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Abstract 
 

The present paper represents a review of the Controllable Queueing Systems theory development 

from the very beginning up to nowadays. The main stages of this theory development are 

considered. Some new problems are mentioned. The review is devoted to those, who are interested 

in the creation and the development of the Controllable Queueing Systems theory from its 

generation up to nowadays, and who want to understand the tendency of its development and the 

new directions and problems of its study. 
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1  Introduction 
 

The theory of Controllable Queueing Systems (CQS) is a special direction of investigations of a 

general theory of controllable stochastic processes from one side, and of a Queueing Theory (QT) 

from another side. The theory of controllable stochastic processes is a special topic, which we will 

not touch here, and will fix on CQS. Some papers devoted to the problems of Queueing Systems 

(QS) control have been arisen almost simultaneously with the first works about QS, but the special 

approach to CQS has been done by Rykov [48] in 1975. Several monographs devoted to this problem 

arisen thereafter [25, 26, 31, 64, 67].  

The preliminary results of this theory development one can find in [48]. In this paper, we 

concentrate our attention on the new results and approaches in this theory, nevertheless some initial 

principal results, on which the theory is based also should be reminded a little bit.  

The paper is organized as follows.  

In the next section the definition of CQS will be done and some examples of CQS will be 

proposed. The elements of the theory of Discrete Time Controllable Semi-regenerative Processes 

(DTCSRP), which serves as a base for the CQS study, will be considered then. The optimality 

principle for CQS as a result of this theory development and the problems of the real optimal rules 

for CQS calculation including numerical methods of the optimal policies calculation will be 

discussed in the next two sections. The qualitative properties of the optimal policies in this section 

also considered. Sections 5 – 8 are devoted to special CQS. At least in the Conclusion some new 

problems, approaches and new problems settings will be discussed. 

                                                           
1 The publication was financially supported by the Ministry of Education and Science of the Russian 

Federation (the Agreement number 02.A03.21.0008) and by the Russian Foundation for Basic 

Research according to the research projects No. 17-07-00142 and No. 17-01-00633. 
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2  CQS. Definition and main properties 

 

2.1  Definitions 
 

In this review, we will use a little bit modified Kendall’s system of notations for QS [29] and 

will consider QS as a mathematical object, consist of four components  ||| , where   

    •  —input flow,  

    •  —service mechanism,  

    •  —system structure,  

    •  —service discipline.  

 The symbols   and   take usual values GIM ,  etc., for Markov, recurrent and others for 

input flow, and distributions of recurrent service mechanism, the system structure   consists of two 

numbers ),(= mn , where the first symbol means the number of servers, and the second  means 

size of the buffer, and it is omitted for buffer size equal to infinity. The last symbol   is used for 

service discipline and it is omitted for FIFO (first in first out) discipline. 

Each of these components is also a complex mathematical object, which is usually studied 

in details in QT and is determined by some parameters. QS investigation usually could be divided 

into three directions:   

    •  analysis that means  the calculation of some output system Quality of service (QoS) 

characteristics for completely determined system;  

    •  synthesis that means finding of some of the input characteristics in order to provide 

needed QoS indexes, and  

    •  control that means operating of the system during its work with a goal of its behavior 

optimization with respect to given criteria.  

 

In the review we focus on the last problems that is most important for applications. Based 

on the above, the following definition of a CQS is reasonable. 

 

Definition 1  CQS is a QS, for which some parameters of its components admit dynamic variation 

during its operation. Naturally, this variation is admitted in some domain and serves to some goals, 

determined with some QoS functionals.  

 

2.2  Classification of CQS 
 

Accordingly to this definition CQS’s can be classified as systems with:   

    • controllable input flow,  

    • controllable service mechanism,  

    • controllable system structure,  

    • controllable service discipline and  

    • complex CQS, for which some parameters of several components admit control.  

 

For the control problem setting one needs in the goal of control and control rules. 

 

2.3  Control times, goals and rules 
 

Note firstly that in most practical situation the change of control (decision making) is 

possible only in special times, for example in times of customers arrival or their service completion. 
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We will call these times as  control or  decision times (DT). From another side the control problem 

solution is usually accompanied with the  goal of control and besides of control parameters also 

depends on the admissible domain of their variation, rules of their use as well as of process 

observation possibility. 

Concerning the goals of control they should be given by some  control quality functionals 

optimization. It might be some QoS characteristics optimization in a steady state regime of the 

system operation or optimization (minimization or maximization) of a time of some state or set of 

states attainment. In some other cases the goal of control could be formulated as an optimization of 

some economic indexes, connected with the system operation. In the last case some  structure of losses 

and rewards (Loss-Reward Structure—LRS) connected with the system operation should be done. 

Following to the tradition we will consider as an optimality criterion the minimization of some  Loss 

Functional (LF). Losses or rewards could be connected both with the system stay in different states 

and with transition from one state to another. The LRS usually includes:   

    • random reward nR  of the system manager for the service of n -th customer with finite 

mean value Rm  ( service cost),  

    • penalty )(lCw  for sojourn time of l  customers in the system ( waiting or  holding cost),  

    • cost )( ku aC  for using k -th service mode ( using cost),  

    • penalty ),( kkCs
  for switching from k -th service mode to the k  -th one ( switching 

cost).  

 Using these data the LF should be constructed. The general form of the LF will be 

considered in the next section, and its special form jointly with concrete examples will be 

represented. 

The control rules are usually determined with the help of  control strategies, which define the 

manner to take the decisions by  a Decision Maker (DM) and depends, generally speaking, on system 

behavior observability and can be realized in several ways:   

    • taking into account whole history of the process,  

    • taking into account only the system last state, or  

    • without any information;  

    • also the decision can be made randomly or not.  

 Specification of these strategies will be introduced in the section 3.2.2. 

 

2.4  Examples 
 

Consider some examples of CQS that will be studied in details later. 

