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Abstract 
 

Renewal density of restorable systems and their components which depends on 

statistical estimates based on real operational data is studied. It is assumed that 

objects’ entire life cycle is described by the Weibull-Gnedenko distribution. 

Analytical and discrete approaches for the solution to the renewal equation are 

proposed. New calculation schemes of the renewal density of restorable 

systems and their components are presented. Equivalence of suggested 

approaches is illustrated by numerical examples.  
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1   Introduction 
 

All mechanisms, engineering constructions, operational systems are subjected to the processes of 

aging, degradation or failures in work. The renewal of normal operation mode possesses doubtless 

economical and sometimes vital importance. Construction of suitable for applications 

mathematical models of the renewal processes is thus far an actual challenge in the reliability 

theory, as existing models involve cumbersome calculations, while analytical solutions are not 

available in general case. This paper is devoted to the development of analytical and simple 

discrete schemes for the solution of the renewal density equation. Renewal functions have wide 

variety of applications in warranty analysis, inventory theory, supplies planning [1]. Examples of 

processing of real statistical data on refusals of technologically active elements of gas supply 

systems are considered in [2]. 

The scheme of a simple renewal process is the following. Let component (or system) 

failures occur at time moments 𝑡1, 𝑡2, … , 𝑡𝑛, … and it is assumed that replacement time is 

negligible relative to the operational time. Then 𝑡𝑛 represents the operational time until the 𝑛-th 

failure takes place. And it is supposed the time intervals between failures 𝑇𝑛 = 𝑡𝑛 − 𝑡𝑛−1 are 

independent and identically distributed. In this case 𝑇𝑛 is the random life time of the 𝑛-th item with 

cumulative distribution function 𝐹(𝑡) and probability density function (PDF) 𝑓(𝑡), and 𝑁(𝑡) is the 

number of renewals in the time interval (0, 𝑡). The renewal function 𝐻(𝑡) is the expected value of 

renewals in that interval 𝐻(𝑡) = 𝐸(𝑁(𝑡)). The renewal density (intensity) by definition is given by 

the equality ℎ(𝑡) = 𝐻′(𝑡). The fundamental renewal density equation has the form (e.g. [3]):  

 ℎ(𝑡) = 𝑓(𝑡) + ∫
𝑡

0
ℎ(𝜏)𝑓(𝑡 − 𝜏) 𝑑𝜏. (1) 

Solution of this equation does not have explicit form, except for some cases when the 

renewal process is driven by the exponential and the Erlang distributions. In this paper new 
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analytical and discrete methods of calculating of ℎ(𝑡) are presented for the Weibull-Gnedenko 

probability density function which depends on two parameters: 𝛼, named "scale" parameter and 𝛽, 

called "shape" parameter:  

 𝑓(𝑥) = {
𝛼𝛽𝛽𝑥𝛽−1𝑒−(𝛼𝑥)

𝛽
, 𝑥 > 0

0,                            𝑥 ≤ 0.  (2) 

This distribution was chosen for the study, because it allows to capture all life cycle of 

systems investigated in the reliability theory, that makes it one of key distributions. By results of 

many studies the typical curve of the hazard rate ([4]) usually is U-shaped, thus, it contains three 

main periods of life cycle: initial burn-in, normal operation and degradation. All these periods of 

the system functioning can be modelled by the Weibull-Gnedenko distribution with different 

shape parameter ([4], [5]). In particular, the first period corresponds to the Weibull-Gnedenko 

distribution with parameter 𝛽 ∈ (0; 1), the second period — with parameter 𝛽 ≈ 1 and the third 

period — with parameter 𝛽 > 2. It should be noticed that upon transition from the second to the 

third stage the value of shape parameter jumps from 1 to the value more than 2. And this property 

thus far remains the opened question for discussion. 

For large 𝑡 it is well-known the asymptotic result for the renewal density function  

 ℎ(𝑡)~
1

𝜇
, (𝑡 → ∞), 

where 𝜇 = 𝐸(𝑇𝑛). But the values of ℎ(𝑡) can oscillate (see Fig. 3) about the asymptotic value, thus it 

is important to have opportunity to calculate values of ℎ(𝑡) more accurately. 

W.L. Smith and M.R. Leadbetter [3] developed the method for computation of the renewal 

function for the Weibull-Gnedenko distribution by using power series expansion of 𝑡𝛽, where 𝛽 is 

the shape parameter of the Weibull-Gnedenko PDF. However, for 𝛽 > 1, the numerical 

computation of this series is limited to the small range of 𝑡: 0 < 𝑡 < 2,5. A. G. Constantine and N.I. 

