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Abstract 
 

The log-linear function between life and stress which is just a simple re-

parameterization of the original parameter of the life distribution is used to 

obtain the estimates of original parameters in many of the studies concerning 

Accelerated life testing (ALT). But from the statistical point of view, it is 

preferable to work with the original parameters instead of developing inferences 

for the parameters of the log-linear link function.  In this study we introduce the 

geometric process for the analysis of accelerated life testing with Generalized 

Rayleigh Distribution for constant stress. Assuming that the lifetimes of units 

under increasing stress levels form a geometric process, the maximum likelihood 

estimation approach is used for the estimation of parameters. The confidence 

intervals (CIs) of the model parameters are derived. A Simulation study is also 

performed to check the statistical properties of estimates of the parameters and 

the confidence intervals. 

 

Keywords: Geometric process, Generalized Rayleigh Distribution, Maximum 

Likelihood Estimator, Fisher Information Matrix, Asymptotic Confidence 

Interval, Simulation Study. 

 

 

1. Introduction 
 

Accelerated life testing is the process of testing a product by subjecting it to conditions (stress, strain, 

temperatures, voltage, vibration rate, pressure etc.) in excess of its normal service parameters in an 

effort to uncover faults and potential modes of failure in a short amount of time. By analyzing the 

product's response to such tests, statisticians can make predictions about the service life and 

maintenance intervals of a product. 

   In general, ALT deals with three types of stress patterns: constant stress, step stress and 

Progressive stress. In the former case, each unit is run at a pre-specified constant stress level which 

does not vary with time. This means that every item is subjected to only one stress level until the 

item fails or the test is stopped for other reasons. In use, most products such as semiconductors 

and microelectronics, capacitors, lamps …etc, run at a constant stress. This type of stress is widely 

used and preferred because the stress is constant in most applications, it is much easier to apply 

and quantify constant stress and models for constant stress are available, widely publicized and 

empirically verified. 

  There is a lot of literature on constant stress accelerated life testing, for example, Ahmad et al. [1], 

Islam and Ahmad [2], Ahmad and Islam [3], Ahmad et al.[4] and Ahmad [5] discuss the optimal 

constant stress accelerated life test designs under periodic inspection and Type-I censoring. Yang 

[6] proposed an optimal design of 4-level constant stress ALT plans considering different censoring 
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times. Pan et al. [7] proposed a Bivariate constant stress accelerated degradation test model by 

assuming that the copula parameter is a function of the stress level that can be described by the 

logistic function. Wilkins and johns [8] considered constant stress accelerated life test based on 

Weibull distribution with constant shape and a log-linear link between scale the stress factor which 

is terminated by a Type-II censoring regime at one of the stress levels. 

    The concept of geometric process in accelerated life testing was first introduced by Lam [9] in the 

problems of repair replacement. Lam [10] studied the geometric process model for a multistate 

system and concluded a replacement policy to minimize the long run average cost per unit time. 

Since then a lot of studies in maintenance problems and system reliability have been shown that a 

GP model is a good and simple model for analysis of data with a single trend or multiple trends, 

for example, Lam and Zhang [11], Lam [12] and Zhang [13]. Huang [14] introduced the GP model 

for the analysis of constant stress ALT with complete and censored exponential samples. Kamal et 

al. [15] extended the GP model for the analysis of complete Weibull failure data in constant stress 

ALT. Zhou et al. [16] implement the GP in ALT based on the progressive Type-I hybrid censored 

Rayleigh failure data. Kamal et al. [17] used the geometric process for the analysis of constant 

stress accelerated life testing for Pareto Distribution with complete data. S. Saxena [18] introduces 

the Rayleigh geometric process model for the analysis of accelerated life testing under constant 

stress. Sadia Anwar et al. [19] presented the mathematical model of accelerated life testing for 

Marshall-Olkin extended exponential distribution using geometric process and extended her work 

using type I censored data [20]. Recently Kamal [21] presented an application of the geometric 

process in accelerated life testing analysis on type-I censored Weibull failure data. 

