
 
Anulova, S.V., Mai1, H., Veretennikov, A.Yu. 
ON AVERAGED EXPECTED COST CONTROL  

RT&A, No 4 (47) 
Volume 12, December 2017  

31 

On averaged expected cost control as reliability for 1D 

ergodic diffusions 
  

S.V. Anulova5 6, H. Mai7 8, A.Yu. Veretennikov9 10  

Mon Nov 27 10:24:42 2017 

 

 

Abstract 
For a Markov model described by a one-dimensional diffusion with ergodic control 

without discount on the infinite horizon an ergodic Bellman equation is proved for 

the optimal readiness coefficient; convergence of the iteration improvement 

algorithm is established. 

  

 

 

1   Introduction 
 

According to textbooks in reliability – see, e.g., [7], [19] – coefficient of readiness is one of the main 

characteristics of reliability of the system. In this paper the model under consideration is presented 

by an ergodic Markov process described as a one-dimensional diffusion process which is 

controlled so as to spend more time in a “good domain” on average on the infinite horizon of time. 

The current readiness of the system is measured by a non-negative function 𝑓 taking values on the 

interval [0,1]: one signifies a full readiness, while zero means that the model is in the break down 

state. Hence, in particular, we do not just split the real line into two parts – where 𝑓 = 1 or 𝑓 = 0 – 

but allow a soft transition from full readiness (𝑓 = 1) to a complete failure of the model (𝑓 = 0). 

Both coefficients of the diffusion as well as the function 𝑓 itself may depend on the control. We 

allow only feedback (Markov) control strategies with values from some compact set. The main 

result states an ergodic Bellman equation on the optimal readiness characteristic 𝜌 along with some 

auxiliary function; this 𝜌 may be regarded as the most favourable readiness averaged 

simultaneously in space and time. Also we state an algorithm of improvement of control which in 

principle provides a tool to solve the Bellman equation approximately. 

Earlier results on ergodic control in continuous time were obtained in [13], [15], [3], et al. 

The latest works include [1], [2], [18], see also the references therein. In the very first papers and 

books compact cases with some auxiliary boundary conditions – so as to simplify ergodicity – were 

studied; convergence of the improvement control algorithms were studied only partially. In the 
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later investigations noncompact spaces are allowed; however, apparently,  ergodic control in the 

diffusion coefficient 𝜎 of the process was not tackled earlier. About controlled diffusion processes 

on a finite horizon, or, on infinite horizon with discount (also known as killing) the reader may 

consult in [3], [10]. 

Discrete time and space theory was developed simultaneously in the monographs [5], [6, 

8], [14], [17] and some others; important journal references can be found therein. Technical 

difficulties related to control in the diffusion coefficients are not an issue in discrete models. 

Combination of discrete state spaces and continuous time can be found in [18], et al. Reliability was 

not an issue in most of the cited works; however, it may be introduced in any Markov model. The 

paper consists of five sections not counting two lines of the Conclusions: 1 – Introduction, 2 – 

Setting, 3 – Assumptions and Auxiliaries, 4 – Main result and 5 – Sketch of the Proof. 

 

2   Setting 
 

Given a standard probability space (Ω, ℱ, (ℱ𝑡), 𝑃) and a one-dimensional (ℱ𝑡) Wiener process 𝐵 =

(𝐵𝑡)𝑡≥0 on it we consider a one-dimensional SDE with coefficients 𝑏, 𝜎 and a control parameter 𝛼 

described as follows:  
 𝑑𝑋𝑡

𝛼 = 𝑏(𝛼(𝑋𝑡
𝛼), 𝑋𝑡

𝛼) 𝑑𝑡 + 𝜎(𝛼(𝑋𝑡
𝛼), 𝑋𝑡

𝛼) 𝑑𝑊𝑡 ,    𝑡 ≥ 0, 

  (1) 
 𝑋0

𝛼 = 𝑥 ∈ ℝ. 