Robinson [6] presented estimation method of 𝐻(𝑡) (and automatically ℎ(𝑡)) by residue calculations 

of the Laplace transform of the renewal integral equation to form uniformly convergent series of 

damped exponential terms. There are also many other approximations of the renewal function 

explored for the Normal, Gamma, Uniform underlying lifetime distributions developed by L. Cui 

and M. Xie [7], E. Smeltink and R. Dekker [8], S. Maghsoodloo and D. Helvaci [9]. 

 

2  Methods 

2.1  The moment problem 

In the present paper the analytical solution of the renewal density equation is closely connected 

with the moment problem or the problem of unique determination of a distribution of a 

nonnegative random variable by its moments. Consider this problem for basic distributions used 

in the reliability theory. As for the background the problem of unique determination of a 

distribution by the sequence of its moments was first investigated by P. L. Chebyshev back in 1874 

in connection with research on limit theorems of probability theory. 

It can be shown that such distributions as exponential, normal, truncated normal, gamma 

distribution and the Weibull-Gnedenko distribution (with the shape parameter 𝛽 ≥
1

2
) are uniquely 

determined by their moments, and the log-normal distribution, Student’s 𝑡-distribution and the 

Pareto distribution can not be determined uniquely. The solution of this problem can be verified by 

the necessary and sufficient criterion of Krein  M. (1944) (or the Krein condition [10]). The 

distribution with the PDF 𝑓(𝑥) is determined uniquely if  

 ∫
+∞

0

ln𝑓(𝑥2)

1+𝑥2
 𝑑𝑥 = ∞. 
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2.2  Analytical solution of the integral renewal equation 

To solve equation (1), we use the method of moments generating function [11] under the 

assumption of the two-parameter Weibull-Gnedenko distribution. The Laplace transform (or 

moments generating function) for the given distribution has the form:  

 𝑓(𝑠) = ∫
+∞

0
𝑒−𝑠𝑡𝑓(𝑡) 𝑑𝑡 = ∫

+∞

0
∑+∞𝑛=0

(−𝑠𝑡)𝑛

𝑛!
 𝑓(𝑡) 𝑑𝑡 = ∑+∞𝑛=0 (−1)

𝑛 𝑠
𝑛

𝑛!
𝜈𝑛 , 

where 𝜈𝑛 is the 𝑛-th initial moment of a random variable 𝜉 with PDF 𝑓(𝑡):  

 𝜈𝑛 = ∫
+∞

0
𝑡𝑛𝑓(𝑡) 𝑑𝑡, 

which for the Weibull-Gnedenko distribution has the form  

 𝜈𝑛 =
1

𝛼𝑛
⋅ Γ (1 +

𝑛

𝛽
) 

and Γ(𝑠) = ∫
+∞

0
𝑥𝑠−1𝑒−𝑥𝑑𝑥 is the Euler gamma function, 𝑠 ∈ ℂ. It should be noted that this series is 

absolutely convergent only for 𝛽 > 1. Equation (1) in the Laplace transform domain has the form  

 ℎ̃(𝑠) = 𝑓(𝑠) + ℎ̃(𝑠)𝑓(𝑠). 
Consequently  

 ℎ̃(𝑠) =
�̃�(𝑠)

1−�̃�(𝑠)
=

∑+∞𝑛=0
(−1)𝑛

𝑛!
⋅Γ(1+

𝑛

𝛽
)⋅(

𝑠

𝛼
)
𝑛
 

−∑+∞𝑛=1
(−1)𝑛

𝑛!
⋅Γ(1+

𝑛

𝛽
)⋅(

𝑠

𝛼
)
𝑛
 
=

∑+∞𝑛=0 (−1)
𝑛𝜈𝑛
𝑛!
𝑠𝑛 

∑+∞𝑛=1 (−1)
𝑛+1𝜈𝑛

𝑛!
𝑠𝑛 
. 