 

2.4.1  Arrival control 
 

Consider a /1//GIM –QS with controllable input. The customers arrive accordingly to 

Poisson flow with intensity   and are served during random times that are i.i.d. with general 

Cumulative Distribution Function (CDF) )(tB  with mean value 
1= Bm  and variance 

2

B . The 

LRS includes:   

    • the random reward nR  of the system manager from the service of n -th customer with 

finite mean value Rm  (service cost),  

    • the linear penalty lClC ww =)(  for sojourn time of l  customers in the system (waiting 

cost),  

 

The control times are the arrival times, and the decisions consist in the admission or rejection 

of an arriving customer into the system. The problem consists in the admission of customers in the 
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system organization aimed reward maximization (or loss minimization). 

 

2.4.2  Control of service mechanism 
 

Consider a /1//MM –QS with controllable service rate. Customers arrive accordingly to 

Poisson input with intensity  , and are served with exponentially distributed service time having 

one of finite number K  values of parameter k  )1,2,=( Kk  . The LRS includes:   

    • the random cost nR  for the service of n -th customer with finite mean value Rm  

(service cost),  

    • the linear penalty lClC ww =)(  for sojourn time of l  customers in the system (waiting 

cost),  

    • cost )( kuC   of using server in k -th regime with service rate k  (using cost), and  

    • penalty ),( lksC   for switching from k -th regime to the l -th one (switching cost).  

 

Control times are both: arrival and service completion times, and the decision consist in the 

choice of the service regime (service rate) aiming at long run expected reward per unit of time 

maximization. 

 

2.4.3  Control of system structure 
 

Consider a /1//GIM –QS with controllable system structure. Customers arrive 

accordingly to Poison input with intensity  , and are served accordingly to recurrent service 

mechanism with generally distributed with CDF )(tB  service time. The LRS includes:   

    • penalties 1C  for switching on a server, and 0C  for its switching off,  

    • cost sC  of server using per unit of time (using cost),  

    • the linear penalty lClC ww =)(  for sojourn time of l  customers in the system 

(waiting, cost).  

 

Control times are both: arrival and service completion times, and the decision consists in 

possibility to switch on a server in customer arrival time and switch off it in service completion time 

aiming long ran expected loss per unit of time minimization. 

 

2.4.4  Service discipline control 
 

Consider s /1// NN GIM –QS with several ( N ) types of customers and controllable service 

discipline among the priority disciplines. Inside the classes the customers are served accordingly to 

the FIFO discipline. 

The customers arrive from Poison input with intensity )1,=( Nii  for i -th type of 

customer, and are served accordingly to the recurrent mechanism with general CDF )1,=()( NitBi

. The LRS includes:   

    • the linear penalty lClC ii =)(  for sojourn time of l  customers of i -th type in system 

(waiting cost).  

 

The control consists in the choice of a customer for service in any service completion 

(decision) time, aiming the minimization of a long ran expected loss per unit of time. 
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Consider firstly the common model for investigation those and many others CQS. 

 

3  Discrete time controllable semi-regenerative processes 
 

As it has been mentioned above in the section 2.3 in the most practical situation the change 

of control (decision making) is possible only at special times, for example in times of customers 

arrival or their service completion. We will call these times as  decision times (DT) and denote by 

0}=,0,1,=,{ 0SnSn   the sequence of decision times. Of course they are some measurable 

functionals of the process, describing the system behavior. For modelling CQS it is possible to use 

so called  Discrete Time Controllable Semi-regenerative Process (DCSRP). Detailed information about 

these processes and its applications one can find in [31]. Remind here some needed definition and 

properties of these processes. 

 

3.1  Semi-regenerative processes 

 

3.1.1  Definitions and main properties 
 

Semi-regenerative processes are some mixture of regenerative and semi-Markov processes. 

Several authors (G .Klimov, E .Nummelin, V. Rykov, M. Yastrebenetsky) introduced them under 

different names. Remind here its contemporary definition. Let   

    • }),({= RttXX   be a stochastic process with measurable state space ),( EE ,  

    • }),({= tvvXF X

t   be generated flow of  -algebras, and  

    • }0,1,2,=,{ nSn  be a sequence of its Markov times with 0=0S .  

7 

Definition 2 (Rykov, Yastrebenetsky (1971))  A pair }),({ nStX  is called a (homogeneous)  

Semi-Regenerative Process (SRPr), if for any subset E  and for all 1,2,=n  takes place  

 =)}(|)({=}|)({ nn
n

Sn SXtSXPFtSXP   

 )}.(|)({= 11 SXtSXP   (1) 

 Here  

    • r.v.’s nS  are called  Regeneration Times (RT’s),  

    • intervals ],(= 1nnn SST  and their lengths nnn SST 1=  are called  Regeneration 

Periods (RP’s),  

    • functional random elements nW , where  

 }1,2,=,),),({(= nTtTtSXW nnnn   

are called  Regeneration Cycles (RC), and  

    • random elements )(= nn SXX  are called  Regeneration States (RS).  

 

Remark 1 Intuitively clear that the SRP behavior is fully determined with its regeneration cycles 

nW  that form a Markov Chain in functional space, and under an additional condition of regularity any SRP 

is reconstructed (up to equivalence) by it. However the real determination of a generator of Markov chain in 

functional space is not a simple procedure.  

 

Therefore, we focus on the most important consideration of the one-dimensional 

characteristics of SRP. For this consider also some complementary processes  

 ).(=)(},:{max=)(),,(= )(tNnnnn SXtYandtSntNTXY   
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Theorem 3 (Jolkof, Rykov (1981) and Rykov (1997)) Let }1,2,=0,),),({( ntStX n   is 

an SRP. Then the sequences }1,2,=,{ nX n  and }1,2,=,{ nYn  are homogeneous Embedded Markov 

(EMCh) and Semi-Markov chains (SMCh), and 0}),({ ttN  is a Markov Renewal Process (MRP) while 

)(tY  is a semi-Markov process (SMP).  