 Its (weak) solution does exist [11] and under our conditions – 1D, boundedness of all coefficients 

and uniform non-degeneracy (or ellipticity) of 𝜎2 – is weakly unique. 

Let a non-empty compact set 𝑈 ⊂ ℝ be a range of possible control values. Without any 

further reminder 𝑈 being compact is always bounded. Let 𝑏: 𝑈 × ℝ → ℝ, 𝜎: 𝑈 × ℝ → ℝ, 𝛼:ℝ → 𝑈 be 

given Borel functions (some more regularity assumptions will be presented later). 

Denote the (extended) generator, which corresponds to the equation (??) with a fixed 

function 𝛼(⋅) by 𝐿𝛼:  

 𝐿𝛼(𝑥) = 𝑏(𝛼(𝑥), 𝑥)
∂

∂𝑥
 +

1

2
𝜎2(𝛼(𝑥), 𝑥)

∂2

∂𝑥2
,    𝑥 ∈ ℝ. 

Given a running cost function 𝑓:𝑈 × ℝ → ℝ from a suitable function class we aim to choose an 

optimal (in some relaxed setting, at least, “nearly-optimal”) control strategy 𝛼:ℝ → 𝑈 (Markov 

homogeneous, or, in another language, Markov feedback strategy) such that the corresponding 

solution 𝑋𝛼 maximizes the averaged cost function  

 𝜌𝛼(𝑥): = liminf
𝑇→∞

 
1

𝑇
 ∫
𝑇

0
𝔼𝑥𝑓(𝛼(𝑋𝑡

𝛼), 𝑋𝑡
𝛼) 𝑑𝑡. (2) 

 Recall that the function 𝑓 takes values  

 0 ≤ 𝑓 ≤ 1, (3) 

 then this running cost may be regarded as a measure of current readiness of the underlying 

device. Namely, any value between zero and one we can treat as a measure of availability, while 

the limit 𝜌𝛼 if it exists, can be understood as an averaged – with respect to time and “ensemble” – 

availability (=readiness) of the system. This is especially natural for the set of possible values {0; 1} 

for such a function; however, the whole interval of values [0,1] also makes an evident sense in the 

context of reliability theory. In the sequel we assume that the assumption (3) is satisfied. 

By 𝐾 we denote the class of strategies 𝛼:ℝ → 𝑈 which are Borel measurable. For 

convenience for every 𝛼 ∈ 𝐾 we define the function 𝑓𝛼: ℝ → ℝ, 𝑓𝛼(𝑥) = 𝑓(𝛼(𝑥), 𝑥), 𝑥 ∈ ℝ. Now, 

instead of(2) we can use the equivalent form,  

 𝜌𝛼(𝑥) = liminf
𝑇→∞

 
1

𝑇
 ∫
𝑇

0
𝔼𝑥𝑓

𝛼(𝑋𝑡
𝛼) 𝑑𝑡. 

The “maximin” cost function – or, in other terms, the ergodic availability or readiness coefficient of 

the system – is defined by the expression  

 𝜌(𝑥): = sup
𝛼∈𝐾

liminf
𝑇→∞

 
1

𝑇
 ∫
𝑇

0
𝔼𝑥𝑓

𝛼(𝑋𝑡
𝛼) 𝑑𝑡. (4) 

 Suppose that for every 𝛼 ∈ 𝐾 the solution of the equation (??) 𝑋𝛼 is an ergodic process, that is, 
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there exists a unique limiting distribution 𝜇𝛼 of 𝑋𝑡
𝛼 , 𝑡 → ∞, the same for all initial conditions 𝑋0 =