Applying the well-known in calculus technique of dividing infinite series, one can obtain the 

following expansion:  

 ℎ(𝑡) = ∑+∞𝑘=0
𝑐𝑘

𝜈1
𝑘+1 ⋅ 𝐹

(𝑘)(𝑡), (3) 

 where 𝐹(0)(𝑡) = 𝐹(𝑡) is the cumulative distribution function and 𝐹(𝑘)(𝑡) designates the 𝑘-th 

derivative of 𝐹(𝑡). The coefficients of the expansion have the following form:  
 𝑐0 = −1,        𝑐1 = −𝑚0,         

 

 𝑐𝑘 =

|

|

1 0 … 0 −𝑚0

−𝑚0 1 … 0 𝑚1

𝑚1 −𝑚0 … 0 −𝑚2

−𝑚2 𝑚1 … 0 𝑚3

… … … 1 …
(−1)𝑘+1𝑚𝑘−2 (−1)𝑘𝑚𝑘−3 … −𝑚0 (−1)𝑘𝑚𝑘−1

|

|

,    𝑘 = 2, 3, … 

where  

 𝑚𝑘 =
𝜈1
𝑘𝜈𝑘+2

(𝑘+2)!
,    𝑘 = 0, 1, 2, … 

It was proved that  

 ∑+∞𝑘=0 𝑐𝑘 =
1

−1+∑+∞𝑘=0 (−1)
𝑘𝑚𝑘

< +∞, 

consequently  
 lim

𝑘→∞

 𝑐𝑘 = 0. 

Thus, the solution (3) of equation (1) is obtained in terms of the probability moments of the initial 

distribution of a nonnegative random variable. Moreover, one can notice that the expansion (3) is 

true not only for the Weibull-Gnedenko distribution (2) under some conditions, not discussed in 

the present paper. 

A good estimate of exact solution is found (Fig. 2) by taking only 7 leading terms of the 

expansion (3) unlike the series of damped exponential terms in [6] when it is necessary to compute 

500 or more coefficients of the given series [4]. 

The offered solution (3) is applicable only for the values of 𝛽 > 1, characteristic for the 

degradation processes [5]. The start of system operation corresponds to the case of 0 < 𝛽 < 1 and 

its description is sometimes actual. Numerical methods can work with any values of 𝛽. So, we 

proceed to the description of discrete methods. 
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3.3  The discrete methods 

A numerical method which generates a cubic spline approximation of the renewal function by the 

Galerkin technique for solving the renewal equation was proposed by Z.S. Deligonul and S. Bilgen 

[12]. The discretizing time method has been used by M.Xie [13] to approximate the renewal 

equation. Numerical algorithm in papers of M.Xie was based on the definition of the Riemann - 

Stieltjes integral (RS-method). T.K. Boehme, W.Preuss, V. van der Wall also used the similar 

method [14]. M. Tortorella [15] presented a paper describing analysis of the method based on 

quadrature schemes for Stieltjes integrals. Some numerical procedures, when the time scale is 

discrete, can be found in the books on reliability theory by E.A. Elsayed [1], A. K. S. Jardine, A. H. 

C. Tsang [16]. 

In this paper the function ℎ(𝑡) is approximated by step functions or linear functions. The 

accuracy of this discretization was checked in three different ways. It is obvious that 

approximation error can be diminished by increasing of the number of collocation knots. All 

calculations presented below were done by using Wolfram Mathematica software including 

calculation of integrals (5), (8) without algorithm of numerical quadrature schemes. 

The first step in the discretization scheme is the division of the specified time interval [0,

𝑡] into 𝑛 equal-length subintervals by points (collocation knots)  
 𝑡0 = 0, 𝑡1 = 𝑡0 + Δ,… , 𝑡𝑛 = 𝑡0 + 𝑛 Δ, 

where Δ = 𝑡/𝑛 is the length of each subinterval. 

The method of right knots. Approximate solution 𝑢𝑛(𝑡) for function ℎ(𝑡) can be found in 

the form of a linear combination 𝑢𝑛(𝑡) = ∑𝑛𝑘=1 𝑢𝑘𝐼𝑘(𝑡), where 𝑢𝑘 =   ℎ(𝑡𝑘) and the so-called 

coordinate functions 𝐼𝑘(𝑡) which are equal to zero outside the interval (𝑡𝑘−1,   𝑡𝑘] and 𝐼𝑘(𝑡) = 1,

𝑡𝑘−1 < 𝑡 ≤ 𝑡𝑘. Thus, the approximate solution is determined from the conditions in right 

collocation knots. Similar approximation was proposed by A. Brezavscek in [17]. 

The midpoint method. Let the value of the approximate solution in the 𝑘-th segment be 

the average value (Fig. 1)  

 �̃�𝑘 =
𝑢𝑘−1+𝑢𝑘

2
,    𝑢𝑘 =   ℎ(𝑡𝑘). 

