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Abstract 
 

In this note we obtain reliability function of two-component system under the 

Marshall-Olkin failure model in terms of Laplace transform. The problem of its 

sensitivity to the shape of the system components repair times is investigated as 

well.  

Keywords: Heterogeneous reliability systems, Laplace transform, Marshall-Olkin 

bivariate failure model, reliability function, sensitivity analysis. 

 

 

1  Introduction and Motivation 
 

The stability of system characteristics with respect to the changes in initial states or 

external factors are the key problems for all natural sciences. For stochastic systems stability is 

often identified by insensitivity or low sensitivity of their output characteristics to the shapes of 

some input distributions. 

One of the earliest results concerning insensitivity of system characteristics to the shape of 

service time distribution has been obtained in 1957 by Sevast’yanov [1], who established the 

insensitivity of Erlang formulas to the shape of service time distribution with fixed mean value for 

loss queueing systems with Poisson input flow. In 1976, Kovalenko [2] found necessary and 

sufficient conditions for insensitivity of stationary probabilities of redundant renewable systems, 

whose components have exponential life time and repair time distributions of general type. These 

conditions consist in a huge amount of repairing facilities. The sufficiency of immediate start to 

repair any failed element in the case of general life and repair time distributions has been found in 

2013 by Rykov [3] with the help of multi-dimensional alternative processes theory. However, in the 

case of limited possibilities for recovering these results do not hold, as it was shown in [4]. 

On the other hand, in series of works Gnedenko (1964) and Solov’ev (1970) (see, e.g. [5, 6, 

7]) show that under “quick” restoration the reliability function of a cold standby double redundant 

homogeneous system tends to the exponential one for any life and repair time distributions of its 

components. These results also imply the asymptotic insensitivity of the reliability characteristics 

of such system to the shape of their components life and repair times distributions. An alternative 

approach based on system states merging has been proposed by V. Korolyuk, see [8] and 
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references therein. 

Very recently, the problem of asymptotic insensitivity of reliability function for redundant 

systems to the shape of their components repair time distribution under condition of rare failures 

has been considered by Rykov and Kozyrev in [9, 10, 11, 12] using the Markovization method. All 

these studies describe the system with independently functioning components. We will relax this 

assumption in the present paper since the common environment implies some kind of dependence 

between elements of the system. 

In 1967 Marshall and Olkin [13] proposed a bivariate distribution that can be used as a 

failure model for two-component reliability system with dependent components. The Marshall-

Olkin (MO hereafter) model is specified by the stochastic representation  

 

 (𝑇1, 𝑇2) = (min(𝐴1, 𝐴3),min(𝐴2, 𝐴3)), (1) 

 

 where non-negative continuous random variables (r.v.) 𝐴1 and 𝐴2 represent times to occurrence of 

independent “individual shocks” affecting two devices and 𝐴3 represents time to their “common 

shock” under assumption that the times to all shocks are independent and exponentially 

distributed. The joint distribution of random vector (𝑇1, 𝑇2) can be characterized by the bivariate 

lack of memory property (BLMP) defined by the functional equation  

 
 𝑆(𝑥 + 𝑡, 𝑦 + 𝑡) = 𝑆(𝑥, 𝑦)𝑆(𝑡, 𝑡),     𝑓𝑜𝑟  𝑎𝑙𝑙     𝑥, 𝑦, 𝑡 ≥ 0, 

 

where 𝑆(𝑥, 𝑦) is the joint survival function of the pair (𝑇1, 𝑇2). Many textbooks give a special 

attention to the BLMP and related MO bivariate exponential distribution exhibiting singularity 

along the main diagonal in 𝑅+
2 , see Barlow and Proschan [14] (1981), Singpurwalla [15] (2006), 

Balakrishnan and Lai [16] (2009), Gupta et al. [17] (2010), McNeil et al. [18] (2015) among others. 

Many articles complement and extend the MO model, justifying advantages in analysis of various 

data sets from engineering, medicine, insurance, finance, biology, etc. For example, Li and Pellerey 

[19] (2011) launched the Generalized MO model considering non-exponential independent random 

variables 𝐴𝑖 in (1), 𝑖 = 1,2,3. The corresponding joint distributions do not possess BLMP, i.e., are 

“aging”. In 2014 the model is extended to the multidimensional case by Lin and Li [20]. As a 

further step, in 2015 Pinto and Kolev [21] introduced the Extended MO model assuming 

dependence between variables 𝐴1 and 𝐴2, but keeping 𝐴3 independent of them in (1). The 

motivation is that the individual shocks might be dependent if the items share a common 

environment. In this case however, BLMP may be fulfilled or not depending on parameters of joint 

distribution of (𝐴1, 𝐴2) and distribution of 𝐴3. 