   In the present study, the GP model is implemented in the analysis of ALT for the Generalized 

Rayleigh life distribution under constant stress with complete data. Maximum likelihood (ML) 

estimates of parameters and their asymptotic confidence intervals (CIs) are obtained. The 

performance of the estimates is evaluated by a simulation study. 

 

2. The Model and Test Procedure 

 

2.1. The Geometric Process 
 

A geometric process describes a stochastic process  ,...2,1, nX n
, where there exists a real-

valued 0  such that  ,...2,1,1  nX n
n  forms a renewal process. It can be shown that if 

 ,...2,1, nX n
 is a GP and the probability density function of 

1X  is )(xf with mean   and 

variance 2  then the probability density function of 
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2.2. The Generalized Rayleigh Distribution  
 

The probability density function (pdf) of a generalized Rayleigh distribution is given by 
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where, 0  is the shape parameter and 0 , is the scale parameter of the distribution. 

Generalized Rayleigh distribution is a member of the family of Burr distributions which was 

appeared since 1942. It is known also Burr type X distribution. The cumulative distribution 

function (cdf) of generalized Rayleigh distribution is 
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The Hazard function of the Generalized Rayleigh distribution takes the following form 
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The failure rate (or hazard rate) for the Generalized Rayleigh distribution is given by 
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The two-parameter Generalized Rayleigh distribution was first proposed by (Raqab and Kundu; 

2003) [22] and is denoted by  ,GR . It is observed that the hazard function of a Generalized 

Rayleigh distribution can be either bathtub type or increasing function, depending on the shape 

parameter . For
2

1
 , the hazard function is bathtub type and for

2

1
 , it has an increasing 

hazard function. Surles and Padgett (2001) [23] showed that the two-parameter GR distribution can 

be used quite effectively in modelling strength data and also modelling general lifetime data. 

 

2.3. Assumptions and test procedure 
 

1. Under any constant stress, the time to failure of test unit follows Generalized Rayleigh 

distribution. 

2. The Generalized Rayleigh shape parameter   is constant, i.e. independent of stress. 

3. Let the sequence of random variables
sXXX ,..., 10
 denote the lifetimes under each stress level, 

where 0X
denotes lifetime of an item under the design stress. We assume 

 skX k ,...,2,1, 
 is a 

geometric process with ratio 0 . 

4. Suppose that an ALT under skzk ,...,2,1,  , arithmetically increasing stress levels is performed. A 

random sample of niN i ,...,2,1,  , identical items are placed under each stress level and start to 

operate at the same time. Whenever an item fails, it is removed from the test and its observed 

failure time kix  is recorded. 

5. The scale parameter is a log-linear function of stress that is
ii bSa log , here a and b are 

unknown parameters depending on the nature of the product and the test method. 

 

Theorem: If the stress level in an ALT is increasing with a constant difference then under each stress level 

the lifetimes of items forms a GP. That is, If 
kk SS 1

is constant for 1,...,2,1  sk , then 

 skX k ,...,2,1,   forms a GP. 

Proof: From assumption (5), we get 

  SbSSb kk

k
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This shows that the increased stress levels form an arithmetic sequence with a constant difference

S . 

Now the above equation can be written as 
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It is clear from (1) that 
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The lifetime PDF of an item at the kth  stress level is 
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This implies that 
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      Now, from the definition of GP and from expression (3) it is clear that, if density function of 0X  

is  xf X0
, then the pdf of kX will be given by  xf k

X

k 
0

 , sk ,...,2,1 . Therefore, it is clear 

that lifetimes under a sequence of arithmetically increasing stress levels form a GP with ratio . 

Now, the pdf of a lifetime of an item at the thk  stress level is 
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It is clear from above expression that if lifetimes of items under a sequence of increasing stress 

level form a geometric process with ratio   and if the life distribution at design stress level is 

generalized Rayleigh with characteristic  , then the life distribution at 
thk stress level will also be 

generalized Rayleigh with characteristic life 
k . 