 

 
 

Figure  1: The discrete methods 

 

   The approximate solution, respectively, has the form 𝑢𝑛(𝑡) = ∑𝑛𝑘=1 �̃�𝑘𝐼𝑘(𝑡). 

The Line Spline Finite Element solution. The function ℎ(𝑡) in [𝑡𝑘−1,   𝑡𝑘] can be 

approximated by the Lagrange polynomials as follows  
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 �̃̃�𝑘(𝑡) = 𝑢𝑘−1
𝑡𝑘−𝑡

𝑡𝑘−𝑡𝑘−1
+ 𝑢𝑘

𝑡−𝑡𝑘−1

𝑡𝑘−𝑡𝑘−1
, 

where 𝑢𝑘 =   ℎ(𝑡𝑘). 

Let us consider calculation schemes for the approximate solution of the renewal equation 

(1). The first method solution is defined by the following recurrent formulas:  

 

{
 
 

 
 
𝑢0 = 𝑓0,                                                        
𝑢1 = 𝑓1/(1 − 𝐹1),                                        

𝑢2 = (𝑓2 + 𝑢1𝐹2)/(1 − 𝐹1),                        
⋯
𝑢𝑛 = (𝑓𝑛 + ∑

𝑛−1
𝑗=1 𝑢𝑛−𝑗 𝐹𝑗+1)/(1 − 𝐹1).        

 (4) 

 where  
 𝑓0 = 𝑓(0),⋯ , 𝑓𝑛 = 𝑓(𝑡𝑛), 

 

 𝐹1 = ∫
𝑡1
0
𝑓(𝑟)𝑑𝑟,⋯ ,    𝐹𝑛 = ∫

𝑡𝑛
𝑡𝑛−1

𝑓(𝑟)𝑑𝑟. (5) 

 

The second method gives the next formulas:  

 

{
 
 
 

 
 
 
𝑢0 = 𝑓0,                                                                                        

𝑢1 = (𝑓1 +
𝑢0

2
𝐹1) / (1 −

𝐹1

2
),                                                    

𝑢2 = (𝑓2 +
𝑢1

2
𝐹2 +

𝑢0

2
𝐹2 +

𝑢1

2
𝐹1) / (1 −

𝐹1

2
),                        

⋯

𝑢𝑛 = (𝑓𝑛 +
𝑢0

2
𝐹𝑛 +∑

𝑛−1
𝑗=1

𝑢𝑛−𝑗

2
(𝐹𝑗+1 + 𝐹𝑗)) / (1 −

𝐹1

2
),        

 (6) 

 where 𝑓𝑘 and 𝐹𝑘 , 𝑘 = 0,1, . . . , 𝑛 are defined by formulas (5) 

The recurrent formulas for approximate solutions obtained by linear splines have the form:  

 

{
 
 

 
 
𝑢0 = 𝑓0,                                                                                                        
𝑢1 = (𝑓1 − 𝑢0𝐺10)/(1 − 𝐺11),                                                                  

𝑢2 = (𝑓2 − 𝑢0𝐺21 + 𝑢1(𝐺22 − 𝐺10))/(1 − 𝐺11)                                    
⋯
𝑢𝑛 = (𝑓𝑛 − 𝑢0𝐺𝑛 𝑛−1 + ∑

𝑛−1
𝑗=1 𝑢𝑛−𝑗(𝐺𝑗+1𝑗+1 − 𝐺𝑗 𝑗−1))/(1 − 𝐺11),        

 (7) 

 where  

 𝐺𝑘𝑗 = ∫
𝑡𝑘
𝑡𝑘−1

𝑓(𝑟)𝑙𝑗(𝑟)𝑑𝑟, (8) 

  

 𝑙𝑘(𝑡) =
𝑡𝑘−𝑡

𝑡𝑘−𝑡𝑘−1
=

𝑡𝑘−𝑡

Δ
. 

It should be noted that the first and the third methods were considered earlier [18]. And large 

computing capacities were required for the solution of the corresponding linear systems. Formulas 

(4), (7) introduced in the present paper dramatically diminished the computational complexity of 

the algorithms. So, mentioned algorithms are important if the calculation involves large number of 

knots. 

The second method of discretization, that is, the midpoints method (6) gives the best 

agreement with analytical solution (3). The third method is time consuming for large values of 𝑛 >
40. 

The discrete methods presented here can be used where the underlying lifetime 

distribution has the PDF with a singularity at the origin, such as the Weibull - Gnedenko 

distribution (2) with shape parameter less than unity. It is applied in the modelling of gas supply 

systems [19]. 