𝑥 ∈ ℝ. Then it is true that for every 𝑥 ∈ ℝ,  

 𝜌𝛼(𝑥) ≡ 𝜌𝛼: = ∫ 𝑓𝛼(𝑥′) 𝜇𝛼(𝑑𝑥′) =: 〈𝑓𝛼 , 𝜇𝛼〉, (5) 

 and  

 𝜌(𝑥) ≡ 𝜌:= sup
𝛼∈𝐾

∫ 𝑓𝛼(𝑥′) 𝜇𝛼(𝑑𝑥′) = sup
𝛼∈𝐾

〈𝑓𝛼 , 𝜇𝛼〉. (6) 

 Note that under our assumptions 𝜌 does not depend on 𝑥. Ergodicity requires special conditions 

on the characteristics 𝑏, 𝜎, 𝛼; they will be later specified in the next section. We also define an 

auxiliary function which depends on 𝑥 and which looks like a cost function but it is not,  

 𝑣𝛼(𝑥): = ∫
∞

0
𝔼𝑥(𝑓

𝛼(𝑋𝑡
𝛼) − 𝜌𝛼) 𝑑𝑡,    𝛼 ∈ 𝐾. 

This integral will converge under the recurrence assumptions below. 

  

Solutions of the equation (??) will be understood as weak ones. Correspondlingly, the 

ergodic Bellman equation (7) below will be established for weak solutions. 

  

 The first goal of the paper is to prove that the cost 𝜌 – which is a constant in the ergodic 

setting – is the component of the pair (𝑉, 𝜌), which is a unique solution of the  ergodic HJB or 

Bellman’s equation,  

 sup
𝑢∈𝑈

[𝐿𝑢𝑉(𝑥) + 𝑓𝑢(𝑥) − 𝜌] = 0,    𝑥 ∈ ℝ, (7) 

 where 𝑉 will be unique up to an additive constant, while 𝜌 will be unique in the standard sense. 

The meaning of the function 𝑉 is that it coincides with 𝑣𝛼  for the optimal strategy 𝛼 if the latter 

exists, and this function is the main tool for finding an optimal strategy. Note that due to the uni-

dimensional setting and the non-degeneracy of 𝜎2 which will be assumed, the equation (7) is 

equivalent to the folowing,  

 sup
𝑢∈𝑈

𝜎2(𝑢, 𝑥) [
1

2
𝑉′′(𝑥) +

𝑏(𝑢,𝑥)

𝜎2(𝑢,𝑥)
𝑉′(𝑥) +

𝑓𝑢(𝑥)

𝜎2(𝑢,𝑥)
−

𝜌

𝜎2(𝑢,𝑥)
] = 0,    𝑥 ∈ ℝ. (8) 

 Further, due to the non-degeneracy of 𝜎2 and in particular because the right hand sides in (7) and 

(8) are equal to zero, we conclude that they are both equivalent to  

 sup
𝑢∈𝑈

[
1

2
𝑉′′(𝑥) +

𝑏(𝑢,𝑥)

𝜎2(𝑢,𝑥)
𝑉′(𝑥) +

𝑓𝑢(𝑥)

𝜎2(𝑢,𝑥)
−

𝜌

𝜎2(𝑢,𝑥)
] = 0,    𝑥 ∈ ℝ. (9) 

 

 The second goal is to show that the “RIA” algorithm (“reward improvement algorithm”, or, 

in some papers, “PIA” for “policy improvement algorithm”) provides a sequence of convergent 

approximate costs, 𝜌𝑛 → 𝜌, 𝑛 → ∞. Also let us emphasize that unlike in the finite horizon case, here 

in the average ergodic control setting, the solution of the HJB equation is  a couple (𝑉, 𝜌), where 𝜌 is 

the desired cost while 𝑉 is some auxiliary function, which also admits a certain interpretation in 

terms of control theory. 

Note that solutions of the equations (7), (8) and (9) will be studied in Sobolev classes, 

hence, (second) derivatives will be defined up to almost everywhere with respect to Lebesgue’s 

measure. To keep all strategies Borel, all expressions involving Sobolev derivatives will be 

uderstood as Borel measurable expressions since for any Lebesgue’s function there is a Borel 

function which coincides with the former almost everywhere. Respectively, all HJB or Poisson 

equations will be understood in the Sobolev sense with Borel versions of any second order Sobolev 

derivative. First order derivatives are all continuous due to Sobolev imbedding theorems. 