 

 Proof of the theorem can be found in the remind papers (see also [20, 45] for generalization). 

Denote   

    • the Transition Matrix (TM) of MCh }1,2,=,{ nX n  and Semi-Markov Matrix (SMM) 

of SMCh }1,2,=,{ nYn  as  

 },=|={=),( 1 xXyXPyxP nn  

 };=|,={=),,( 11 xXtTyXPytxQ nnn   

  

    • one-dimensional SRP distribution of separate regeneration periods ( SRP transition 

function) by  

 1;},=)(|<},)({=),,(  nxSXTtBtSXPtx nnn  

  

    • one-dimensional SRP distribution given an initial state x  by  

 };)({}=(0)|)({=),,( BtXPxXBtXPBtx x   

 

    • Markov Renewal Matrix (MRM) [Korolyuk, Turbin (1972), Jolkof, Rykov (1981)] and 

[Rykov (1997)] by  

 ).,(1=),,( )}],{([0,

0

nnyt

n

x XSMytxK 


 

 

 

The behavior of a SRP }1,2=0,),),({( ntStX n   does not fully determined by its 

transition function. But many useful properties and characteristics of SRP can be represented in 

terms of appropriate characteristics at its separate cycle and its MRM. Especially, for a most 

interesting in practice one-dimensional distributions of a SRP, the following theorem  can be proved  

with the help of complete probability formulae: 

 

Theorem 4  One dimensional distributions of SRP satisfy to the following relations  

0,,,(),,(),,(=),,(
0

ButyyduxQBtxBtx

t

Ey

 


  (2) 

 =),,(),,(),,(=),,(
0

ButyyduxKBtxBtx

t

Ey

 


  (3) 

 ),,(),,(= BtKBtx    (4) 

 where   denotes the matrix-functional convolution..  

 

Remark 2 One can see that the equality (4) is the solution of the Markov renewal equation (2).  

 

3.1.2  Renewal, Limit and Ergodic Theorems 
 

A well- known Key Renewal, Limit and Ergodic Theorems are generalized for SRP’s as follows. 

Theorem 5  Key renewal theorem,  [Rykov, Yastrebenetsky (1971), Jolkoff, Rykov (1981)] Under 
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usual for the renewal theorem conditions, the following limiting formula holds  

 =),(),,(lim),(lim
0

dtutygyduxKxtgK
Ey

t

tt

 


  

 ,),()(ˆ=
0

1 dttygym
Ey







 

 where }),(ˆ{=ˆ Exx   is the invariant distribution of the EMCh and  

 dsEsxQxm
Ex

)),,[,()(ˆ=
0






  

is a stationary mean of RP length.  

 

The last statement provides the calculation of SRP stationary  probability distribution in 

terms of its distributions at separate RP’s and invariant measure of EMCh. 

 

Theorem 6  Limit theorem  Under some addition assumption of uniform regularity, SRP with 

ergodic (positively recurrent) EMCh steady state probabilities does exist and is equal to  

 dttxxmtx
Ext

),,()(=),,(lim=)(
0

1  








  (5) 

  

Theorem 7  Ergodic theorem For uniformly regular SRP with ergodic (positively recurrent) 

EMCh,  

 =

))((

=))((1lim
1ˆ

1

0

ˆ

0
TM

duuXgM

duuXgt

T

t

t






 




 

 ),()()(ˆ= 1 xqxgym
Ex





 (6) 

 where duEuxQxq ),,((1=)(
0




 is the mean time of the semi-Markov process )(tY  staying in the 

state x .  

 

The  proof of these theorems one can find in [20, 22, 45, 61]. 

 

3.2  Discrete time controllable SRP 

 

3.2.1  Definition 
 

In controllable stochastic processes usually two factors should be considered: actions of 

Nature and will of the Decision Maker (DM). As a system behavior modeling process, we consider 

the SRP and suppose that the decision times coincide with the regeneration times that leads to the 

definition of a discrete time controllable process (DTCSRP). 

 

Definition 8 DTCSRP is a triple }1,2,=),,),({( nUStX nn , where 

}1,2,=),),({( nStX n  is a SRP for which  Regeneration Times (RT’s) }{ nS  are also  Decision Times 

(DT’s), and nU  denotes the decision in time nS . As before for DTSRP the intervals ],(= 1nnn SST  and 

their lengths nnn SST 1=  are called  Regeneration Periods (RP’s).  
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Many concrete CQS could be modeled with DTCSRP, including those that has been 

proposed in the section 2.4. We will return to them in the sections 5 – 8. See also [31]. 

As for usual SRP the main role for DTSRP play the controllable embedded Markov (CMCh) 

}1,2,=),,{( nUX nn  and semi-Markov }1,2,=),,{( nUY nn  (CSMCH) chains. Its family (with 

respect to the decision Aa ) of transition matrices (described the Nature actions) is denoted as  

 },=)(,=)(|=)({=);,( 1 aSUxSXySXPayxP nnn   

 }.=)(,=)(|,=)({=);,,( 1 aSUxSXtTySXPaytxQ nnnn   

 

 

Remark 3 Besides these two processes one could consider also controllable functional random 

elements }1,2,=),,{( nUW nn  where }1,2,=,),),({(= nTtTtSXW nnnn   is  a Regeneration 

Cycle (RC), and nU  is the appropriate decision in time nS .  

 

The behavior of the controllable process determines not only its transition probabilities but 

also by the controller or Decision Maker (DM). The control rules are determined by  the strategies. 

 

3.2.2  Strategies 
 

Definition 9 The manner of decision making is called  strategy.  

 

As it was mentioned in the section 2.3, the strategy depends on system behavior, 

observability and can be realized by several ways. In order to formalize mentioned there possibilities 

we need to consider the history of the DTCSRP. Denoting the decision at the time nS  by nU  and 

putting 1=  nnn SST  the random history of the process up to time 1nS  can be represented as a 

sequence  

 },,,,,,{= 11100 nnnn XTUXTUXH   

and their realization with appropriate small letters. 