Fig. 2 illustrates the results of numerical computations of the renewal density performed 

according to all four methods of this paper. The solutions of equation (1) are presented for the 

Weibull-Gnedenko distribution with 𝛼 = 1, 𝛽 = 2 which coincides the Rayleigh distribution. Red 

curve for the analytical solution was plotted using seven terms of the expansion (3). There were 

used twenty collocation knots (𝑛 = 20) in calculations by the discrete methods. It is worth noticing 
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here that presented methods allow to carry out accurate calculation of the renewal function 

oscillations unlike the asymptotic formula mentioned above. The corresponding asymptotic value 

is shown by the straight green line. The curve of the PDF for the Rayleigh distribution is shown 

with green dotted line.  

  

  

Figure  2: The Rayleigh renewal density 

 

     

  

Figure  3: The Weibull-Gnedenko renewal density 

   

In (Fig. 3) the curves for the analytical and all discrete solutions are shown for the Weibull-

Gnedenko distribution with 𝛼 = 1, 𝛽 = 4 and the number of knots 𝑛 = 100. This increase of 

collocation knots gives a practical coincidence of approximate solutions found using all the above 

methods. While for less amount of collocation knots (Fig. 2) the agreement between the results is 

not ideal. One can see, that all presented methods give oscillations of the renewal density which 

tends to the asymptotics for big values of 𝑡. This can be explained by the specifics of the renewal 

process, when the underlying lifetime distribution has rather big shape parameter 𝛽. The higher 

the value of 𝛽, the more often failures of the system take place. So, the operation and renewal 

process become unstable. The curve of the corresponding PDF is also shown in Fig. 3. As it can be 

seen from the formulas (4), (6), (7) the first member of the series representing the solution is equal 

to the value of the PDF for 𝑡 = 0. It explains the proximity of the presented solutions to the PDF 

curve in the vicinity of 𝑡 = 0. So, if one needs to know the system behavior in the initial period of 

time, it is sufficient to evaluate the PDF of the underlying lifetime distribution. The parameters of 

this distribution can be obtained from the statistical data processing. 
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3  Results & Discussion 
 

The research techniques of restorable systems and their components renewal density are 

presented. They are based both on analytical and discrete methods and they consider the 

dependence of the renewal density on time. Using the Weibull-Gnedenko distribution some 

peculiarities of the renewal density behavior can be investigated. 

The variation of the shape parameter 𝛽 allows observation of the restorable system 

properties. As it was mentioned the higher the value of 𝛽 the more often failures of the system take 

place, consequently, the less stable its behavior. For relatively small values of 𝛽 the renewal 

density does not oscillate at all, that is the system operates in normal mode. This can be seen in Fig. 

2. For larger values of 𝛽 (Fig. 3) the oscillations are observed for some period of time, after which 

the renewal density goes to the asymptotics, corresponding to normal operation mode of the 

system. In [6] it was shown that for even higher values of 𝛽 the oscillations period is longer. And 

this fact can be easily checked using the approaches of the present paper. Also the influence of the 

scale parameter 𝛼 on the solution can be studied. Its variation gives the expansion or contraction of 

the curves over the time axis. So, a sort of criterion for restorable systems analysis can be 

developed if the failures statistics is approximated by the Weilbull-Gnedenko distribution. 

Unstable oscillating period is for sure undesirable for any application. The length and shape of this 

period are regulated by the parameters of the Weibull-Gnedenko distribution. The knowledge of 

these parameters values for a given restorable system can give a recommendation on its 

exploitation. It worth mentioning also, that the time scale in the renewal function dependences 

shown in Fig. 2 and Fig. 3 is conditional and should be adopted for each application separately. 

Practical significance of research results was demonstrated on several examples of processing of 

real statistical data on technologically active elements in gas supply systems failures [2, 19]. 

The advantages of the considered methods include their simplicity of algorithms and 

calculations. Nevertheless, one should keep in mind that the analytical approach (3) is valid only 

for the values of 𝛽 higher than unity, which correspond to the most actual degradation period of 

restorable systems life cycles. Moreover, expansion (3) represents the asymptotic series, which 

does not converge uniformly. The summation of series (3) should be restricted by several 

members, giving the least relative error. This property was taken into account in curves plotting 

for Fig. 2 and Fig. 3. The presented discrete methods are more universal, thought their application 

is more time consuming. 
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