties which can be used in applications. 

These can also be treated as an indivisible part of the properties of the life times.  It holds  

Theorem 2: An integer valued random process {Nt} with periodic intensity rate λ(t) of period c 

> 0 is a NHPP if and only if the following two properties hold:  

(A)  (i) For some constant c and for arbitrary t ≥ 0 it is true that  

P{N[c,c+t) = m} = P{N[0,t) = m} for any integer m = 0, 1, 2, ...; 

(ii) The r.v.’s N[c,c+t) and N[0,c) are independent for any t ≥ 0;  

(B) A counting process {Nt, t ≥ 0} is generated by random environment with periodic 

behavior of period c > 0  

Nt =d M1 + M2 + ... + M[ t/c] + Nt − [t/c]c ,                                     (13) 

where {Mn


0}n   are i.i.d. Poisson r.v.’s of parameter Λ(c) = 
c

dxx
0

)( , independent of 

the component Nt − [t/c]c, and λ(x) ≥ 0 is some periodic function of period c > 0, 

presenting the intensity of occurrence of events.  

The notation “=d” means equality in distribution;  

    (C)  A NHPP {Nt, t ≥ 0} of intensity rate λ(t) is periodic of period c > 0 if and only if the 

associated random variable X belongs to the class of ALM(α, c, FY (y)) distributions with 

parameters defined as in Theorem 1 (A);  

    (D)  If each of the K mutually independent point processes Nt(1), …, Nt(K)   is a periodic NHPP 

with integrated intensity functions Λ1(t), . . . , ΛK(t), and all of the K processes have a common 

period c∗, then their superposition is a periodic NHPP with integrated intensity function Λ(t) = 

Λ1(t) + . . . + ΛK(t), and its period is c*.  

The random sum  

Zt = 


tN

n

n

0

  , with ξ0 = 0 

is called Process of accumulation;  

  (E) If the sequence of sum components {ξn, n≥1} consists of i.i.d. random variables, the 

aggregate claim process {Zt ; t ≥ 0} driven by a periodic NHPP can be decomposed into the form  

Zt =d Z (1) + Z (2) + . . . + Z ([t/c]) + Zt−[t/c]c .                                (14) 

The variables {Z (n), n≥0} are i.i.d. r.v.’s distributed as the compound Poisson sum  

Z (1) = 


1

0

M

n

n , 

and M1 is a Poisson r.v. as defined in part (A). The last term Z t−[t/c]c in (14) is also a compound 

Poisson term, independent of the other components Z (n), and with parameter Λ(t), for t ≤ c. Some 

applications of these results in modeling of processes in reliability and environmental studies 

can be seen in [2],[3] and [14].  
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VII. Conclusions 
 

It is natural to consider life times with periodic FRF in reliability, risk, insurance, environmental 

modeling, financial mathematics, political theory, climate changes and various other 

applications. The reason is that the periodicity in surrounding environmental conditions has a 

considerable impact on generated random events, variables and processes.  

An easy to understand description of these effects is suggested in the present article, and 

simple analytical relationships between its mathematical models are presented.  

NHPP’s with periodic failure rates provide good models for counting processes in any 

periodic random environment.  

The periodic nature of the intensity λ(t) in modeling risk processes could become a powerful 

tool in the study of cost models and financial problems related to various maintenance policies. 

Statistical challenges for best estimation of this function fir varying origin and fixed length of 

periodicity are raised. 
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