A trajectory of DTCSRP is presented in the diagram 

(-25, 10) 0X              

  The mostly general decision rule in the case of fully observable controllable process 

trajectory is determined by the  random measurable strategy  

 },0,1,=),|({= ihud iii  

where )|( iii hud  is a distribution of the DTCSRP decisions admissible at the trajectory. This class of 

strategies is denoted by  . Beside this class, there exists another classes, and a mostly popular one 

is a class of  simple Markov strategies, for which decisions depends only on the last state of the process 

and appropriate distribution is degenerated one at some decision  

 ))((=)|( iiii xfhud   

where ix  is the last state of the trajectory ih  and 

ii uxf =)(  determines an optimal non-

randomized decision in the state ix . The appropriate strategy can be represented as 

ffff =},,,{=  , and appropriate class of simple Markov strategies as 0 . 

Suppose, for  simplicity that the initial time 0=0S  is a decision and regeneration time. 

Then, with an initial distribution   of the process and given strategy   on the set of process 

trajectories, there exists some probability measure 


P . Appropriate to this measure expectation will 

be denoted by 


E . For degenerated at the state x  initial distribution )(= x  appropriate 
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probability and expectation will be denoted as 


xP  and 


xE , respectively. 

 

3.2.3  Quality functional and optimization problem 
 

The loss functional associated with the system RLS will be denoted as )(tZ  and it is 

supposed that it can be represented in the form  

 )(1=)( }{

0

nnt
n

S

n

StZtZ 



  (7) 

 where )(tZn  represents the appropriate loss functional resulting only from the decision time nS  

and which does not depend on another decisions. It is calculated based on the LRS for the concrete 

models. 

 

There are several approaches for control of the process. The most popular are two of them.   

   • Expected discounted loss minimization,  

 ;infinum)(),(
0

 



 dttZeExw st

x

  (8) 

     • Expected long run loss minimization,  

 .infinum)(1lim),( 


tZtExg x
t

  (9) 

 For both cases the optimal strategy 
*  is that, for which  

 ),(=}),,({inf=),( * xwxwxw   (10) 

 ).(=}),,({inf=),( * xgxgxg   (11) 

 

 

3.2.4  Optimality equations 
 

One of the main results of the Markov Decision Processes theory, which also holds for 

DTCSRP is (see [31]) that the functions (10) satisfy to so called  optimality, or  Bellman equations that 

have the forms:   

    • For the discounted loss minimization  

 ,)(),,(~),(~
inf=)(












ywyaxqaxcxw
Eyx

Aa

 (12) 

 where ),(~ axc  is one step discounted expected lost function with the initial state x  and decision 

a ,  

 );(=),(~

0

tZeEaxc n

sta

x





  

and ),,(~ yaxq  is a probability generating function of a RP (inter decision times) under decision a  

for initial state x  at given DT nS ,  

 ).;(=),,(~
,

0

adtQeyaxq yx

st



  

 

    • For long run criterion optimization, the optimality equation besides the  model price 

)(xg  includes also so called  value function }),({= Exxvv  ,  
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 ,)(),,(),()(),(inf=)(








 


yvyaxPaxmxgaxcxv
Eyx

Aa

 (13) 

 where ),( axc  is a one step expected lost function with an initial state x  and decision a ,  

 ),(=),( n

a

x ZEaxc  

and ),,( yaxP  is a transition probability during a RP (inter decision times) under decision a  for 

initial state x  at given DT nS ,  

 ).;(=),,( , aQyaxP yx   

 

 

For given functions )(xw  or )(xg  and )(xv ,  the right side hand of the equations (12, 13) 

are known as a  Bellman function ),( axb  . Another name of these equations is the  Bellman equations, 

which in general case could be represented as  

 ).,(inf=)( axbxv
x

Aa

 (14) 

 

4  Optimal strategy construction 

 

4.1  Optimality Principle 
 

The main result of the DTCSRP theory, as well as the theory of DMP, consists in the validity of  

optimality principle in the framework of some assumptions that takes place for mostly applicable 

situations. In [31] it was shown that under enough reasonable from application point of view 

conditions for DTCSRP, the optimality principle holds. i.e. there exists a simple Markov optimal 

strategy, and appropriate policies can be found from optimality equations. The optimality principle 

means that:   

    • an optimal strategy exists and belongs to the class of simple Markov strategies, 

therefore it is determined by the policy ):({= Exxff  , and  

    • it could be found as the solution of optimality equation  

 )}.(:),({=)( xAaaxbminargxf   

As a result of these investigations the problem of QS control is reduced to the problems of   

    • solution of Bellman equation (14)  and  

    • the Bellman function ),( axb  minimization with respect to )(xAa .  

 

4.2  Numerical methods 
 

There are two main methods for the  solution of Bellman equation   

    • iteration algorithm due to Howard [28]  

    • linear programming algorithm due to Wolf and Danzig .  

 

4.2.1  Iteration algorithm 
 

 The iteration algorithm has been proposed firstly by R.A.Howard for MDP [28]. For both 

discounted and long run cost minimization, it  consists of two procedures. 

 The algorithm   

    •  Beginning: Choose some (for example,  one-step optimal policy 0f )  

    •  Policy evaluation: For a given policy kf  , solve the Bellman equations (12) or (13) in 
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order to find value functions }),({= Exxww kk   or }),({= Exxgg kk   and 

Exxvv kk ),({=   

    •  Policy improvement: For the given value functions kw  or kg  and kv  , find for each 

state x  the decision )(1 xfk  that minimizes  the value of Bellman function  

 )}.(:);,({=)(1 xAavaxbminargxf kk   

Construct the new policy });({= 11 Exxff kk  , leaving in each state x  the previous decision 

)(xfk  if it coincides  with the new one: )(=)(1 xfxf kk .  