Most of these investigations deal with bivariate distributions and their properties and use 

the MO model for the case of explicit failure. So far, the MO model has been not applied in the 

context of system reliability. In the present paper we consider a renewable heterogeneous double 

redundant standby renewable systems, where the failures of elements follow the MO model. The 

reliability function in terms of its Laplace transforms will be calculated. In this case the renovation 

procedure after the system components failures is very important and it will be included into the 

model. 

The paper is organized as follows. In the next section the problem setting and some 

notations will be introduced. In the section 3 the reliability function is calculated in terms of its 

Laplace transforms, and in the next 4-th section its asymptotic insensitivity to the shape of the 

system components repair time distributions will be considered. The paper ends with conclusions. 

 

2  Problem setting and notations 
 

Consider a heterogeneous hot double redundant repairable reliability system, graphically 

represented on figure 1. 
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Figure  1: 2-unit hot-standby repairable system with one repair facility 

   

We assume that component failures follow the MO model. This means that there exists 

three sources of shocks, which lead to the system failure. The first shock act only to the first 

component (identified by r.v. 𝐴1), the second one act only to the second one (identified by r.v. 𝐴2), 

while the third one (represented by r.v. 𝐴3) act to both components and provokes a system failure. 

Thus, accordingly to the MO failure model (1), the system lifetime is determined by the joint 

distribution of (𝑇1, 𝑇2), where 𝐴1, 𝐴2 and 𝐴3 are independent r.v.’s. 

Dealing with reparable model we need to propose some procedure of recovering. Let the 

repair time 𝐵𝑖  of 𝑖-th component has absolute continuous distribution with cumulative distribution 

function 𝐵𝑖(𝑥) and probability density functions 𝑏𝑖(𝑥), correspondingly, 𝑖 = 1,2. All repair times 

are assumed to be independent. 

In order to describe the system behavior after its partial failure, when only one of 

components fails it is necessary to generalize the MO model. Note that there are at least two 

scenarios. The first one supposes that if one component fails and during its repair a non-fatal shock 

can arise leading to failure of another component which results in system breakdown. The second 

option is that a common shock also can arise, and it leads to the full system failure. 

We will use the following notations.   𝛼 = 𝛼1 + 𝛼2 + 𝛼3 the summary intensity of failures;  

𝛼̅𝑖 = 𝛼𝑖 + 𝛼3, (𝑖 = 1,2);  𝑏𝑖 = ∫
∞

0
 (1 − 𝐵𝑖(𝑥))𝑑𝑥 the 𝑖-th r.v. 𝐵𝑖    (𝑖 = 1,2,3) expectations;  𝜌𝑖 =

𝛼𝑖𝑏𝑖 , 𝑖 = 1,2,3;  𝛽𝑖(𝑥) = (1 − 𝐵𝑖(𝑥))
−1𝑏𝑖(𝑥) the 𝑖-th r.v. conditional repair intensity given elapsed 

repair time is 𝑥 for (𝑖 = 1,2,3);  𝑏̃𝑖(𝑠) = ∫
∞

0
 𝑒−𝑠𝑥𝑏𝑖(𝑥)𝑑𝑥  the Laplace transform (LT) of the 𝑖-th 

component repair time distribution (𝑖 = 1,2).  

Under considered assumptions the state space of the system can be represented as 𝐸 =

{0, 1, 2, 3}, which means: 0 — both components are working, 1 — the first component has failed 

and is being repaired while the second one is working, 2 — the second component has failed and is 

being repaired while the first one is working, 3 — both components are in failure (down) states, 

system has failed and is being repaired. 

In this paper we are interested in the  reliability function  

 
 𝑅(𝑡) = 𝑃{𝑇 > 𝑡}, 

 

where 𝑇 denotes the system life time. 

 

3  Reliability Function 
 

We will use the so-called Markovization method to calculate the system reliability 

function. Specifically, let us consider two-dimensional absorbing Markov process 𝑍 = {𝑍(𝑡), 𝑡 ≥

0)}, with 𝑍(𝑡) = (𝐽(𝑡), 𝑋(𝑡)) where 𝐽(𝑡) represents the system state, and 𝑋(𝑡) is an additional 
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variable, which means the elapsed repair time of 𝐽(𝑡)-th component at time 𝑡. The process phase 

space is given by 𝐸 = {0, (1, 𝑥), (2, 𝑥),3}, which mean: 0 – both components are working, (1, 𝑥) – the 

second component is working, the first one is failed and repairing, and its elapsed repair time 

equal to 𝑥, (2, 𝑥) – the first component is working, the second one is failed and repairing, and its 

elapsed repair time equal to 𝑥, 3 – both components are failed, and therefore the system is failed. 