 

2.4. Maximum likelihood Estimation 
 

The likelihood function for constant stress ALT for complete case generalized Rayleigh distribution 

failure data using GP for s stress levels is given by: 
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The log likelihood of (5) can be written a            
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Partial derivatives of above equation with respect to and  are: 
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From equations (6) and (7), it is observed that these equations are non-linear. Therefore, the closed 

forms of MLEs of  and   do not exist. So, Newton-Raphson method must be used to solve 

these equations simultaneously to obtain the MLEs of  and  . 

 

3. Asymptotic Confidence Interval 
 

Let  ,I  denotes the Fisher Information matrix, then observed Information matrix of  ,I  is 

given as 
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 Now, the variance-covariance matrix can be written as 
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 The  %1100   asymptotic confidence interval for   and   are then given respectively as 
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4. Simulation Studies: 
 

Simulation of data is the initial task for studying different properties of parameters. It is an attempt 

to model an assumed condition to study the behaviour of the function. 

1. First, to perform the simulation study, first, a random sample is generated from Uniform 

distribution by using R software. 

2. Now, we use inverse cdf method to transform the cdf at kth stress level in terms of u and get the 

expression of .,...,2,1;,...,2,1, niskX ki 

 
....,,2,1;...,,2,1,

1 2

1

nisk
uIn

X
kki 








 

Where kiX  is obtained for n=20, 40 and 60. 

3. The values of parameters and numbers of the stress levels are chosen to be 1.1,8.2,1    

and 64 ors  . 

4. By using optim() function, we obtain ML estimates, the mean squared error (MSE), relative 

absolute bias (RAB), relative error (RE) and lower and upper bound of 95% and 99% confidence 

intervals for different sample sizes n=20,40 and 60. The results obtained in the above simulation 

study are summarized in Table1 & 2. 

 

Table 1: Simulation results of Generalized Rayleigh distribution using GP at 1.1,8.2,1  

and 4s . 

Sample Estimate Mean SE √MSE LCL UCL 

 

20 

   β 3.078 0.319 0.095 2.452 

2.254 

3.703 

3.901 

   λ 1.107 0.103 0.099 0.797 

0.732 

1.202 

1.267 

 

40 

   β 3.039 0.256 0.061 2.536 

2.377 

3.542 

3.701 

   λ 1.081 0.103 0.100 0.797 

0.732 

1.202 

1.267 

 

60 

   β 3.003 0.241 0.054 2.529 

2.380 

3.477 

3.627 

   λ 1.072 0.103 0.099 0.797 

0.733 

1.202 

1.267 
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Table 2: Simulation results of Generalized Rayleigh distribution using GP at 1.1,8.2,1    

and 4s . 

Sample Estimate Mean SE √MSE LCL UCL 

 

20 

β 3.078 0.218 0.078 2.491 

2.311 

3.628 

3.807 

λ 0.977 0.112 0.103 0.797 

0.732 

1.202 

1.267 

 

40 

β 3.039 0.209 0.074 2.520 

2.348 

3.609 

3.781 

λ 0.981 0.103 0.101 0.797 

0.732 

1.202 

1.267 

 

60 

β 2.953 0.192 0.044 2.551 

2.416 

3.407 

3.543 

λ 0.992 0.020 0.100 0.784 

0.732 

1.202 

1.267 

 

5. Conclusions 
 

In this study, the geometric process is introduced for the analysis of accelerated life testing under 

constant stress when the life data are from a generalized Rayleigh distribution. It is a better choice 

for life testing because of its simplicity in nature. The Mean, SE and RMSE of the parameters are 

obtained. Based on the asymptotic normality, the 95% and 99% confidence intervals of the 

parameters are also obtained.  