    •  End: Compare two successive policies 1kf  and kf . If they coincide STOP and the 

last policy is optimal, if no go to the step  Policy evaluation.  

 

It has been proved in [28] that at each step k  of the algorithm the value functions kw  or kg  

and kv  

do not increase and therefore for the case of the decision process with finite number of states, 

the algorithm stops for the finite number of steps, and for the case of system with denumerable states 

space the algorithm converges. 

There are different improvements and specification of the algorithm (see, for example, 

Puterman [46], Rykov [49], and others. 

 

4.2.2  Linear programming algorithm 
 

Consider firstly LPA for the discounted losses model. For an event  

 },=)(,=)(,{=),(  uSUxSXuxB nnn  

denote by ),(~ uxn  the quantity  

 )},({1=),(~
ux

n
B

n
sS

n eEux


  

for simple Markov strategy 
f=  and for initial process distribution  . Than the functional (8) 

with the process initial distribution   due to (7) can be represented as follows  

 =)(),(
0

dttZeEw st


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 (15) 

 where dvvZeEuxc n

svu

x )(=),(~

0





 . 

Using the backward Kolmogorov equation for DTCSRP, one can show that the function 

),(~ uxn  satisfies  the equation  

 













 0,>for),,(~),(~
0=for)(

=),(~
1 nyuxqux
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uy
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x
AuEx
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

  (16) 
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 If we introduce the variables ),(~=),(
0

uxux nn
  

, then the problem of the discounted cost 

minimization  can be represented as  

 infinum),(),(~

)(




uxuxc
xAuEx

  (17) 

 under the restrictions that arise from the equations (16)  

 ,),(=),()),,(~( ,

)(

Eyyuxyuxqyx

xAuEx




  (18) 

 and  

 0.),(,))(1(~)(1(~1=),( 21 


uxssux

x
AuEx

   (19) 

 

The connection of the Linear Program solution and optimal control policy to an appropriate 

DTCSRP is contained in the following theorem: 

 

Theorem 10 (Wolf  Danzig) For DTSRP with any simple Markov strategy 
f=  the 

variables ),( ux  of the Linear Program (17–rest-lp-discopt-2) have the following property: 0>),( ux  

only for one, say )(* xu  value )(xAu  for any Ex , being 0=),( ux  for all another )(xAu  and 

vice versa. To to any solution y of Linear Program with this property corresponds a simple Markov strategy 

}),(=)({= * Exxuxff  .  

 

Let us turn  now to the problem of long run loss minimization. The Linear Programming 

Algorithm (LPA) for the criteria of long run expected loss minimization looks like a little bit 

complicated. For any simple Markov strategy 
f= , denote by )(  and )(H  the limiting 

and the fundamental matrices of the embedded Markov chain (MC) }{= nXX ,  

 )].;,([=))()((=)()],;,([=)(1=)( 1

10

fyxhPIHfyxPn k

nk





    

The LPA for long run expected loss minimization looks like the following  

 infinum),(),(
)(




uxuxc
xAuEx

  (20) 

 with respect to variables  

 ).|();,()(=),(and),|();,()(=),( yudyxhxuyyudyxxuy
ExEx

 


 

under the restrictions  

 0,=),(),,(( ,

)(

uxyuxpyx

xAuEx
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 .)(=),(),,((),( ,

)()(

Eyyuxyuxpux yx

xAuExxAuEx

 


  (21) 

 Connections of the LPA solution to optimal policy is established  with the help of Wolf and Danzig 

theorem. 

 

Remark 4 Additional attractive feature of the LPA consists in the possibility to use the dual linear 

programming algorithms for constructing of the optimality domains of some given simple control rules, as it 

will be shown in the section 8.2.  

 

4.3  Qualitative properties of optimal policies 
 

The knowledge of some qualitative properties of optimal policies allows significantly 

simplify their calculation. For example, for monotone policies it is enough to find only the levels for 
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switching the policy from one regime to another. The optimality principle validation allows to 

investigate some qualitative properties of optimal policies, for example its monotonicity. Because 

the optimal policy is the optimizer of the Bellman function ),( uxb ,  

 )},(:),({=)( xAuuxbminargxf   

one can investigate the conditions for it, which allow to provide the monotonicity of the optimal 

policy }:)({= Exxff  . 

Because for CQS the states and decision sets E  and A  are usually multi-dimensional, the 

problem of the optimal policy monotonicity investigation consists in finding the conditions for 

monotonicity of the multidimensional optimization problem solution. These conditions usually have 

a form of sub- or super-modularity for the optimizing function [69]. For the special case of QS 

optimal control an appropriate condition has been proposed by Rykov in [53]. In order to explain 

the optimal policy monotonicity conditions, consider firstly the problem of a smooth function 

),( axb  minimization in an enough good domain AEG  .  

 }:),({min xAaaxb   (22) 

 The necessary condition of a local minimum is  

 0,>),(0,=),( axbaxb aaa  (23) 

 where the notations are used:  

 .
),(

=),(,
)(

),(
=),(,

),(
=),(

2

2

2
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axb
axb
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axb
axb

a

axb
axb axaaa
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








 

Therefore the problem solution is a function )(= xfa  from the first equation of (23). Its derivative 

can be found from the equation  

 0,=)(),(),( xfaxbaxb aaax
  

or  

 .
),(

),(
=)(

axb

axb
xf

aa

ax  

Thus, the monotonicity condition of the smooth optimization problem can be formulated as a 

theorem 

 

Theorem 11 , If the minimizer )(xf  of a smooth function ),( axb  minimization is monotone, 

then (.,.)axb  preserve the sign along this solution. At that it is non-positive for non-decreasing solution 

)(xf  and it is non-negative for non non-increasing solution. The inverse conversation also holds: if the 

second mixed derivative of smooth function (.,.)b  in enough good domain G  preserves the sign, then the 

solution of the minimization problem (22) can be chosen monotone. 