 

3  Assumptions and auxiliaries 
 

To ensure ergodicity of 𝑋𝛼 under any feedback control strategy 𝛼 ∈ 𝐾, we make the following 

assumptions on the drift and diffusion coefficients.   

    1.  The function 𝑏 is bounded, 𝐶1 in 𝑥, and  

 lim
|𝑥|→∞

sup
𝑢∈𝑈

 𝑥 𝑏(𝑢, 𝑥) = −∞. (10) 



 
Anulova, S.V., Mai1, H., Veretennikov, A.Yu. 
ON AVERAGED EXPECTED COST CONTROL  

RT&A, No 4 (47) 
Volume 12, December 2017  

34 

 

    2.  The function 𝜎 is bounded, uniformly non-degenerate and 𝐶1 in 𝑥. 

 

    3.  The function 𝑓 takes values in the interval [0,1]. 

 

    4.  The functions 𝜎(𝑢, 𝑥), 𝑏(𝑢, 𝑥), 𝑓(𝑢, 𝑥) are continuous in (𝑢, 𝑥). 

 

    5.  The set 𝑈 ⊂ ℝ is compact. 

 

Lemma 1  Let the assumptions (A1) – (A4) be satisfied. Then the function 𝑣𝛼  has the following 

properties: 

  

    1.  For any strategy 𝛼 the function 𝑣𝛼  is continuous as well as (𝑣𝛼)′, and there exist 

𝐶,𝑚 > 0 such that sup𝛼(|𝑣
𝛼(𝑥)| + |𝑣𝛼(𝑥)′|) ≤ 𝐶(1 + |𝑥|𝑚). 

 

    2.  𝑣𝛼 ∈ 𝑊𝑝,𝑙𝑜𝑐
2  for any 𝑝 ≥ 1. 

 

    3.  𝑣𝛼 ∈ 𝐶1,𝐿𝑖𝑝 (i.e., (𝑣𝛼)′ is locally Lipschitz).  

    4.  𝑣𝛼  satisfies a Poisson equation in the whole space,  

 𝐿𝛼𝑣𝛼(𝑥) + 𝑓𝛼(𝑥)−< 𝑓𝛼 , 𝜇𝛼 >=
𝑎.𝑒.

0, (11) 

 in the Sobolev sense. 

 

    5.  Solution of this equation is unique up to an additive constant in the class of Sobolev 

solutions 𝑊𝑝,𝑙𝑜𝑐
2  with a no more than some (any) polynomial growth. 

 

    6.  < 𝑣𝛼 , 𝜇𝛼 >= 0. 

  

 

 

Proof. follows from [21] & [16]; see also [9, Lemma 4.13 and Remark 4.3].  

 

 

Lemma 2  Let the assumptions (A1) – (A3) hold true. Then,   

    • For any 𝐶1, 𝑚1 > 0 there exist 𝐶,𝑚 > 0 such that for any strategy 𝛼 ∈ 𝐾 and for any 

function 𝑔 growing no faster than 𝐶1(1 + |𝑥|
𝑚1),  

 sup
𝑡
|𝔼𝑥𝑔(𝑋𝑡

𝛼)| ≤ 𝐶(1 + |𝑥|𝑚). (12) 

 

 

    • For any strategy 𝛼 ∈ 𝐾 the function 𝜌𝛼 is a constant, and there exists 𝐶 < ∞ such that  

 sup
𝛼
|𝜌𝛼| ≤ 𝐶 < ∞. (13) 

  

    • For any 𝛼 ∈ 𝐾, the invariant measure 𝜇𝛼 integrates any polynomial:  

 ∫ |𝑥|𝑚 𝜇𝛼(𝑑𝑥) < ∞. 