 

The results show in Table 1 and Table 2 that the estimated values of  β and λ are very close to true 

(or initial) value with very small SE and RMSE. As sample size increases, the value of SE and 

RMSE decreases and the confidence interval become narrower.  For the Table 2, the maximum 

likelihood estimators have good statistical properties than the Table 1 for all sample sizes. 
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Abstract 
 

In this paper, a finite capacity Markovian single-server queuing system with 

discouraged arrivals, reneging, and retention of reneging customers is studied. The 

time-dependent probabilities of the queuing system are ob- tained by using a 

computational technique based on the 4th order Runge- Kutta method. With the 

help of the time-dependent probabilities, we develop some important measures of 

performance of the system, such as expected system size, expected reneging rate, 

and expected retention rate. The time-dependent behavior of the system size 

probabilities and the ex- pected system size is also studied. Further, the variations 

in the expected system size, the expected reneging rate, and the expected retention 

rate with respect to the probability of retaining a reneging customer are also 

studied. Finally, the effect of discouragement in the same model is ana- lyzed. 

 

Keywords: time-dependent analysis, single server queuing system, discouraged 

arrivals, reneging, Runge-Kutta method, retention 

 

 

   Introduction 
 

Queuing systems are used in the design and analysis of computer-communication networks, 

production systems, surface and air traffic systems, service systems etc. The study of queueing 

systems help to manage waiting lines and to construct an optimal system for balancing customer 

waiting time with the idle time of the server Gnedenko and Kovalenko (1989). The enormous 

literature in queuing theory is available where the customers always wait in the queue until their 

service is completed. But in many practical situations customers become impatient and leave the 

systems without getting service. Therefore, queuing systems with customers’ impatience have 

attracted a lot of attention. The study of customers’ impatience in queueing theory is started in the 

early 1950’s. Haight (1959) studies a single-server queue in steady-state with a Poisson input and 

exponential holding time, for various reneging distributions. Ancker and Gafarian [(1963a), 

(1963b)] analyze an 𝑀/𝑀/1/𝑁 queuing system with balking and reneging. In addition, the effect of 

reneging on an 𝑀/𝑀/1/𝑁 queue is investigated in the works of Abou El-Ata (1991), Zhang et al. 

(2006), Al Seddy et al. (2009), and Wang and Chang (2002). Kovalenko (1961) discusses some 

queuing systems with restrictions. 

Queuing systems with discouraged arrivals are widely studied due to their significant role 

in managing daily queueing situations. In many practical situations, the service facility possesses 

mailto:kuk@yahoo.co.in
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defense mechanisms against long waiting lines. For instance, the congestion control mechanism 

prevents the formation of long queues in computer and communication systems by controlling the 

transmission rates of packets based on the queue length(of packets) at source or destination. 

Moreover, a long waiting line may force the servers to increase their rate of service as well as 

discourage prospective customers which results in balking. Hence, one should study queueing 

systems by taking into consideration the state-dependent nature of the system. In state-dependent 

queues the arrival and service rates depend on the number of customers in the system. The 

discouragement affects the arrival rate of the queueing system. Customers arrive in a Poisson 

fashion with rate that depends on the number of customers present in the system at that time i.e. 
𝜆

𝑛+1
. Morse (1958) considers discouragement in which the arrival rate falls according to a negative 

exponential law. Natvig (1974), Van Doorn (1981), Sharma and Maheswar (1993), and 

Parthasarathy and Selvaraju (2001) have also studied the discouraged arrivals queuing systems. 

Ammar et. al (2012) derive the transient solution of an M/M/1/N queuing model with discouraged 

arrivals and reneging by employing matrix method. Abdul Rasheed and Manoharan (2016) study a 

Markovian queueing system with discouraged arrivals and self-regulatory servers. They discuss 

the steady-state behavior of the system. Rykov (2001) considers a multi-server controllable queuing 

systems with heterogeneous servers. He studies several monotonicity properties of optimal 

policies for this system. Koba and Kovalenko (2002) study retrial queuing systems which are used 

in the analysis of aircraft landing process. Efrosinin and Rykov (2008) study a multi-server 

heterogeneous queuing system and obtain its steady-state solution. They derive the waiting and 

sojourn time distributions. They also study the optimal control of the queuing system. Rykov 

(2013) generalizes the slow server problem to include additional cost structure. He finds that the 

optimal policy for the problem has a monotone property. Sani et al. (2017) perform the reliability 

analysis of a system subjected to deterioration before failure. They use system state transition 

probabilities to derive the Markov models of the system.  