Corresponding probabilities are denoted by 𝜋0(𝑡), 𝜋1(𝑡; 𝑥), 𝜋2(𝑡; 𝑥), 𝜋3(𝑡). The state transition graph 

of the system is represented on figure 2. 

 

 
  

Figure  2: Absorbing system transition graph. 

   

Under the above assumptions, the following statement is true. 

 

Theorem 1 The system reliability function Laplace transform is given by  

 

 𝑅̃(𝑠) =
(𝑠+𝛼̅1)(𝑠+𝛼̅2)+(𝑠+𝛼̅1)𝜙1(𝑠)+(𝑠+𝛼̅2)𝜙2(𝑠)

(𝑠+𝛼̅1)(𝑠+𝛼̅2)[𝑠+𝜙1(𝑠)+𝜙2(𝑠)+𝛼3]
 (2) 

 where 𝑠 > 0 and  

 𝜙𝑖(𝑠) = 𝛼𝑖(1 − 𝑏̃𝑖(𝑠 + 𝛼̅𝑖∗)),    𝑖 = 1,2 (3) 

 with 𝑖∗ = 2 if 𝑖 = 1 and vice versa.  

 

  Proof. Applying the usual method of comparing the process probabilities at closed times 

𝑡 and 𝑡 + Δ the system of Kolmogorov forward partial differential equations can be written as 

follows  

 𝑑𝑑𝑡𝜋0(𝑡) = −𝛼𝜋0(𝑡) + ∫
𝑡

0
 𝜋1(𝑡, 𝑥)𝛽1(𝑥)𝑑𝑥 + ∫

𝑡

0
 𝜋2(𝑡, 𝑥)𝛽2(𝑥)𝑑𝑥; 

 (∂ ∂𝑡 + ∂∂𝑥)𝜋1(𝑡; 𝑥) = −(𝛼̅2 + 𝛽1(𝑥))𝜋1(𝑡; 𝑥); 
 (∂ ∂𝑡 + ∂∂𝑥)𝜋2(𝑡; 𝑥) = −(𝛼̅1 + 𝛽2(𝑥))𝜋2(𝑡; 𝑥); 

 𝑑𝑑𝑡𝜋3(𝑡) = 𝛼3𝜋0(𝑡) + 𝛼̅1 ∫
𝑡

0
 𝜋2(𝑡; 𝑥)𝑑𝑥 + 𝛼̅2 ∫

𝑡

0
 𝜋1(𝑡; 𝑥)𝑑𝑥, (4) 

 

 taking into account the initial 𝜋0(0) = 1 and boundary conditions  

 

 𝜋1(𝑡, 0) = 𝛼1𝜋0(𝑡),    𝜋2(𝑡, 0) = 𝛼2𝜋0(𝑡). (5) 

 

To solve this system we use the method of characteristics for solving first-order partial 

differential equations, consult [22]. According to this method we obtain17  

 

 𝜋1(𝑡; 𝑥) = ℎ1(𝑡 − 𝑥)𝑒
−𝛼̅2𝑥(1 − 𝐵1(𝑥)),    𝑥 ≤ 𝑡; 

 𝜋2(𝑡; 𝑥) = ℎ2(𝑡 − 𝑥)𝑒
−𝛼̅1𝑥(1 − 𝐵2(𝑥)),    𝑥 ≤ 𝑡, (6) 

                                                           
17 The represented below solutions have a nice probabilistic interpretation. The functions ℎ𝑖(⋅) can 

be considered as renewal densities of the process returning to the states with zero elapsed times, 

and two other multipliers show that during the time 𝑥 neither failure, nor repair occurs. 
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 and from boundary conditions (5) it holds  

 

 𝜋1(𝑡; 0) = ℎ1(𝑡) = 𝛼1𝜋0(𝑡),    𝜋2(𝑡; 0) = ℎ2(𝑡) = 𝛼1𝜋0(𝑡). (7) 

 

 Substitution of these solutions to the first equation in (7) gives  

 

 𝑑𝑑𝑡𝜋0(𝑡) = −𝛼𝜋0(𝑡) + ∫
𝑡

0
 ℎ1(𝑡 − 𝑥)𝑒

−𝛼̅2𝑥𝑏1(𝑥)𝑑𝑥 + 

 +∫
𝑡

0
 ℎ2(𝑡 − 𝑥)𝑒

−𝛼̅1𝑥𝑏1(𝑥)𝑑𝑥. 