It is necessary to note that because the solution of problem (22)  may be  non-unique, the  

monotone choice should be used.  

 

For the discrete problem of minimization, appropriate conditions are almost similar, 

however instead of the second mixed derivative now the second difference of the Bellman function 

with respect to variables of state and control spaces is used. If it will be denoted the same as before 

by , ),( axb  the conditions of the discrete monotonicity problem look  like in the previous theorem. 

For detailed formulation and proof see [53]. 

It succeeds not too often to prove the monotonicity property of an optimal policy. 

Nevertheless, because for queueing systems monotonicity leads to the threshold type of strategy, 

and the attraction of this kind simple strategies and the simplicity of their realization leads to many 

investigations of CQS under strategies with monotone (threshold) policies. In a series of papers of 

Dudin and his colleagues [11] – [16],  the systems with multi-threshold control policies for QS with 

Markov Arrival (MAP) and Batch Markov Arrival Processes (BMAP) have been investigated. The 
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numerical investigation of optimal control of a multi-server system with heterogeneous servers has 

been done  in the paper [17]. In Rykov & Efrosinin [57], the optimal control policy of systems on 

their lifetime has been found in the class of threshold policies. 

 

In the next sections we demonstrate the above considered methods for some of CQS 

examples. 

 

5  Arrival control 
 

Control of arrivals to QS is a traditional problem in QT and has a long story. An excellent 

review of the earliest works about the problem one can find in Stidhan Jr. [65], to which we will 

follow in some parts of this section. Consider a model of arrival control /1/GIM , proposed in the 

example of the section 2.4.1. In this model the customers arrive accordingly to Poisson flow with 

intensity   and are served during random times that are i.i.d. with CDF )(tB , mean value 
1= Bm  and variance 

2

B . The LRS usually includes: (a) reward nR  for each served customer with 

mean value Rm  and (b) penalty )(lCw  for l  customers staying in the system per unit of time 

(holding or waiting cost). The control times are the arrival times, and the decisions consist in the 

admission or rejection of an arriving customer into the system. 

The problem consists in admission of the arriving to the system customers (jobs) for service. 

There are different possibilities for control of arrivals to QS: (a) static, or (b) dynamic for (c) single-

server, (d) multi-server, or (e) network queueing models. 

 

5.1  Static flow control 

 

5.1.1  Single-server static arrival control 
 

In [65] a single-server static flow control model /1/GIM  has been reviewed. For this model 

the DM admits each job with probability p  and rejects it with additional probability p1 . 

Therefore the real admitted flow of jobs has an intensity p . Under this control rule for any control 

parameter p  the system is a usual /1/GIM  QS with Poisson input intensity p  and generally 

distributed service time }{=)(, tBPtBB   with mean service time b  and variance 
2

b . 

The problem consists in admission of jobs to the system in order to maximize the value of 

long run mean reward that due to proposed LRS has the form  

 ,0condition under the)( bppwpCpm wR    (24) 

 where )( pw  is a stationary customer sojourn time in the system. Therefore, for the considered 

system one has  

 .
)2(1

)(
=)(=)(

2222

pb

bp
pbplppw b









  

In terms of  =b  and 
1= bV bb   the problem (24) can be represented in the form  

 max
)2(1

)(1
=)(

22















p

pV
pcpmpwpCpm b

wRwR



  (25) 

 under the condition 
10  p . 

This is a simple optimization problem that could be simply solved numerically. Moreover, 

the last equation allows to obtain some interesting theoretical results proposed in [65]. 
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5.1.2  Multi-server static arrival control 
 

In this case the r -server system rGM //  is considered. A Poisson input flow of customers 

with the intensity   arrives into the system . The customers are served by servers during random 

times with general distribution )(iB  with mean value ib  and variance 
2

i  for i -th server )1,=( ri

. In order to provide the stationary regime’s existence, it is supposed that 1<
1 iri

b 
  and the 

servers are ordered such that  

 .21 rbbb    

The (static) control rule is determined by the probability vector rppp ,,, 21  , where ip  is the 

probability to admit the arrived job to the i -th server. 

In this case in [65] the problem of the static optimization is considered with respect to 

minimization of summary number of customers in the queue  

 ,<01,=subject to)(minimize 1

1

11





 ii

ri

ii

ri

pppl   

where )( ii pl  is the stationary number of customers in the buffer of i -th server, and ii p = . 

 

5.2  Dynamic arrival control 
 

The dynamic arrival control of this model also in [65] has been considered. Some different 

generalization of the dynamic flow control model in Kitaev & Rykov (1995) [31] has been done. 

The Bellman equation for the problem has been proposed and it was shown that the Bellman 

function satisfies to the theorem 11, from which it follows that the optimal policy belongs to the class 

of monotone polices and therefore the optimal strategy has a threshold property. Thus, there exists 

the threshold level, say 
*l  such that all arriving customers, which find in te  

 

 

queue more than 
*l  another customers should be rejected. The optimal threshold level 

*l  

can be found by investigation of the loss functional for the system )/(1,/ lGIM  with finite buffer. 

 

6  Service mechanism control 
  

Control of the system service mechanism is the most frequently considered area of control. 

There are many diverse settings of the problem. The distinguish consists in input and service 

mechanism as well as in LRS. 

One of the earliest work devoted to the service mechanism control has been proposed by 

Sabeti [62]. He considers the )/(1,/ nMM  system with controllable service rate without waiting cost 

wC  and proves the monotonicity property of the optimal policy. For the )/(1,/ nGIM  system, this 

result has been generalized in [63]. For closed queueing systems with controllable service rate the 

analogous results have been done in [7, 8]. More detailed review of the earliest works on the topic 

one can find in [9, 66, 48]. In the framework of DTCSRP, the system has been considered in [31]. The 

numerical investigation of the optimal service rate policies  has been proposed in [73]. 