 

  

  Proof follows from [21] and [16]. 
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4   Main result 
 

Recall that the state space dimension is 𝐷 = 1 and that all SDE solutions with any Markov strategy 

are weak, unique in distribution, strong Markov and ergodic. All of these follow from [11] and 

from the assumptions (A1) and (A2) (see [21] about ergodicity). 

The “exact RIA” reads as follows. Let us start with some homogeneous Markov strategy 

𝛼0, which uniquely determines 𝜌0 = 𝜌
𝛼0 ≡ 〈𝑓𝛼0 , 𝜇𝛼0〉 and 𝑣0 = 𝑣

𝛼0 . Next, for any couple (𝑣, 𝜌) such 

that 𝑣 ∈ 𝐶2, or 𝑣 ∈ 𝑊𝑝,𝑙𝑜𝑐
2  with any 𝑝 > 0, and for 𝜌 ∈ ℝ, define  

 𝐹[𝑣, 𝜌](𝑥): = sup
𝑢∈𝑈

[𝐿𝑢𝑣(𝑥) + 𝑓𝑢(𝑥) − 𝜌] = max
𝑢∈𝑈

[𝐿𝑢𝑣(𝑥) + 𝑓𝑢(𝑥) − 𝜌]. 

Recall that unless 𝑣 ∈ 𝐶2, we consider a Borel version of the expression in the right hand side. 

Now, by induction given 𝛼𝑛, 𝜌𝑛 and 𝑣𝑛, the next “improved” strategy 𝛼𝑛+1 is defined as follows: 

for any 𝑥,  

 𝐿𝛼𝑛+1𝑣𝑛(𝑥) + 𝑓
𝛼𝑛+1(𝑥) − 𝜌𝑛 = 𝐹[𝑣𝑛 , 𝜌𝑛](𝑥). (14) 

 which is equivalent to  
 𝐿𝛼𝑛+1𝑣𝑛(𝑥) + 𝑓

𝛼𝑛+1(𝑥) = max
𝑢
[𝐿𝑢𝑣𝑛(𝑥) + 𝑓

𝑢(𝑥)] =: 𝐺[𝑣𝑛](𝑥). 

In the sequel we  assume that a Borel measurable version of such a strategy can be chosen. In our case 

existence of such a Borel strategy follows from Stschegolkow’s (Shchegolkov’s) theorem, see [20], 

[12, Satz 39], [4, Theorem 1] (the first two references are in German, the last one cites the same 

result in English), which states that if any section of a (nonempty) Borel set 𝐸 in the direct product 

of two complete separable metric spaces is sigma-compact (i.e., equals a countable sum of closed 

sets) then a Borel selection belonging to this set 𝐸 exists. 

Now, the value 𝜌𝑛+1 is defined as  
 𝜌𝑛+1: = 〈𝑓

𝛼𝑛+1 , 𝜇𝛼𝑛+1〉, 

where, in turn, 𝜇𝛼𝑛+1  is the (unique) invariant measure, which corresponds to the strategy 𝛼𝑛+1. 

Recall that  

 𝑣𝑛(𝑥) = ∫
∞

0
𝔼𝑥(𝑓

𝛼𝑛(𝑋𝑡
𝛼𝑛) − 𝜌𝑛) 𝑑𝑡. 

 

Theorem 1  Let the assumptions (A1) – (A5) be satisfied. Then the Bellman equation (7) holds true 

for 𝜌 and some auxiliary function 𝑉 ∈ 𝐶2, solution of this equation is unique for 𝜌, and for any 𝑛, 𝜌𝑛+1 ≥

𝜌𝑛, the sequence 𝜌𝑛 is bounded, and there is a limit 𝜌𝑛 ↑ 𝜌, 𝑛 → ∞. 

 

5  Sketch of the Proof 
 

Let us show the sketch of the main steps of the proof. 