 

 In terms of Laplace transform with 𝜋0(0) = 1 we have  

 

 (𝑠 + 𝛼)𝜋̃0(𝑠) − 1 = ℎ̃1(𝑠)𝑏̃1(𝑠 + 𝛼̅2) + ℎ̃2(𝑠)𝑏̃2(𝑠 + 𝛼̅1). 

 

Substitution into this equation the Laplace transform of the boundary conditions (7)  

 

 ℎ̃1(𝑠) = 𝛼1𝜋̃0(𝑠),   ℎ̃2(𝑠) = 𝛼2𝜋̃0(𝑠), 
 

 after some algebra we get  

 

 (𝑠 + 𝛼)𝜋̃0(𝑠) − 𝛼1𝑏̃1(𝑠 + 𝛼̅2)𝜋̃0(𝑠) − 𝛼2𝑏̃2(𝑠 + 𝛼̅1)𝜋̃0(𝑠) = 1. 
 

From this equality one can find 𝜋̃0(𝑠) in the following form:  

 

 𝜋̃0(𝑠) = [𝑠 + 𝜙1(𝑠) + 𝜙2(𝑠) + 𝛼3]
−1, (8) 

 

 where for simplicity the notations (3) are used. 

To find 𝜋̃3(𝑠) we apply the Laplace transform (8) in the last equation of the system (??). 

Taking into account the expressions (??) for probabilities 𝜋𝑖(𝑡; 𝑥) for 𝑖 = 1,2 we obtain  

 

 𝑠𝜋̃3(𝑠) = 𝛼3𝜋̃0(𝑠) + 𝛼̅2ℎ̃1(𝑠)
1−𝑏̃1(𝑠+𝛼̅2)

𝑠+𝛼̅2
+ 

 +𝛼̅1ℎ̃2(𝑠)
1−𝑏̃2(𝑠+𝛼̅1)

𝑠+𝛼̅1
. 

 

 By substituting instead of ℎ̃𝑖(𝑠) its representation in terms of 𝜋̃0(𝑠) we get  

 

 𝑠𝜋3(𝑠) = 𝜋̃0(𝑠) (
𝛼̅2

𝑠+𝛼̅2
𝜙1(𝑠) +

𝛼̅1

𝑠+𝛼̅1
𝜙2(𝑠) + 𝛼3). 

 

Finally, since  

 𝑅̃(𝑠) = 1𝑠 − 𝜋̃3(𝑠), 

we arrive to  

 𝑅̃(𝑠) = 1𝑠 (1 −
𝛼̅2𝑠+𝛼̅2𝜙1(𝑠)+𝛼̅1𝑠+𝛼̅1𝜙2(𝑠)+𝛼3

[𝑠+𝜙1(𝑠)+𝜙2(𝑠)+𝛼3]
) 

 =
(𝑠+𝛼̅1)(𝑠+𝛼̅2)+(𝑠+𝛼̅1)𝜙1(𝑠)+(𝑠+𝛼̅2)𝜙2(𝑠)

(𝑠+𝛼̅1)(𝑠+𝛼̅2)[𝑠+𝜙1(𝑠)+𝜙2(𝑠)+𝛼3]
, 

 which ends the proof.   

As a corollary, by a substitution 𝑠 = 0 we find the mean time to the system failure.  

Corollary 1 The mean system life time is given by  

 𝐸[𝑇] = 𝑅̃(0) =
𝛼̅1𝛼̅2+𝛼̅1𝛼1(1−𝑏̃1(𝛼̅2))+𝛼̅2𝛼2(1−𝑏̃2(𝛼̅1))

𝛼̅1𝛼̅2[𝛼1(1−𝑏̃1(𝛼̅2))+𝛼2(1−𝑏̃2(𝛼̅1))]
 (9) 
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Remark 1 Note that in homogeneous case, when all failure parameters are equal (𝛼1 = 𝛼2 = 𝛼3 =

𝛼) the system mean time to failure simplifies to  
 𝑚𝑇 = 𝐸[𝑇] ≈ 1𝛼. 

 

4  Rare failures 
 

The above formulas demonstrate the evident dependence of the reliability function on the 

shape of repair time distribution. It is expressed in the form of Laplace transform of the repair time 

distribution at points of elements’ failure intensities. 

On the other side, as it was mentioned in the introduction, for systems with independent 

component failures in case of quick restoration of components the system reliability function tends 

to the exponential one for any repair time distribution. Here we consider the behavior of the 

considered system reliability function under MO failure model with condition of “rare” failures 

instead of “quick” restorations. 