The hysteresis phenomena of optimal policy arise when the switching costs are taken into 

account. The )/(1,/ nMM  system, with n , with controllable both input and service rate and a 

switching cost in [42] has been considered. As a control parameter the pair ),(= a  is considered 

and the total order of the control parameters is supposed to be: aa   iff both   , . The 

control epochs for the model are both arrival and service completion times. The switching cost 

),( aaCs
  has been included into the model. The conditions that provide optimality of monotone 
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hysteresis policy are studied. One step optimization problem of the Bellman function for the same 

model was studied in [27]. The optimality of monotone hysteresis policy under a little bit more 

general conditions is proved in [50]. The same mode under more general conditions in the 

framework of DTCSRP  has been considered in [31]. The optimality of monotone hysteresis policy 

has been established there. 

 

Remark 5 This system also can be considered as a complex system, in which two parameters input 

and service rates are controllable.  

 

The oore general case of a )/(1,/ nGIM  system with controllable service rate, however 

without switching cost] has been studied in [73]. Customers arrive with Poisson flow of intensity   

and are served with one of finite numbers of rates (service modes) }0,1,2,=:{= rkaAa k  , 

such that the service time has a CDF  

 ,0,=),(=);(=)( rktaBatBtB kkk  

where )(tB  is a given CDF with finite mean Bm . As the control times (epochs) the service beginning 

times are supposed. At that the service delay it is convenient to consider as service mode with rate 

0=0a . The control consists in choice in the control epochs, one of the service modes in order to 

maximize the discounted or long run expected reward or minimize appropriated loses. The 

monotonicity of the optimal policy  has been studied numerically. 

For multi-server systems the control rules consist usually in choice of servers for service. 

This setting is closed to the problems of the system structure control and will be considered in the 

next section. 

 

7  System structure control 

 

7.1  Servers switching on and off problem 
 

The problems of system structure control are very closed to the service mechanism control 

and consist in switching on and off servers depending on the system state with the goal to optimize 

some given functional. Such type of systems have been considered by Heyman [24] and Deb [10]. 

Consider the system /1/GIM  with controllable system structure, which consists in the 

possibility to switch on and off the server. Customers arrive accordingly to Poison flow of the 

intensity   and are served during random service time with general CDF )(tB . Reward structure 

includes:   

    • penalties 1C  and 0C  for switching on and off the server;  

    • penalty sc  per unit of server operating time (using cost); and  

    • penalty )(icw  for waiting i  customers per unit of time.  

 

Control epochs are both the arrival and service completion times and the control consist in 

switching on and off the server with the goal long run average losses minimization. 

The monotonicity of the optimal policy has been proved that leads to its threshold property. 

 

7.2  Slow server problem 
 

So called slow server problem also can be considered as a system structure control problem. 

The problem is the following. For the rMM //  QS with Poisson input intensity   and r  

heterogeneous servers with service intensities )1,=( rii , ordered such that  
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 r >>> 21   (26) 

 the conservative discipline, for which any idle server should be used, will be not expedient for 

example, with respect to minimization of the mean sojourn (holding) time (or mean number) of 

customers in the system. Therefore, the problem of optimal servers using arise. 

The problem firstly has been considered for two servers in the static regime by B. 

Krishnamoorthy in [39], then also for two servers in the dynamic regime it is studied by Hajek, 

Lin&Kumar and Koole in [23, 41, 37]. It was shown that the optimal rule for using of the slow server 

has a threshold character and the optimal level of queue length 
*q  for using the slow server is that 

for which  

   1.= 1

21

* q  

For the system with several heterogeneous servers the analogous rule has been proved by Rykov in 

[54], see also [53]. For the problem investigation consider a Markov decision process with set of space 

states )},,(={= 1 rddqxE  , where q  is the queue length and )1,=( rkdk  is an indicator of the 

k -th server state: 0=kd  if the k th server free, and 1=kd  if it is busy. A system of sets  

 } state in the serves free of indexes ofset {=)( xxA  

will be used as action sets. 

It was proved that the optimal servers using rule also have the threshold structure. For any 

system state ),,(= 1 rxxx  ,  there exists a threshold level )(* xq  such that the new server should 

be used iff only the queue length q  is greater than )(>),( ** xqqxq . At that the server of the most 

intensity among the free servers should be switched on. However the levels of the servers switching 

on and off should be calculated numerically, and one  example of this calculation one can be found 

in [17]. 

For the generalized setting of the problem, which include also the waiting cost 0c  for any 

customer waiting in queue per unit of time and the using servers cots )1,=( rkck  for k -th server 

using per unit of time, the analogous optimal service rule has been found in [56, 55]. In this case the 

monotonicity of the optimal policy preserves if for servers ordering accordingly to (26) also the 

following condition holds:  

 .>>> 1

2

1

21

1

1 rrccc     (27) 

 It should be noted that the optimal rule does not depend on the input intensity   and waiting cost 

0c . Also the threshold levels )(* xq  should be found numerically. 

 

8  Service discipline control 
  

One of the first investigations on CQS does not touch the delicate problems regarding the 

MDP and deals only with the optimization problems in the framework of simple priority systems. 

 

8.1  Priority optimization 
 

The problem of priority system optimization can be considered as the problem of service 

discipline optimization in small class of decision rules that does not depend on the process trajectory 

observation and on the system state. 