  

noindent  1. From (14) and (11) it may be derived that  

 (𝐿𝛼𝑛+1𝑣𝑛 − 𝐿
𝛼𝑛+1𝑣𝑛+1)(𝑥) ≥

𝑎.𝑒.

𝜌𝑛 − 𝜌𝑛+1. 

 Further, from Dynkin’s formula applied to (𝑣𝑛 − 𝑣𝑛+1)(𝑋𝑡
𝛼𝑛+1) we obtain,  

 𝔼𝑥𝑣𝑛(𝑋𝑡
𝛼𝑛+1) − 𝔼𝑥𝑣𝑛+1(𝑋𝑡

𝛼𝑛+1) − 𝑣𝑛(𝑥) + 𝑣𝑛+1(𝑥) ≥ (𝜌𝑛 − 𝜌𝑛+1) 𝑡. 

 Since the left hand side here is bounded for a fixed 𝑥, after division of all terms by 𝑡 and at 𝑡 → ∞, 

we obtain,  
 0 ≥ 𝜌𝑛 − 𝜌𝑛+1, 

as required. Therefore, 𝜌𝑛 ≤ 𝜌𝑛+1, so that 𝜌𝑛 ↑ �̃� with some �̃�. Thus,  the RIA does converge, 

although so far we do not know whether �̃� = 𝜌. Clearly, �̃� ≤ 𝜌, since 𝜌 is the sup over all Markov 

strategies, while �̃� is the sup over some its countable subset. 

 

Recall that now we want to show that 𝑣𝑛 → �̃� such that the couple (�̃�, �̃�) satisfies the HJB 

equation (7), and that �̃� – as well as �̃� in some sense – here is unique. 

  

  2. What we want to do is to pass to the limit in the equation  
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 𝐿𝛼𝑛+1𝑣𝑛+1(𝑥) + 𝑓
𝛼𝑛+1(𝑥) − 𝜌𝑛+1 = 0,     𝑎𝑠     𝑛 → ∞, 

after having showed compactness of the set (𝑣𝑛) at least in 𝐶1 (and later on, in 𝐶1,𝛽 for any 0 < 𝛽 <

1). Since  

 𝜌𝑛 = 𝐿𝛼𝑛𝑣𝑛(𝑥) + 𝑓
𝛼𝑛(𝑥), 

we obtain after division by 𝜎2/2,  

 𝑣𝑛′′(𝑥) =
2𝜌𝑛

𝜎2
(𝑥) −

2𝑓

𝜎2
(𝑥) −

2𝑣𝑛′

𝜎2
(𝑥). (15) 

 Due to the local boundedness and absolute continuity of 𝑣𝑛′ – see the Lemma 1 – we conclude that 

the sequence (𝑣𝑛) is locally (i.e. on any bounded interval) tight in 𝐶1. Hence, there is a subsequence 

𝑛′ → ∞ such that 𝑣𝑛′ converges in 𝐶1 on any bounded interval to some function �̃� ∈ 𝐶1 (in fact, 

even �̃� ∈ 𝐶1,𝐿𝑖𝑝 = {𝑔 ∈ 𝐶1(ℝ): 𝑔′ ∈  𝐿𝑖𝑝 } as will be clear in a few lines and follows, e.g., from (15)). 

Denoting  

 𝐹1[𝑥, 𝑣′, 𝜌]: = max
𝑢
[�̂�𝑢𝑣′ + 𝑓𝑢 − �̂�](𝑥) ≡ max

𝑢
[�̂�𝑢𝑣′ + 𝑓𝑢 −

𝜌

𝑎𝑢
] (𝑥), 

where  

 𝑎𝑢(𝑥) =
1

2
(𝜎𝑢(𝑥))2, �̂�𝑢(𝑥) = 𝑏𝑢(𝑥)/𝑎𝑢(𝑥), 𝑓𝑢(𝑥) = 𝑓𝑢(𝑥)/𝑎𝑢(𝑥), �̂�𝑢(𝑥) =

𝜌/𝑎𝑢(𝑥), 

 and by using the bounds as in [10, Chapter 1],  it can be shown the limiting equation as 𝑛′ → ∞  