For the considered model the rare failures should be understood as the slow intensity of 

failures with respect to the fixed repair times. Thus we will suppose that 𝑞 = max{𝛼1, 𝛼2, 𝛼3} → 0. 

Naturally the asymptotic analysis should be done with respect to a certain scale parameter. In the 

place of such a parameter the asymptotic mean lifetime value will be considered. 

Using (3) and relations 𝜌𝑖 = 𝛼𝑖𝑏𝑖 one can find that  

 

 𝜙𝑖(0) = 𝛼𝑖(1 − 𝑏̃𝑖(𝛼̅𝑖∗)) ≈ 𝜌𝑖𝛼̅𝑖∗ 
 

as 𝑞 → 0, and therefore, the mean value of the system time to failure from (9) is  

 

 𝑚 = 𝐸[𝑇] = 𝑅̃(0) =
𝛼̅1𝛼̅2+𝛼̅1𝜙1(𝛼̅2)+𝛼̅2𝜙2(𝛼̅1)

𝛼1𝛼2(𝜙1(𝛼̅2)+𝜙2(𝛼̅1))+𝛼3
= 

 =
1+𝜌1+𝜌2

𝛼̅1𝜌2+𝛼̅2𝜌1+𝛼3
. 

 

Theorem 2 Under rare components’ failures the system reliability function becomes asymptotically 

insensitive to the shapes of their repair distributions. Moreover the reliability function for the considered 

model in scale of 𝑚 = 𝐸[𝑇] has unit exponential distribution, i.e.,  

 
 lim

𝑞→0
𝑃{𝑇𝑚 > 𝑡} = 𝑒−𝑡 . 

 

  Proof. Instead of the large parameter 𝑚 we consider the small parameter 𝛾 = 𝑚−1. We are 

interested on the asymptotic behavior of the reliability function of the system  

 
 𝑅(𝑡𝛾) = 𝑃{𝛾𝑇 > 𝑡} 

 

when 𝛾 → 0. To do that, we investigate the asymptotic behavior of its Laplace transform  

 

 𝛾𝑅̃(𝛾𝑠) = 𝛾
(𝛾𝑠+𝛼̅1)(𝛾𝑠+𝛼̅2)+(𝛾𝑠+𝛼̅1)𝜙1(𝛾𝑠)+(𝛾𝑠+𝛼̅2)𝜙2(𝛾𝑠)

(𝛾𝑠+𝛼̅1)(𝛾𝑠+𝛼̅2)[𝛾𝑠+𝜙1(𝛾𝑠)+𝜙2(𝛾𝑠)+𝛼3]
= 

 =
1+𝜙1(𝛾𝑠)𝛾𝑠+𝛼̅2+𝜙2(𝛾𝑠)𝛾𝑠+𝛼̅1

𝛾𝑠+𝜙1(𝛾𝑠)+𝜙2(𝛾𝑠)+𝛼3
. 

 

 When 𝛾 → 0, it holds that  

 

 𝜙𝑖(𝛾𝑠) = 𝛼𝑖(1 − 𝑏̃𝑖(𝛾𝑠 + 𝛼̅𝑖)) ≈ 𝛼𝑖𝑏𝑖(𝛾𝑠 + 𝛼̅𝑖∗) = 𝜌𝑖(𝛾𝑠 + 𝛼𝑖∗). 

 

Therefore, 𝜙𝑖(𝛾𝑠)𝛾𝑠 + 𝛼̅𝑖∗ ≈ 𝜌𝑖 and the last relation yields  
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 𝛾𝑅̃(𝛾𝑠) = 𝛾
1+𝜌1+𝜌2

𝛾𝑠(1+𝜌1+𝜌2)+𝜌1𝛼̅2+𝜌2𝛼̅1+𝛼3
= 𝛾𝛾(𝑠 + 1) = 1𝑠 + 1. 

 

So, when 𝛾 → 0 it follows that  

 
 𝑃{𝛾𝑇 > 𝑡} = 𝑅(𝑡𝛾) → 𝑒−𝑡 . 

  

5  Conclusions 

 
We focus on assessing and study of the system-level reliability of a heterogeneous double 

redundant renewable system under Marshall-Olkin failure model in the case when repair times of 

its components have a general continuous distribution. The proposed mathematical model allows 

to obtain the explicit expression in terms of Laplace transform for the system reliability function. 

The produced analytical results reveal asymptotic insensitivity of the reliability function of the 

system under the ‘rare’ failures of its elements to the shape of their repair time distribution. In 

addition, we showed that when the scale parameter is mean time to failure, the system’s reliability 

function converge to the unit exponential law. 
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