One of the first papers, devoted to QS optimal control, was the problem of optimal priority 

assignment [2]. The problem is the following. Consider a single server /1/ rr GIM  queuing system 

with r  independent Poison inputs of intensity )1,=(, rkk . Random service time kB  of k -th type 

customers has CDF )1,=(),( rktBk  with mean value 
1= 

kkb   and its waiting unit of time 
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penalties with kc  units. The problem consists in choice of the service priorities in order to minimize 

the expected long run loses  

 ,=)(1lim
110

kk

rk

kk

rk

t

t

lcdssLctE 


 

where )(tLk  is the k -th type of customers queueing length in time t , kl  its stationary mean value, 

kw  is the stationary waiting time of the k -th type customers. The priority systems has been  

investigated in detail by Klimov [32, 35], Gnedenko and others [19], Jaiswal [21] and others, where 

the steady state system characteristics have been calculated. Based on the stationary characteristics 

of the priority systems, the solution has been proposed by Bronstein and Rykov in [2] (see also [6]) 

with the help of a simple method that many years after got the name  perturbation method [3], and the 

rule now known as the c -rule. It is the following. The priority should be organized in a such 

manner that  

 rrcbcbcb  2211  

or in the order  

 ,2211 rrccc     

which gives the name  c -rule to this discipline. 

Further, it was shown [59] that this discipline is also optimal inside essentially  awide class 

of so called  dynamic priorities, where the idea is the following: the whole set of states E  is divided 

into classes )0,1,=(, riEi  , in which the decision ia =  in the decision epoch should be taken. 

This class of decisions in fact  represents a class of Markov decision strategies, and therefore the 

results show that the priority is the optimal discipline in the class of Markov decisions. These results 

have been developed further for system with dynamic preemptive resume priorities in [70, 71, 72] 

and others. 

 

8.2  System with feedback 
 

For  more general settings the problem of service discipline control has been proposed by 

Klimov [33] and Kitaev&Rykov [30]. Remind more general system 1// Fr GIM  with feedback, 

proposed in [30]: r  types of customers arrive into the single-server system from Poisson flows with 

intensities i  for i -th type of customers ( i -customer); the customers are served with i.i.d. service 

times distributed accordingly to the CDF )(tBi  with mean value ib . Each served i -customer leaves 

the system with probability (0)iq , or generates the set of the same type of customers ),,( 1 rnn   

with probability ),,( 1 ri nnq   that should be served also in the system. The LRS includes only a 

linear waiting (holding) cost iiw lcilC =),(  for the i -th type of customer unit of time spent in the 

system. 

The problem consists in service discipline construction that minimize the long run expected 

loss for the system exploitation. In [31] the existence of a simple Markov optimal strategy has been 

proved that gave the possibility to consider the problem in the framework of dynamic priority 

setting. As the result, the problem has been reduced to the linear program  

 min
,1




ijji

rji

xcb  (28) 

 with respect to ijx ,  under restrictions  

 ).1,=,(=)((
1

rkjxaxa jkijikikij

ri




 (29) 

 Here jiij LEx =  is the stationary mean value of j -th type of customers in the i -th type decision 
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epochs, ijjiijij qba  = , and ijq  is mean number of j -th type of customers generated by the i

-th one. The model constant 0>= kjjk   does not depend on the control rule. 

The linear problem (28, 29) solution is attained as usual in the extreme points of manifold, 

determined by the restrictions (29). This statement allows to show that the optimal policy determines 

the priority discipline. The dual linear program has been used in order to find the optimal priority 

rule. It is not enough simple and it is determined with an algorithm, which one can find in [30, 31]. 

 

Remark 6 It is well known the connection between iteration algorithm of optimal policy 

construction and some linear program. In this problem, using a dual linear program allows to construct the 

optimal control policy. The possibilities of the dual linear program does not fully used up today. Really using 

the dual linear program allows to search parameters of the model, in which some given simple rule (or service 

discipline) will be optimal (see also remarks in the Conclusion). This approach has not yet exhausted itself 

and should be developed in future.  

 

The further investigation of the priority queues has been done by Miscoy and others [43], 

where especially numerical methods for generalized Kendall equation has been proposed. It also 

can be used as a method for optimal priority construction for the priority queues with switching 

times. 

 

8.3  Closed queuing systems 
 

The optimality of the priority rule for closed queueing system has been proved by Koole in 

[38]. A closed system >/1//< MM r  with r  sources, one server and controllable service discipline 

is considered. Sources have exponentially distributed life and repair times with parameters 

)1,=( riii .. The system includes a waiting (holding) cost )1,=( rkck  for every unit of time 

that the k -th source is not functioning. The preemptive service discipline that minimizes the total 

average waiting cost is the goal of investigation. 

The problem is formulated in the framework of the decision Markov model. In [38] it is 

proved that if the sources are ordered in such a manner that the conditions hold  

 rrr cc    111 and  (30) 

 then the priority rule:  serve the source with minimal index is optimal. 

In the case when all 1=kc  this result shows that this rule is also optimal for minimizing  

the average queue length. For the case when  =k  for all rk 1,=  , the results show that the c

-rule  also holds for the closed system with homogeneous sources. It is possible to see that the results 

also coincide with the analogous results for the open queueing system with heterogeneous servers 

considered in subsection 7.2. 

 

9  Conclusion 
 

To model CQS in the paper the DTCSRP is used. Of course, the assumption about the 

possibility to change the control in special control epochs is a some restriction. However, this 

restriction is natural for many practical situations. Moreover, for MDP due to the memoryless 

property of exponential distribution the epochs of any states changing are the natural decision times. 

However, there are some examples (and works), where the choose of control epochs is a subject of 

investigation. So in [4, 72, 58] the problem of optimal service interrupting has been investigated. 

Another approach that could be mentioned as a subject for further investigation consists of 

construction of the domains into system parameters set such that some natural control rule would 

be optimal if the system parameters lie in the domain ( domains of optimality). Besides the practical 
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importance of such approach, it allows in some cases to find an optimal policy for all possible values 

of the system parameters (example of such approach has been proposed in [30, 31]. 

Further development of the above approach for optimal control of QS is the following. 

Because for CQS the states and decision sets E  and A  are usually multi-dimensional, the problem 

of the optimal rules qualitative properties investigation should be stated as follows: Is it possible to 

introduce into sets E  and A  such a partial order, in which the optimal policy would be monotone? 
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