 𝑣′̃(𝑥) − 𝑣′̃(𝑟) + ∫
𝑥

𝑟
𝐹1[𝑠, 𝑣′̃(𝑠), �̃�] 𝑑𝑠 = 0, (16) 

 which implies by differentiation that  

 𝑣′̃′(𝑥) + 𝐹1[𝑥, 𝑣′̃, �̃�](𝑥) = 0. (17) 

 This equation is equivalent to (9) and, hence, to (7), as required. In other words, the limiting pair 

(�̃�, �̃�) satisfies the HJB equation (7). 

  

  3.  Uniqueness for 𝜌. Suppose there are two solutions of the (HJB) equation, 𝑣1, 𝜌1 and 

𝑣2, 𝜌2 with a polynomial growth for 𝑣𝑖 . Denote 𝑣(𝑥):= 𝑣1(𝑥) − 𝑣2(𝑥) and consider two Borel 

strategies 𝛼1(𝑥) ∈  𝑎𝑟𝑔𝑚𝑎𝑥 𝑢(𝐿
𝑢𝑣(𝑥)) and 𝛼2(𝑥) ∈  𝑎𝑟𝑔𝑚𝑖𝑛 𝑢(𝐿

𝑢𝑣(𝑥)), and denote by 𝑋𝑡
𝑖 a (weak) 

solution of the SDE corresponding to each strategy 𝛼𝑖. (It exists and is weakly unique.) Note that  
ℎ2(𝑥): = max

𝑢
(𝐿𝑢𝑣(𝑥) − 𝜌1 + 𝜌2) = max

𝑢
(𝐿𝑢𝑣1(𝑥) + 𝑓𝑢(𝑥) − 𝜌1 − 𝐿𝑢𝑣1(𝑥) − 𝑓𝑢(𝑥) + 𝜌2) 

  

 ≥ max
𝑢
(𝐿𝑢𝑣1(𝑥) + 𝑓𝑢(𝑥) − 𝜌1) − max

𝑢
(𝐿𝑢𝑣2(𝑥) + 𝑓𝑢(𝑥) − 𝜌2) =

𝑎.𝑒.
0, 

 and similarly,  
 ℎ1(𝑥):= min

𝑢
(𝐿𝑢𝑣(𝑥) − 𝜌1 + 𝜌2) = −max

𝑢
(𝐿𝑢(−𝑣)(𝑥) − 𝜌2 + 𝜌1) 

  

 ≤ − [max
𝑢
(𝐿𝑢𝑣2(𝑥) + 𝑓𝑢(𝑥) − 𝜌2) − max

𝑢
(𝐿𝑢𝑣1(𝑥) + 𝑓𝑢(𝑥) − 𝜌1)] =

𝑎.𝑒.
0. 

 

We have, 𝐿𝛼2𝑣(𝑥) = ℎ2(𝑥) − 𝜌
2 + 𝜌1, and 𝐿𝛼1𝑣(𝑥) = ℎ1(𝑥) − 𝜌

2 + 𝜌1. Further, Dynkin’s 

formula is applicable. So,  

 𝔼𝑥𝑣(𝑋𝑡
1) − 𝑣(𝑥) = 𝔼𝑥 ∫

𝑡

0
𝐿𝛼1𝑣(𝑋𝑠

1) 𝑑𝑠 

  

 = 𝔼𝑥 ∫
𝑡

0
ℎ1(𝑋𝑠

1) 𝑑𝑠 + (𝜌1 − 𝜌2) 𝑡 ≤
(ℎ1≤0)

(𝜌1 − 𝜌2) 𝑡. 

 The last inequality here is due to the ℎ1 ≤
𝑎.𝑒.