Queuing systems with customers’ impatience have negative impact on the performance of 

the system, because it leads to the loss of potential customers. Kumar and Sharma (2012a) take this 

practically valid aspect into account and study an 𝑀/𝑀/1/𝑁 queuing system with reneging and 

retention of reneging customers. Kumar (2013) obtains the transient solution of an 𝑀/𝑀/𝑐 queue 

with balking, reneging and retention of reneging customers. Kumar and Sharma (2014) obtain the 

steady-state solution of a Markovian single server queueing system with discouraged arrivals and 

retention of reneging customers by using iterative method. 

The steady-state results do not reveal the actual functioning of the system. Moreover, 

stationary results are mainly used within the system design process and it cannot give insight into 

the transient behavior of the system. That is why, we extend the work of Kumar and Sharma (2014) 

in the sense that the time-dependent analysis of the model is performed. The time-dependent 

numerical behavior is studied by using a numerical technique Runge-Kutta method. 

 

1  Queuing Model Description 
  

In this section, we describe the queueing model. The model is based on following assumptions:   

    1.  We consider a single-server queueing system in which the customers arrive in a 

Poisson fashion with rate that depends on the number of customers present in the system at that 

time i.e. 
𝜆

𝑛+1
.  

    2.  There is single server and the service time distribution is negative exponential with 

parameter 𝜇.  

    3.  Arriving customers form a single waiting line based on the order of their arrivals and 

are served according to the first-come, first-served (FCFS) discipline.  

    4.  The capacity of the system is finite (say 𝑁).  

    5.  A queue gets developed when the number of customers exceeds the number of 
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servers, that is, when 𝑛 > 1. After joining the queue each customer will wait for a certain length of 

time 𝑇 (say) for his service to begin. If it has not begun by then he may get renege with probability 

𝑝 and may remain in the queue for his service with probability 𝑞 (= 1 − 𝑝) if certain customer 

retention strategy is used. This time 𝑇 is a random variable which follows negative exponential 

distribution with parameter 𝜉. The reneging rate is given by 

 

 𝜉𝑛 = {
0, 0 < 𝑛 ≤ 1
(𝑛 − 1)𝜉, 𝑛 ≥ 2

 

  

2  Mathematical Model 
 

Let {𝑋(𝑡), 𝑡 ≥ 0} be the number of customers present in the system at time 𝑡. Let 𝑃𝑛(𝑡) = 𝑃{𝑋(𝑡) =

𝑛}, 𝑛 = 0,1, . .. be the probability that there are 𝑛 customers in the system at time 𝑡. We assume that 

there is no customer in the system at 𝑡 = 0. 

 

The differential-difference equations of the model are:  

 
𝑑𝑃0(𝑡)

𝑑𝑡
= −𝜆𝑃0(𝑡) + 𝜇𝑃1(𝑡), (1) 

  

 
𝑑𝑃𝑛(𝑡)

𝑑𝑡
= − [(

𝜆

𝑛+1
) + 𝜇 + (𝑛 − 1)𝜉𝑝] 𝑃𝑛(𝑡) + (

𝜆

𝑛
) 𝑃𝑛−1(𝑡) + 

 (𝜇 + 𝑛𝜉𝑝)𝑃𝑛+1(𝑡),1 ≤ 𝑛 < 𝑁 (2) 

  

 
𝑑𝑃𝑁(𝑡)

𝑑𝑡
= (

𝜆

𝑁
) 𝑃𝑁−1(𝑡) − (𝜇 + (𝑁 − 1)𝜉𝑝)𝑃𝑁(𝑡), (3) 

  

3  Transient analysis of the model 
 

In this section, we perform the time-dependent analysis of a finite capacity single-server 

Markovian Queuing model with discouraged arrivals and retention of reneging customers using 

Runge-Kutta method of fourth order (R-K 4). The “ode45" function of MATLAB software is used to 

find the time-dependent numerical results corresponding to the differential-difference equations of 

the model. 