0 along with Krylov’s bounds [10]. Here the left hand 

side is bounded (𝑥 fixed) due to the Lemma 2, so, we obtain,  
 𝜌1 − 𝜌2 ≥ 0. 

Absolutely similarly we show that also  

 𝜌1 − 𝜌2 ≤
(ℎ2≥0)

0. 
Thus, eventually,  

 𝜌1 = 𝜌2. 

  

  4.  Proof of the equality 𝜌 = �̃�. We have seen that for any initial (𝛼0, 𝜌0), the sequence 𝜌𝑛 
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converges monotonically to �̃�, which is a component of solution of the Bellman equation (7), as 

shown earlier in the step 2, and this component �̃� is unique as was just shown in the step 3. Hence, 

given some (any) 𝜀 > 0, take any initial strategy 𝛼0 such that  
 𝜌0 = 𝜌

𝛼0 > 𝜌 − 𝜀. 

Then, clearly, the corresponding limit �̃� will satisfy the same inequality,  
 �̃� = lim

𝑛
𝜌𝑛 > 𝜌 + 𝜀. 

Due to uniqueness of �̃� as a component of solution of the equation (7), and since 𝜀 > 0 is arbitrary, 

and because it is already established that �̃� ≤ 𝜌, we now conclude that  
 �̃� = 𝜌. 

The sketch of the proof of the Theorem 1 is thus completed. 

 

6  Discussion 
 

Thus, we have an approach which in principle allows to evaluate the ergodic readiness coefficient 

in certain diffusion Markov models. 

 

7  Addendum: Borel measurability 
 

In the presentation of RIA we have assumed existence of a Borel measurable version of such a 

strategy to be chosen which maximizes some function ofr a fixed 𝑥. In our case existence of such a 

Borel strategy follows from Stschegolkow’s (Shchegolkov’s) theorem, see [20], [12, Satz 39], [4, 

Theorem 1] (the first two references are in German, the last one cites the same result in English), 

which states that if any section of a (nonempty) Borel set 𝐸 in the direct product of two complete 

separable metric spaces is sigma-compact (i.e., equals a countable sum of closed sets) then a Borel 

selection belonging to this set 𝐸 exists. In our case 𝐸 = {(𝑢, 𝑥): 𝐹[𝑢, 𝑥] = 𝜙(𝑥): = max𝑣∈𝑈𝐹[𝑣, 𝑥], 𝑥 ∈

ℝ}. This set is nonempty and closed and, hence, Borel. Indeed, if 𝐸 ∋ (𝑢𝑛, 𝑥𝑛) → (𝑢, 𝑥), 𝑛 → ∞, then 

𝐹[𝑢𝑛, 𝑥𝑛] → 𝐹[𝑢, 𝑥] due to continuity of 𝐹. Also, due to continuity of 𝐹, 𝜙(𝑥𝑛) → 𝜙(𝑥). Since each 𝑢𝑛 

is a point of  𝑎𝑟𝑔𝑚𝑎𝑥 (𝐹[⋅, 𝑥𝑛]) where 𝐹[𝑢𝑛, 𝑥𝑛] = 𝜙(𝑥𝑛) we have, 𝐹[𝑢, 𝑥] = lim𝑛→∞𝐹[𝑢𝑛, 𝑥𝑛] =

lim𝑛→∞𝜙(𝑥𝑛) = 𝜙(𝑥), we find that (𝑢, 𝑥) ∈ 𝐸, i.e., 𝐸 is closed. Further, any section 𝐸𝑥 of 𝐸 is also 

closed itself again due to continuity of 𝐹, as if (𝑢𝑛, 𝑥) ∈ 𝐸 and 𝑢𝑛 → 𝑢, then 𝐹[𝑢𝑛, 𝑥] → 𝐹[𝑢, 𝑥], i.e., 

actually, 𝐹[𝑢𝑛, 𝑥] = 𝐹[𝑢, 𝑥]. Thus, Stschegolkow’s theorem is applicable. 
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