We study the following performance measures in transient state: 

 1. Expected System Size (𝑳𝒔(𝒕))  
 𝐿𝑠(𝑡) = ∑𝑁𝑛=0 𝑛𝑃𝑛(𝑡) 

  2. Average Reneging Rate (𝑹𝒓(𝒕))  

 𝑅𝑟(𝑡) = ∑𝑁𝑛=1 (𝑛 − 1)𝜉𝑝𝑃𝑛(𝑡) 

  3.Average Retention Rate (𝑹𝒓(𝒕))  
 𝑅𝑅(𝑡) = ∑𝑁𝑛=1 (𝑛 − 1)𝜉𝑞𝑃𝑛(𝑡) 

Now, we perform the time-dependent numerical analysis of the model with the help of a 

numerical example. We take 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, and 𝑝 = 0.4. The results are presented in 

the form of Figures 1-5. Following are the main observations: 

 In Figure 1, the probabilities of number of customers in the system at different time points 

are plotted. We observe that the probability values 𝑃1(𝑡), 𝑃2(𝑡), ..., 𝑃10(𝑡) increase gradually until 

they reach stable values except the probability curve 𝑃0(𝑡) which decreases rapidly in the 

beginning and then attains steady-state with the passage of time.  

Figure 2 shows the effect of the probability of retaining a reneging customer on the 

expected system size in transient state. One can observe that as the probability of retaining a 

reneging customer increases, the expected system size also increases. This establishes the role of 

probability of retention associated with any customer retention strategy.  

In Figure 3, the change in average reneging rate with the change in probability of retaining 
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a reneging customer is shown. One can observe that there is a proportional decrease in average 

reneging rate with the increase in probability of retention, 𝑞.  

The variation in average retention rate with probability of retention is shown in Figure 4. 

We can see that there is a proportional increase in 𝑅𝑅(𝑡) with increase in 𝑞, which justifies the 

functioning of the model.  

In figure 5, the impact of discouraged arrivals on the performance of the system is shown. 

We compare two single server finite capacity Markovian queuing systems having retention of 

reneging customers with and without discouraged arrivals. One can see from Figure 5 that the 

expected system size is always lower in case of discouraged arrivals as compare to the queuing 

model without discouragement. 

 

 
 

Figure  1: The probability values for different time points  

are plotted for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, and 𝑝 = 0.4 

  

 

 
 

Figure  2:  The expected system sizes versus probability of retention (𝑞) are plotted  

for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, 𝑡 = 0.5, and 𝑞 = 0.1,0.2, … ,0.9 
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Figure  3:  Variation of average reneging rate with the variation in probability of retention  

for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, 𝑡 = 0.5, and 𝑞 = 0.1,0.2, … ,0.9 

 

 

 
 

Figure  4: Variation of average retention rate with the variation in probability of retention  

for the case 𝑁 = 10, 𝜆 = 2, 𝜇 = 3, 𝜉 = 0.1, 𝑡 = 0.5, and 𝑞 = 0.1,0.2, … ,0.9 

 

 
 

Figure  5: The impact of discouragement on expected system size 
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4  Conclusions 
 

The time-dependent analysis of a single-server queuing system with discouraged arrivals, 

reneging and retention of reneging customers is performed by using Runge Kutta method. The 

numerical results are computed with the help of MATLAB software. The effect of probability of 

retaining a reneging customer on various performance measures is studied. We also study the 

impact of discouraged arrivals on the system performance. 
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